# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2053 | 0 | 1.0000 | Replicon typing of plasmids in environmental Achromobacter sp. producing quinolone-resistant determinants. This study aimed to investigate the antimicrobial resistance profile to quinolones, the presence of quinolone-resistant determinants and the plasmid replicon typing in environmental Achromobacter sp. isolated from Brazil. Soil and water samples were used for bacterial isolation. The antimicrobial susceptibility testing was performed by minimum inhibitory concentration method. The detection of mutations in the quinolone resistance-determining regions (QRDR) genes, the presence of plasmid-mediated quinolone resistance (PMQR) genes, and plasmid replicons were performed by PCR. A total of 16 isolates was obtained from different cultures, cities, and states of Brazil. All isolates were non-susceptible to ciprofloxacin, norfloxacin, and levofloxacin. Some mutations in QRDR genes were found, including Gln-83-Leu and Asp-87-Asn in the gyrA and Gln-80-Ile and Asp-84-Ala in the parC. Different PMQR genes were detected, such as qnrA, qnrB, qnrS, oqxA, and oqxB. Three different plasmid families were detected, being most presented the ColE-like, followed by IncFIB and IncA/C. The presence of different PMQR genes and plasmids in the isolates of the present study shows that environmental bacteria can act as reservoir of important genes of resistance to fluoroquinolones, which is of great concern, due to the potential of horizontal dissemination of these genes. Besides that, there are no studies reporting these results in Achromobacter sp. isolates. | 2018 | 30357960 |
| 2054 | 1 | 0.9999 | A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. Bacterial resistance to fluoroquinolones result from mutations in the quinolone resistance-determining regions of the drug targets, overexpression of efflux pumps, and/or the more recently identified plasmid-mediated low-level resistance mechanisms. We investigated the prevalence of and characterized plasmid-mediated fluoroquinolone resistance genes (qnrA, qnrB, qnrS, aac(6')-Ib-cr, and qepA) by polymerase chain reaction in fluoroquinolone-resistant Escherichia coli (n = 530) isolated from a chicken farm, a pig farm, and hospitalized patients in Shandong, China, in 2007. The aac(6')-Ib-cr gene was the most prevalent resistance gene that was detected in bacteria isolated from all sources. Next was the qnrS gene, which was predominantly present in isolates from the pig farm. Only eight (5.8%) isolates from hospital patients were found to possess the qepA gene, and these isolates were first reported in qepA-carrying E. coli from humans in China. The qnrA and qnrB genes were not detected in any of the isolates. Further, most of the isolates were also resistant to beta-lactams and aminoglycosides as determined by the broth microdilution method. Pulsed-field gel electrophoresis analysis of the E. coli isolates with similar resistance patterns that also carried resistance genes showed great genomic diversity among these bacteria, suggesting that the multiresistant E. coli isolates carrying the qnr, aac(6')-Ib-cr, or qepA genes were not derived from a specific clone, but represented a wide variety of different genotypes. The results of Southern hybridization revealed that qepA, qnrS, and parts of aac(6')-Ib-cr genes were localized on plasmids and/or chromosome. qepA and aac(6')-Ib-cr genes were colocalized with aac(6')-Ib-cr and qnrS genes, respectively, on the same plasmids. Our study demonstrated that two different genes (qepA and aac(6')-Ib-cr) were identified on the same plasmid in E. coli strains derived from patients and qnrS and aac(6')-lb-cr genes on the same plasmid in an E. coli strain of animal origin. | 2010 | 19911944 |
