QRDR mutations, efflux system & antimicrobial resistance genes in enterotoxigenic Escherichia coli isolated from an outbreak of diarrhoea in Ahmedabad, India. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
204601.0000QRDR mutations, efflux system & antimicrobial resistance genes in enterotoxigenic Escherichia coli isolated from an outbreak of diarrhoea in Ahmedabad, India. BACKGROUND & OBJECTIVES: Diverse mechanisms have been identified in enteric bacteria for their adaptation and survival against multiple classes of antimicrobial agents. Resistance of bacteria to the most effective fluoroquinolones have increasingly been reported in many countries. We have identified that most of the enterotoxigenic Escherichia coli (ETEC) were resistant to several antimicrobials in a diarrhoea outbreak at Ahmedabad during 2000. The present study was done to identify several genes responsible for antimicrobial resistance and mobile genetic elements in the ETEC strains. METHODS: Seventeen ETEC strains isolated from diarrhoeal patients were included in this study. The antimicrobial resistance was confirmed by conventional disc diffusion method. PCR and DNA sequencing were performed for the identification of mutation in the quinolone resistance-determining regions (QRDRs). Efflux pump was tested by inhibiting the proton-motive force. DNA hybridization assay was made for the detection of integrase genes and the resistance gene cassettes were identified by direct sequencing of the PCR amplicons. RESULTS: Majority of the ETEC had GyrA mutations at codons 83 and 87 and in ParC at codon 80. Six strains had an additional mutation in ParC at codon 108 and two had at position 84. Plasmid-borne qnr gene alleles that encode quinolone resistance were not detected but the newly described aac(6')-Ib-cr gene encoding a fluoroquinolne-modifying enzyme was detected in 64.7 per cent of the ETEC. Class 1 (intI1) and class 2 (intI2) integrons were detected in six (35.3%) and three (17.6%) strains, respectively. Four strains (23.5%) had both the classes of integrons. Sequence analysis revealed presence of dfrA17, aadA1, aadA5 in class 1, and dfrA1, sat1, aadA1 in class 2 integrons. In addition, the other resistance genes such as tet gene alleles (94.1%), catAI (70.6%), strA (58.8%), bla TEM-1 (35.2%), and aphA1-Ia (29.4%) were detected in most of the strains. INTERPRETATION & CONCLUSIONS: Innate gene mutations and acquisition of multidrug resistance genes through mobile genetic elements might have contributed to the emergence of multidrug resistance (MDR) in ETEC. This study reinforces the necessity of utilizing molecular techniques in the epidemiological studies to understand the nature of resistance responsible for antimicrobial resistance in different species of pathogenic bacteria.201121911975
205310.9999Replicon typing of plasmids in environmental Achromobacter sp. producing quinolone-resistant determinants. This study aimed to investigate the antimicrobial resistance profile to quinolones, the presence of quinolone-resistant determinants and the plasmid replicon typing in environmental Achromobacter sp. isolated from Brazil. Soil and water samples were used for bacterial isolation. The antimicrobial susceptibility testing was performed by minimum inhibitory concentration method. The detection of mutations in the quinolone resistance-determining regions (QRDR) genes, the presence of plasmid-mediated quinolone resistance (PMQR) genes, and plasmid replicons were performed by PCR. A total of 16 isolates was obtained from different cultures, cities, and states of Brazil. All isolates were non-susceptible to ciprofloxacin, norfloxacin, and levofloxacin. Some mutations in QRDR genes were found, including Gln-83-Leu and Asp-87-Asn in the gyrA and Gln-80-Ile and Asp-84-Ala in the parC. Different PMQR genes were detected, such as qnrA, qnrB, qnrS, oqxA, and oqxB. Three different plasmid families were detected, being most presented the ColE-like, followed by IncFIB and IncA/C. The presence of different PMQR genes and plasmids in the isolates of the present study shows that environmental bacteria can act as reservoir of important genes of resistance to fluoroquinolones, which is of great concern, due to the potential of horizontal dissemination of these genes. Besides that, there are no studies reporting these results in Achromobacter sp. isolates.201830357960
229120.9998Multiple mechanisms contributing to ciprofloxacin resistance among Gram negative bacteria causing infections to cancer patients. Fluoroquinolones have been used for prophylaxis against infections in cancer patients but their impact on the resistance mechanisms still require further investigation. To elucidate mechanisms underlying ciprofloxacin (CIP) resistance in Gram-negative pathogens causing infections to cancer patients, 169 isolates were investigated. Broth microdilution assays showed high-level CIP resistance in 89.3% of the isolates. Target site mutations were analyzed using PCR and DNA sequencing in 15 selected isolates. Of them, all had gyrA mutations (codons 83 and 87) with parC mutations (codons 80 and 84) in 93.3%. All isolates were screened for plasmid-mediated quinolone resistance (PMQR) genes and 56.8% of them were positive in this respect. Among PMQR genes, aac(6')-Ib-cr predominated (42.6%) while qnr genes were harbored by 32.5%. This comprised qnrS in 26.6% and qnrB in 6.5%. Clonality of the qnr-positive isolates using ERIC-PCR revealed that most of them were not clonal. CIP MIC reduction by CCCP, an efflux pump inhibitor, was studied and the results revealed that contribution of efflux activity was observed in 18.3% of the isolates. Furthermore, most fluoroquinolone resistance mechanisms were detected among Gram-negative isolates recovered from cancer patients. Target site mutations had the highest impact on CIP resistance as compared to PMQRs and efflux activity.201830115947
204730.9998Oligonucleotide microarray for molecular characterization and genotyping of Salmonella spp. strains. OBJECTIVES: To characterize and subtype multidrug-resistant Salmonella isolates by determining the virulence factors, prophage sequences and antimicrobial resistance genes using a novel Salmonella-specific oligonucleotide microarray. METHODS: Preliminary screening of 24 Salmonella clinical isolates was carried out by using susceptibility testing, plasmid profiling and class 1 integron PCR. Subsequently, oligonucleotide microarray was involved in genotypic characterization and localization of monitored genetic markers. The presence of antimicrobial resistance genes was also detected and confirmed by PCR and subsequent sequencing. The potential spread of emerging bla(SHV-2) was investigated by bacterial conjugation. RESULTS: All Salmonella strains revealed resistance to two or more (up to nine) antibiotics. Nineteen of them carried class 1 integrons including dfrA1, dfrA12, aadA1, aadA2, bla(PSE-1) and bla(TEM-1) gene cassettes, respectively. Twenty-three out of 24 Salmonella isolates possessed one or more plasmids. Oligonucleotide microarray characterization and typing revealed the conserved character of Salmonella pathogenicity island virulence factors among three Salmonella enterica serovars, significant variability in prophage sequences and many different antimicrobial resistance gene patterns. Differential labelling of genomic and plasmid DNA, respectively, and hybridization to the microarray made it possible to localize important resistance determinants. Microarray results were successfully confirmed and verified by using PCR. The emerging bla(SHV-2) gene from Salmonella Kentucky SK10944 conferring resistance to ceftriaxone and cefotaxime was transferred via bacterial conjugation to Escherichia coli K-12 3110. CONCLUSIONS: Salmonella isolates were quickly and thoroughly characterized by a novel oligonucleotide microarray, which could become a useful tool for detection of virulence and resistance genes and monitoring of their dissemination among salmonellae and closely related bacteria.200717897936
592640.9998Prevalence and Characterization of Gentamicin Resistance Genes in Escherichia coli Isolates from Beef Cattle Feces in Japan. Gentamicin is an important antibiotic for the treatment of opportunistic infections in the clinical field. Gentamicin-resistant bacteria have been detected in livestock animals and can be transmitted to humans through the food supply or direct contact. We have previously revealed that gentamicin-resistant Escherichia coli are distributed at a comparatively high rate from beef cattle in Japan, but few studies have focused on the molecular epidemiology of gentamicin-resistant bacteria. To understand these bacteria, this study examined the prevalence of various gentamicin resistance genes in gentamicin-resistant E. coli isolates from beef cattle feces. Of the 239 gentamicin-resistant E. coli isolates, the presence of the aacC2, aadB, or aac(3)-VIa genes was confirmed in 147, 84, and 8 isolates, respectively. All aac(3)-VIa-harboring isolates had an MIC value of 64 μg/mL for gentamicin and exhibited resistance to 11 antibiotic agents. An analysis of the representative aac(3)-VIa-harboring E. coli strain GC1-3-GR-4 revealed that the aac(3)-VIa gene was present on the IncA/C plasmid together with the aadA and bla(CMY) genes. Furthermore, the upstream region of the aac(3)-VIa gene contained the aadA gene and the class 1 integron-integrase gene (intI1). The aac(3)-VIa gene was detected for the first time in Japan and is expected to be able to transfer between bacteria via the IncA/C plasmid and integron. These results reveal the expansion of the distribution or diversity of gentamicin resistance genes in Japan.202235704076