| 2055 | 2 | 0.9999 | Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. The purpose of this study was to investigate the prevalence and characteristics of plasmid-mediated quinolone resistance (PMQR) genes qnr, aac(6')-Ib-cr, and qepA in a total of 185 non-duplicate Salmonella spp. isolated from hatcheries, poultry farms, and poultry slaughterhouses during the period 2001 to 2010 in Korea. Additionally, mutation analysis of quinolone resistance determining regions (QRDRs), conjugation experiments, and plasmid analysis were performed in the PMQR-positive isolates. Among the 185 isolates, six (3.2%) contained qnr genes (two qnrB4 and four qnrS1) but none carried the aac(6')-Ib-cr or qepA genes. Among the six PMQR-positive isolates, one showed a single mutation (Ser83-Phe substitution) in the QRDRs of gyrA. Among them, three were non-susceptible (intermediate or resistant) to nalidixic acid (minimum inhibitory concentration [MIC] ≥256 µg/ml), ciprofloxacin (MIC 2 µg/ml), and levofloxacin (MIC 4 µg/ml), but others were susceptible to all of the three fluoroquinolones. They were resistant to six or more antimicrobial agents tested and were able to transfer quinolone resistance to recipient Escherichia coli J53 by conjugation. By performing a hybridization test, plasmids harbouring qnrB4 and qnrS1 genes were less than 8 kb and about 70 kb in size, respectively. The horizontal dissemination of qnrS1 gene was mediated by IncN plasmid. Compared with the recipient strain, MICs of the transconjugants increased two-fold to four-fold for nalidixic acid, and eight-fold to 16-fold for ciprofloxacin and levofloxacin. This report is the first to describe the detection of qnr genes in Salmonella spp. isolated from poultry in Korea. Widespread horizontal transfer of these genes among bacteria may be a serious public health concern because these can rapidly increase fluoroquinolone resistance. To ensure the public health, it is essential to continuously survey and carefully monitor the spread of PMQR genes in Salmonella from poultry. | 2013 | 23607509 |
| 2922 | 3 | 0.9999 | Tetracycline-resistance genes in gram-negative isolates from estuarine waters. AIMS: To investigate the diversity and dissemination of tetracycline resistance genes in isolates from estuarine waters. METHODS AND RESULTS: Forty-two out of 164 multi-resistant isolates previously obtained were resistant or less-susceptible to tetracycline, as evaluated by the disc diffusion method. Minimal inhibitory concentration for resistant bacteria ranged from 16 to 256 mg l(-1). Screening of tet genes by polymerase chain reaction showed that 88% of the isolates carried at least one of the genes tested, namely tet(A) (present in 13 isolates), tet(B) (present in 13 isolates), tet(C) (present in 3 isolates), tet(D) (present in 1 isolate), tet(E) (present in 6 isolates) and tet(M) (present in 1 isolate). One isolate carried tet(A) and tet(M). To our knowledge, this study presents the first description of a tet(D) gene in Morganella morganii. Hybridization revealed that tet genes were plasmid-located in 31% of the isolates. Those isolates were included as donors in conjugation experiments and 38% transferred tetracycline resistance. CONCLUSIONS: A considerable diversity of tet genes was detected in the estuary. Frequently, these genes were associated with plasmids and could be transferred to Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented provide further evidence of the role played by estuarine reservoirs in antibiotic resistance maintenance and dissemination. | 2008 | 19120920 |
| 1734 | 4 | 0.9999 | Identification and characterization of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae isolated from healthy poultry in Brazil. The expression of plasmid-mediated quinolone resistance (PMQR) genes confers low-level quinolone and fluoroquinolones resistance alone. However, the association to chromosomal resistance mechanisms determines an expressively higher resistance in Enterobacteriaceae. These mechanisms are horizontally disseminated within plasmids and have contributed to the emergence of bacteria with reduced susceptibility or resistant to therapies worldwide. The epidemiological characterization of PMQR dissemination is highly relevant in the scientific and medical context, to investigate the dissemination within enterobacteria, from different populations, including humans and food-producing animals. In the present study, 200 Enterobacteriaceae isolates were harvested from poultry with cloacal swabs and identified as Escherichia coli (90.5%), Escherichia fergusonii (5.5%), Klebsiella oxytoca (2.5%) and Klebsiella pneumoniae (1.5%). Among isolates evaluated, 46 (23%) harboured PMQR genes including qnrB (43/200), qnrS (2/200) and aac(6')-Ib-cr (1/200). All isolates carrying PMQR genes showed multidrug-resistance phenotype. The 36 E. coli isolates showed 18 different PFGE types. All E. fergusonii isolates showed the same PFGE type. The two Klebsiella oxytoca belonged to two different PFGE types. The phylogenetic groups A, B1, and D were found among the E. coli harboring PMQR genes. Based on the phylogenetic analysis and PFGE, the population structure of E. coli isolates was diverse, even within the same farm. All isolates carrying qnrB and qnrS genes also harboured ColE-like plasmids. The Southern blot hybridization using the S1-PFGE revealed that the qnrB genes were located on low molecular weight plasmids, smaller than 10Kb. Resistance plasmids were sequenced and showed 100% identity with plasmid pPAB19-3. The association of PMQR genes with mobile genetic elements, such as transferable plasmids, favours the selection and dissemination of (fluoro) quinolones resistant bacteria among food-producing animals, and may play an important role in the current increased prevalence of resistant bacteria in different environments reported worldwide. | 2018 | 29427764 |
| 2046 | 5 | 0.9999 | QRDR mutations, efflux system & antimicrobial resistance genes in enterotoxigenic Escherichia coli isolated from an outbreak of diarrhoea in Ahmedabad, India. BACKGROUND & OBJECTIVES: Diverse mechanisms have been identified in enteric bacteria for their adaptation and survival against multiple classes of antimicrobial agents. Resistance of bacteria to the most effective fluoroquinolones have increasingly been reported in many countries. We have identified that most of the enterotoxigenic Escherichia coli (ETEC) were resistant to several antimicrobials in a diarrhoea outbreak at Ahmedabad during 2000. The present study was done to identify several genes responsible for antimicrobial resistance and mobile genetic elements in the ETEC strains. METHODS: Seventeen ETEC strains isolated from diarrhoeal patients were included in this study. The antimicrobial resistance was confirmed by conventional disc diffusion method. PCR and DNA sequencing were performed for the identification of mutation in the quinolone resistance-determining regions (QRDRs). Efflux pump was tested by inhibiting the proton-motive force. DNA hybridization assay was made for the detection of integrase genes and the resistance gene cassettes were identified by direct sequencing of the PCR amplicons. RESULTS: Majority of the ETEC had GyrA mutations at codons 83 and 87 and in ParC at codon 80. Six strains had an additional mutation in ParC at codon 108 and two had at position 84. Plasmid-borne qnr gene alleles that encode quinolone resistance were not detected but the newly described aac(6')-Ib-cr gene encoding a fluoroquinolne-modifying enzyme was detected in 64.7 per cent of the ETEC. Class 1 (intI1) and class 2 (intI2) integrons were detected in six (35.3%) and three (17.6%) strains, respectively. Four strains (23.5%) had both the classes of integrons. Sequence analysis revealed presence of dfrA17, aadA1, aadA5 in class 1, and dfrA1, sat1, aadA1 in class 2 integrons. In addition, the other resistance genes such as tet gene alleles (94.1%), catAI (70.6%), strA (58.8%), bla TEM-1 (35.2%), and aphA1-Ia (29.4%) were detected in most of the strains. INTERPRETATION & CONCLUSIONS: Innate gene mutations and acquisition of multidrug resistance genes through mobile genetic elements might have contributed to the emergence of multidrug resistance (MDR) in ETEC. This study reinforces the necessity of utilizing molecular techniques in the epidemiological studies to understand the nature of resistance responsible for antimicrobial resistance in different species of pathogenic bacteria. | 2011 | 21911975 |