291550.9998Detection of class 1 integron-associated gene cassettes and tetracycline resistance genes in Escherichia coli isolated from ready to eat vegetables. BACKGROUND: Ready to eat (RTE) vegetables are easily accessible healthy foods that are commonly consumed globally, including in Indonesia. However, these RTE vegetables contain potential contamination from pathogens and multi-drug resistant bacteria. Therefore, in the present study, we examined the presence of tetracycline-resistant E. coli (TRE) isolates from RTE vegetables. METHODS: Susceptibility to antimicrobial agents was determined using the Kirby-Bauer disc diffusion method. Characterisation of antibiotic resistant genes was performed using PCR and sequencing of tetracycline resistant gene, integron and gene cassette from the TRE isolates. RESULTS: The isolates collected in this study were resistant not only to tetracycline, but also to streptomycin. Some isolates also displayed resistance to kanamycin (77.8%), chloramphenicol (11.1%), and ciprofloxacin (5.6%). All of the isolates contained integrons (intI1) and the tetA gene; tetB was not detected in our study. Further analysis showed that some isolates (38.8%) contained the dfrA7 gene cassette, which encodes dihydrofolate reductase, which is responsible for resistance to trimethoprim. Of all the isolates that presented integrons, 11 isolates (61.1%) did not carry gene cassettes. These empty integrons have the potential to convert themselves rapidly into multigraviton strains. CONCLUSIONS: TRE isolates contain the tetA gene and integron 1. Only 38.8% of the isolates that have been identified contain the dfrA7 gene cassette, which is responsible for trimethoprim antibiotic resistance. Further identification of genes conferring resistance to other antibiotics is necessary to better characterise antibiotic resistance.202032566218
232660.9998Frequency of Antimicrobial Resistance and Class 1 and 2 Integrons in Escherichia Coli Strains Isolated from Urinary Tract Infections. Resistance to antimicrobial compounds in E. coli strains is increasing. Integrons are mobile genetic elements that lead to the spread and transfer of antibiotic resistance genes in bacteria. The aim of the present study was to determine the frequency of class 1 and 2 integrons as well as the antimicrobial resistance in E.coli strains isolated from urinary tract infections (UTIs). A total of 100 clinical isolates of uropathogenic E. coli (UPEC) were collected from patients having UTIs. These strains were identified using biochemical tests. The antibiotic susceptibility patterns of the isolated bacteria were determined in accordance with the standard method recommended by the clinical and laboratory standards institute (CLSI). The presence of class 1 and 2 integrons was determined by PCR method. The most frequent antibiotic resistance was observed to ampicillin (72%), co-trimoxazole (66%), and nalidixic acid (62%). The highest sensitivity was seen to amikacine (11%) and gentamicin (20%). The multi-drug resistance (MDR) was observed in 80% of E. coli isolates. 70% and 3% of E. coli isolate possessed class 1 and 2 integrons, respectively. Our data suggest that the antimicrobial resistance to some antibiotics as well as the frequency of class 1 and 2 integrons is very high in E. coli strains. Moreover, class 1 integrons are correlated with resistance to ampicillin, gentamicin, ciprofloxacin, co-trimoxazole, and nalidixic acid. Therefore, it is very important to monitor integron-induced drug resistance, especially class 1 integron, in order to control the urinary tract infections causing by MDR E.coli strains.202033680029
592770.9998The prevalence of, associations between and conjugal transfer of antibiotic resistance genes in Escherichia coli isolated from Norwegian meat and meat products. OBJECTIVES: To investigate the distribution of, associations between and the transferability of antimicrobial resistance genes in resistant Escherichia coli strains isolated from Norwegian meat and meat products. METHODS: The 241 strains investigated were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET) during the years 2000-2003. PCR was carried out for detection of resistance genes. Conjugation experiments were carried out with the resistant isolates from meat as donor strains and E. coli DH5alpha as the recipient strain. Statistical analyses were performed with the SAS-PC-System version 9.1 for Windows. RESULTS: Resistance genes common in pathogenic E. coli were frequently found among the isolates investigated. Strains harbouring several genes encoding resistance to the same antimicrobial agent were significantly (P < 0.0001) more frequently multiresistant than others. Strong positive associations were found between the tet(A) determinant and the genetic elements sul1, dfrA1 and aadA1. Negative associations were found between resistance genes encoding resistance to the same antimicrobial agent: tet(A)/tet(B), sul1/sul2 and strA-strB/aadA1. The resistance genes were successfully transferred from 38% of the isolates. The transfer was more frequent from resistant isolates harbouring class 1 integrons (P < 0.001). CONCLUSIONS: Acquired resistance played a major role in conferring resistance among the isolates investigated. The possibility of transferring resistance increases both by increased multiresistance and by the presence of class 1 integrons. The conjugation experiments suggest that tet(A) and class 1 integrons are often located on the same conjugative plasmid.200616931539