| 2981 | 6 | 0.9998 | Investigation of plasmid-mediated resistance in E. coli isolated from healthy and diarrheic sheep and goats. Escherichia coli is zoonotic bacteria and the emergence of antimicrobial-resistant strains becomes a critical issue in both human and animal health globally. This study was therefore aimed to investigate the plasmid-mediated resistance in E. coli strains isolated from healthy and diarrheic sheep and goats. A total of 234 fecal samples were obtained from 157 sheep (99 healthy and 58 diarrheic) and 77 goats (32 healthy and 45 diarrheic) for the isolation and identification of E. coli. Plasmid DNA was extracted using the alkaline lysis method. Phenotypic antibiotic susceptibility profiles were determined against the three classes of antimicrobials, which resistance is mediated by plasmids (Cephalosporins, Fluoroquinolone, and Aminoglycosides) using the disc-diffusion method. The frequency of plasmid-mediated resistance genes was investigated by PCR. A total of 159 E. coli strains harbored plasmids. The isolates antibiogram showed different patterns of resistance in both healthy and diarrheic animals. A total of (82; 51.5%) E. coli strains were multidrug-resistant. rmtB gene was detected in all Aminoglycoside-resistant E. coli, and the ESBL-producing E. coli possessed different CTX-M genes. Similarly, fluoroquinolone-resistant E. coli possessed different qnr genes. On the analysis of the gyrB gene sequence of fluoroquinolone-resistant E. coli, multiple point mutations were revealed. In conclusion, a high prevalence of E. coli with high resistance patterns to antimicrobials was revealed in the current study, in addition to a wide distribution of their resistance determinants. These findings highlight the importance of sheep and goats as reservoirs for the dissemination of MDR E. coli and resistance gene horizontal transfer. | 2020 | 32127753 |
| 1899 | 7 | 0.9998 | Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance. | 2012 | 22808141 |
| 968 | 8 | 0.9998 | Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt. As little is known about antimicrobial resistance genes in fish farms, this study was conducted to monitor the incidence and prevalence of a wide range of antimicrobial resistance genes in Gram-negative bacteria isolated from water samples taken from fish farms in the northern part of Egypt. Ninety-one out of two hundred seventy-four (33.2%) non-repetitive isolates of Gram-negative bacteria showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing results showed that 72 (26.3%) isolates contain tetracycline resistance genes and 19 (6.9%) isolates were positive for class 1 integrons with 12 different gene cassettes. The beta-lactamase-encoding genes were identified in 14 (5.1%) isolates. The plasmid-mediated quinolone resistance genes, qnr and aac(6')-Ib-cr, were identified in 16 (5.8%) and 3 (1.1%) isolates, respectively. Finally, the florphenicol resistance gene, floR, was identified in four (1.5%) isolates. To the best of our knowledge, this is the first report for molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Africa. | 2010 | 20145377 |
| 2052 | 9 | 0.9998 | Plasmid-mediated quinolone resistance in Escherichia coli isolates from commercial broiler chickens and selection of fluoroquinolone-resistant mutants. Plasmid-mediated quinolone resistance (PMQR) is a potential concern for animal husbandry and public health. Escherichia coli isolates from a total of 109 fecal samples collected from 6 commercial broiler farms between 2007 and 2011 were examined for PMQR genes, and transfer of these genes was tested by conjugation analysis to elucidate the prevalence and spread of PMQR in broiler chickens. Two isolates from 2 farms harbored the aac(6')-Ib-cr gene that was not detected in plasmids using Southern blot analysis of S1 nuclease-digested genomic DNA separated by pulsed-field gel electrophoresis. In these 2 isolates, nucleotide mutations in the gyrA and parC genes that result in amino acid substitutions were detected. Additionally, a total of 6 isolates originating from 6 chickens from the 2 farms were positive for the qnrS1 gene. In 2 of the 6 isolates, the qnrS1 gene was transferred to a recipient strain. Two transconjugants harboring the qnrS1 gene were cultured on media supplemented with successively higher concentrations of enrofloxacin (ERFX). After a 5-time subcultivation, the ERFX MICs reached 8 and 16 μg/mL, and no nucleotide mutations were detected in the gyrA, gyrB, parC, and parE genes. Our results suggest that the prevalence of PMQR was relatively low in broiler chickens and that exposure of bacteria carrying PMQR genes to the selective pressure of fluoroquinolones can result in resistance to fluoroquinolone, which is not caused by mutations in genes encoding topoisomerases. | 2019 | 31198966 |
| 2070 | 10 | 0.9998 | Complex integrons containing qnrB4-ampC (bla(DHA-1)) in plasmids of multidrug-resistant Citrobacter freundii from wastewater. Microbial populations in wastewater treatment plants (WWTPs) are increasingly being recognized as environmental reservoirs of antibiotic resistance genes. PCR amplicons for plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS were recorded in samples from a WWTP in Vancouver, British Columbia. Six strains of ciprofloxacin-resistant Citrobacter freundii were isolated and found to carry mutations in gyrA and parC, as well as multiple plasmid-borne resistance genes, collectively including qnrB; aac(6')-Ib-cr; β-lactamase-encoding genes from molecular classes A (blaTEM-1), C (ampC), D (blaOXA-1, blaOXA-10); and genes for resistance to 5 other types of antibiotics. In 3 strains, large (>60 kb) plasmids carried qnrB4 and ampC as part of a complex integron in a 14 kb arrangement that has been reported worldwide but, until recently, only among pathogenic strains of Klebsiella. Analysis of single-nucleotide polymorphisms in the qnrB4-ampC regions infers 2 introductions into the WWTP environment. These results suggest recent passage of plasmid-borne fluoroquinolone and β-lactam resistance genes from pathogens to bacteria that may be indigenous inhabitants of WWTPs, thus contributing to an environmental pool of antibiotic resistance. | 2013 | 23461518 |
| 1732 | 11 | 0.9998 | High Carriage Rate of the Multiple Resistant Plasmids Harboring Quinolone Resistance Genes in Enterobacter spp. Isolated from Healthy Individuals. Antimicrobial-resistant bacteria causing intractable and even fatal infections are a major health concern. Resistant bacteria residing in the intestinal tract of healthy individuals present a silent threat because of frequent transmission via conjugation and transposition. Plasmids harboring quinolone resistance genes are increasingly detected in clinical isolates worldwide. Here, we investigated the molecular epidemiology of plasmid-mediated quinolone resistance (PMQR) in Gram-negative bacteria from healthy service trade workers. From 157 rectal swab samples, 125 ciprofloxacin-resistant strains, including 112 Escherichia coli, 10 Klebsiella pneumoniae, two Proteus mirabilis, and one Citrobacter braakii, were isolated. Multiplex PCR screening identified 39 strains harboring the PMQR genes (including 17 qnr,19 aac(6')-Ib-cr, and 22 oqxA/oqxB). The genome and plasmid sequences of 39 and 31 strains, respectively, were obtained by short- and long-read sequencing. PMQR genes mainly resided in the IncFIB, IncFII, and IncR plasmids, and coexisted with 3-11 other resistance genes. The high PMQR gene carriage rate among Gram-negative bacteria isolated from healthy individuals suggests the high-frequency transmission of these genes via plasmids, along with other resistance genes. Thus, healthy individuals may spread antibiotic-resistant bacterial, highlighting the need for improved monitoring and control of the spread of antibiotic-resistant bacteria and genes in healthy individuals. | 2021 | 35052892 |
| 1624 | 12 | 0.9998 | Detection of chromosomal and plasmid-mediated mechanisms of colistin resistance in Escherichia coli and Klebsiella pneumoniae from Indian food samples. OBJECTIVES: Numerous previous publications on the detection of bacterial isolates harbouring the mcr-1 gene from animals and humans strongly suggest an underlying route of transmission of colistin resistance via the food chain. The aim of this study was to investigate the presence of colistin-resistant (Col-R) bacteria in Indian food samples and to identify the underlying mechanisms conferring colistin resistance. METHODS: Raw food material, including poultry meat, mutton meat, fish, fruit and vegetables, collected from food outlets in Chennai, India, were processed to identify Col-R bacteria using eosin methylene blue agar supplemented with colistin. Colistin minimum inhibitory concentrations (MICs) were determined by the broth microdilution method. PCR for the mcr-1 and mcr-3 genes was performed on Col-R Escherichia coli and Klebsiella pneumoniae isolates. Mutations in the mgrB gene were analysed in K. pneumoniae isolates. One representative mcr-1-positive E. coli was subjected to whole-genome sequencing. RESULTS: Of 110 food samples tested, 51 (46.4%) were positive for non-intrinsic Col-R Gram-negative bacteria. Three E. coli isolates were found to harbour mcr-1, whereas none were positive for mcr-3. Ten K. pneumoniae isolates had alterations in mgrB, with mutations in four and insertional inactivation in six. CONCLUSION: The presence of Col-R bacteria and the mcr-1 gene in raw food samples further complicates the antimicrobial resistance scenario in India. To the best of our knowledge, this is the first report in the global literature on mgrB mutation and its insertional inactivation conferring Col-R in K. pneumoniae from food samples. | 2019 | 30244040 |
| 895 | 13 | 0.9998 | The determination of gyrA and parC mutations and the prevalence of plasmid-mediated quinolone resistance genes in carbapenem resistant Klebsiella pneumonia ST11 and ST76 strains isolated from patients in Heilongjiang Province, China. BACKGROUND: There is increasing resistance to carbapenems among Klebsiella pneumoniae,and fluoroquinolones (FQ) are increasingly used to treat infections from extended-spectrum β- lactamase(ESBLs) and carbapenemase-producing Klebsiella pneumoniae. However, the acquisition of plasmid-mediated quinolone resistance (PMQR) or the spontaneous mutation of the quinolone resistance-determining regions (QRDR) of the gyrA and parC genes can severely affect the therapeutic effect of quinolones. The goal of this study was to investigate the molecular determinants of FQ resistance(FQ-R) in carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates from Heilongjiang Province,China. MATERIALS AND METHODS: We isolated 40 strains of CRKP from a treatment center in the eastern part of Heilongjiang Province from January 2016 to December 2018. The VITEK2 Compact analyzer was used to identify and detect drug sensitivity. Different types of drug resistance genes were detected by polymerase chain reaction (PCR). PCR and DNA sequencing were used to assess the presence of qnrA, qnrB, qnrS,qepA and acc(6') Ib-cr genes,which are plasmid-encode genes that can contribute to resistance. The sequences of gyrA and parC genes were sequenced and compared with the sequences of standard strains to determine if mutations were present.Multi-site sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed on the strains to assess homology. RESULTS: The isolated CRKP strains showed rates of resistance to fluoroquinolones of 22.5% to 42.5%. The resistance rate of ciprofloxacin was significantly higher than that of levofloxacin.Nine CRKP strains (22.5%) showed co-resistance to ciprofloxacin and levofloxacin.The quinolone resistant strains were screened for plasmid-encoded genes that can contribute to resistance (PMQR genes).Among the 17 quinolone resistant strains,one strain contained no PMQR genes,twelve strains contained two PMQR genes,and four strains contained four PMQR genes.Acc (6') Ib-cr was the most frequently detected PMQR gene, detected in 95% of strains tested (38 of 40) and in 94.1% of the quinolone-resistant strains (16 of 17). The qepA gene encoding an efflux pump was not detected in any strains.No isolate carried five different PMQRs simultaneously.Changes of S83I and D87G changes in gyrA, and the S80I change in parC,which were mediated by QRDR,were identified in two isolates,which showed resistance to both ciprofloxacin and levofloxacin.Most of the FQ-R strains(58.8%,10/17) belong to ST(sequence type) 76, which is dominant in the local area, while all the mutant strains (100%,2/2),that differ in at least one site from standard bacteria, belong to the ST11 group. The strains were isolated from a hospital where there had been a recent outbreak of ST76 type CRKP in the neurosurgery ward and intensive care unit. CONCLUSION: CRKP strains were identified that were insensitive or even resistant to quinolones,and this resistance is common in Heilongjiang Province of eastern China;fluoroquinolone-resistance in these clinical CRKP strains is a complex interplay between PMQR determinants and mutations in gyrA and parC.The resistance level caused by QRDR mutation is higher than that caused by PMQR, however, the high frequency of PMQR genes in the isolated CRKP strains suggests the potential for impact of these genes.PMQR determinants are often found in carbapenemase-producing or ESBLs-producing Klebsiella pneumoniae,and some resistance genes,such as:SHV,TEM, CTX-M-15,and OXA-1 are closely associated with FQ-R. Finally, geographical factors can affect the emergence and spread of PMQR and QRDR.Some genetic lineages have higher potential risks, and continuous close monitoring is required. | 2020 | 32278145 |
| 2690 | 14 | 0.9998 | Characterization of Cefotaxime- and Ciprofloxacin-Resistant Commensal Escherichia coli Originating from Belgian Farm Animals Indicates High Antibiotic Resistance Transfer Rates. Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the "highest priority, critically important antibiotics" cefotaxime and/or ciprofloxacin, were selected for further characterization. For each strain (i) an antibiogram, (ii) the phylogenetic group, (iii) plasmid replicon type, (iv) presence and identification of integrons, and (v) antibiotic resistance transfer ratios were determined. Forty-five of these strains were resistant to 5 or more antibiotics, and 6 strains were resistant to 10 or more antibiotics. Resistance was most common to ampicillin (100%), sulfamethoxazole, ciprofloxacin (82%), trimethoprim, tetracycline (74%), cefotaxime, (70%) and ceftazidime (62%). Phylogenetic groups A (62%) and B1 (26%) were most common, followed by C (8%) and E (4%). In 43 strains, more than 1 replicon type was detected, with FII (88%), FIB (70%), and I1 (48%) being the most encountered types. Forty strains, positive for integrons, all harbored a class I integron and seven of them contained an additional class II integron. No class III integrons were detected. The antibiotic resistance transfer was assessed by liquid mating experiments. The transfer ratio, expressed as the number of transconjugants per recipient, was between 10(-5) and 10(0) for cefotaxime resistance and between 10(-7) and 10(-1) for ciprofloxacin resistance. The results of the current study prove that commensal E. coli in food-production animals can be a source of multiple resistance genes and that these bacteria can easily spread their ciprofloxacin and cefotaxime resistance. | 2018 | 29148895 |
| 2051 | 15 | 0.9998 | Plasmid-mediated fluoroquinolone-resistance QnrA and QnrB genes among Escherichia coli from cattle in Ado-Ekiti, Nigeria. OBJECTIVE: This is to investigate the implication of fluoroquinolone usage in veterinary practice and the food chain system. SUBJECTS AND METHODS: Five hundred isolates of commensal E coli were recovered from the faeces of apparently healthy cattle in Ado-Ekiti, Nigeria. The susceptibility of the bacteria was tested using standard laboratory procedures. Polymerase chain reaction (PCR) was carried out to detect the presence of qnrA and qnrB genes, which were selected on the basis of their fluoroquinolone-resistant patterns. RESULTS: The agar disc diffusion technique revealed that the representative isolates showed multiple fluoroquinolone-resistance and this formed the basis for their selection for PCR amplification. The PCR revealed that ten of the 17 quinolone-resistant representative isolates showed distinct bands which are specific for the qnrB gene; in addition, only one strain of the 20 representative isolates of commensal E coli carried plasmids on which the qnrA gene was detected. CONCLUSION: This study has confirmed that plasmid-mediated quinolone resistance is a possible mechanism among the fluoroquinolone-resistant commensal E coli isolated from faeces of apparently healthy cattle in the study location. | 2012 | 23757898 |
| 1622 | 16 | 0.9998 | Antimicrobial Susceptibility and Frequency of bla and qnr Genes in Salmonella enterica Isolated from Slaughtered Pigs. Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the bla(TEM) antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of bla(TEM) and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of bla(TEM) and bla(CTX-M) was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria. | 2021 | 34943653 |
| 1709 | 17 | 0.9998 | High prevalence of bla(VIM-1) gene in bacteria from Brazilian soil. This study investigated bacteria from soil samples to (i) determine the main bacterial genera and species having resistance to carbapenem and other β-lactams and (ii) establish if the mechanism of resistance was due to the production of metallo-β-lactamases. The isolates were characterized by PCR for metallo-β-lactamases and integrons, by antimicrobial susceptibility testing, and by sequencing. The antimicrobial profile of 40 imipenem-resistant Gram-positive soil isolates from all Brazilian regions demonstrated that 31 (77.5%) of them were multidrug resistant. Among the 40 isolates, 19 presented the bla(VIM) gene and class 1 integrons by PCR. Six of the 19 isolates were identified as Paenibacillus sp., 12 as Bacillus sp., and just 1 was classified as Staphylococcus sp., by sequencing of the 16S rRNA gene. These results suggest that bacteria from soil can act as a source of bla(VIM-1) genes, representing a threat to public health. | 2016 | 27392282 |
| 2042 | 18 | 0.9998 | Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria. Escherichia coli is one of the most common commensal bacteria of the gastrointestinal tract of humans and warm-blooded animals. Contaminated poultry can lead to disease outbreaks in consumers causing massive economic losses in the poultry industry. Additionally, commensal E. coli can harbor antibiotic resistance genes that can be transferred to other bacteria, including pathogens, in a colonized human host. In a previous study on antimicrobial resistance of E. coli from food animals from Nigeria, multidrug-resistant E. coli were detected. Three of those isolates were selected for further study using whole-genome sequencing due to the extensive drug resistance exhibited. All of the isolates carried the extended-spectrum β-lactamase (ESBL) genes, bla(CTX-M15) and bla(TEM-1), whereas one isolate harbored an additional ESBL, bla(OXA-1). All of the tetracycline-resistant isolates carried tet(A). The genes aac3-IIa and aacA4, conferring resistance to aminoglycosides, were identified in an E. coli isolate resistant to gentamicin and tobramycin. In two E. coli isolates, dfrA14, qnrS1, and sulII, were detected conferring resistance to trimethoprim, fluoroquinolones, and sulfonamides, respectively. The third isolate carried dfrA17, no fluoroquinolone resistance gene, an additional sulI gene, and a chloramphenicol resistance gene, catB3. Mutations in candidate genes conferring resistance to fosfomycin and fluoroquinolones were also detected. Several efflux systems were detected in all the E. coli isolates and virulence-associated genes related to serum resistance, motility, and adhesion. E. coli and non-E. coli origin prophages were also identified in the isolates. The results underline the higher resolution power of whole-genome sequencing for investigation of antimicrobial resistance, virulence, and phage in E. coli. | 2020 | 31509034 |
| 2050 | 19 | 0.9998 | Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. AIMS: To investigate the occurrence of fosfomycin-resistant (fos(R) ) bacteria in aquatic environments. METHODS AND RESULTS: A fos(R) strain of Enterobacter cloacae was isolated from a water sample collected at a site (50°41'33·44″N, 119°19'49·50″W) near the mouth of the Salmon River at Salmon Arm, in south-central British Columbia, Canada. The strain was identified by PCR screening for plasmid-borne, fosA-family amplicons, followed by selective plating. Sequencing of the resistance gene cloned using PCR primers to conserved flanking DNA revealed a new allele (95% amino acid identity to fosA), and I-Ceu I PFGE showed that it was chromosomally located. In Escherichia coli, the cloned DNA conferred a greater resistance to fosfomycin than its fosA counterpart. CONCLUSIONS: Gene fosA2 conferred fosfomycin resistance in an environmental isolate of Ent. cloacae. SIGNIFICANCE AND IMPACT OF THE STUDY: The repurposing of older antibiotics should be considered in the light of existing reservoirs of resistance genes in the environment. | 2011 | 21392044 |