555380.9998Detection of class 1 integrons in Salmonella Weltevreden and silent antibiotic resistance genes in some seafood-associated nontyphoidal isolates of Salmonella in south-west coast of India. AIMS: To study the antibiogram of 40 seafood isolates of Salmonella and use of PCR to detect the presence of integrons and genes coding for antibiotic resistance. METHODS AND RESULTS: In this study, 40 isolates of Salmonella were used for antibiogram analysis. The multidrug-resistant isolates were analyzed for the presence of integron using integron-specific primers. Twenty-five percentage of the isolates were multidrug resistant while 67·50% were resistant to at least two antibiotics. Antibiotic resistance genes catA1 and tetA were present in 57·52 and 60%, respectively. Although widespread presence of genes was observed, only 26·08% of the catA1-carrying isolates exhibited phenotypic resistance against the respective antibiotic. Integrons present in representative isolates of Salmonella Weltevreden and Salmonella Newport were sequenced. The former contained class 1 integron with a single gene dfrA7 in the integron cassette and an adjacent dihydropteroate synthetase gene along with the usual quaternary ammonium compound resistance gene, while the later contained class 1 integron with dhfrA1, OrfC, in the integron cassette and an adjacent dihydropteroate synthetase gene along with the usual quaternary ammonium compound resistance gene. CONCLUSIONS: This study demonstrates the presence of silent antibiotic resistance genes and class I integrons in seafood-associated Salmonella strains. The study also demonstrates the first report of class I integron in Salm. Weltevreden. Detection of catA1 genes in phenotypically sensitive bacteria suggests that these could be reservoirs in the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The manuscript provides novel results describing the existence of a high rate of antibiotic resistance in the Salmonella populations prevailing in environmental sources as well as an absence of correspondence between the presence of antibiotic resistance genes, and the exhibition of a the corresponding phenotypic trait of resistance against the respective antibiotic compound was observed. In addition, the manuscript reports the presence of the class I integron in Salm. Weltevreden.201222443444
269090.9998Characterization of Cefotaxime- and Ciprofloxacin-Resistant Commensal Escherichia coli Originating from Belgian Farm Animals Indicates High Antibiotic Resistance Transfer Rates. Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the "highest priority, critically important antibiotics" cefotaxime and/or ciprofloxacin, were selected for further characterization. For each strain (i) an antibiogram, (ii) the phylogenetic group, (iii) plasmid replicon type, (iv) presence and identification of integrons, and (v) antibiotic resistance transfer ratios were determined. Forty-five of these strains were resistant to 5 or more antibiotics, and 6 strains were resistant to 10 or more antibiotics. Resistance was most common to ampicillin (100%), sulfamethoxazole, ciprofloxacin (82%), trimethoprim, tetracycline (74%), cefotaxime, (70%) and ceftazidime (62%). Phylogenetic groups A (62%) and B1 (26%) were most common, followed by C (8%) and E (4%). In 43 strains, more than 1 replicon type was detected, with FII (88%), FIB (70%), and I1 (48%) being the most encountered types. Forty strains, positive for integrons, all harbored a class I integron and seven of them contained an additional class II integron. No class III integrons were detected. The antibiotic resistance transfer was assessed by liquid mating experiments. The transfer ratio, expressed as the number of transconjugants per recipient, was between 10(-5) and 10(0) for cefotaxime resistance and between 10(-7) and 10(-1) for ciprofloxacin resistance. The results of the current study prove that commensal E. coli in food-production animals can be a source of multiple resistance genes and that these bacteria can easily spread their ciprofloxacin and cefotaxime resistance.201829148895
2922100.9998Tetracycline-resistance genes in gram-negative isolates from estuarine waters. AIMS: To investigate the diversity and dissemination of tetracycline resistance genes in isolates from estuarine waters. METHODS AND RESULTS: Forty-two out of 164 multi-resistant isolates previously obtained were resistant or less-susceptible to tetracycline, as evaluated by the disc diffusion method. Minimal inhibitory concentration for resistant bacteria ranged from 16 to 256 mg l(-1). Screening of tet genes by polymerase chain reaction showed that 88% of the isolates carried at least one of the genes tested, namely tet(A) (present in 13 isolates), tet(B) (present in 13 isolates), tet(C) (present in 3 isolates), tet(D) (present in 1 isolate), tet(E) (present in 6 isolates) and tet(M) (present in 1 isolate). One isolate carried tet(A) and tet(M). To our knowledge, this study presents the first description of a tet(D) gene in Morganella morganii. Hybridization revealed that tet genes were plasmid-located in 31% of the isolates. Those isolates were included as donors in conjugation experiments and 38% transferred tetracycline resistance. CONCLUSIONS: A considerable diversity of tet genes was detected in the estuary. Frequently, these genes were associated with plasmids and could be transferred to Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented provide further evidence of the role played by estuarine reservoirs in antibiotic resistance maintenance and dissemination.200819120920
5955110.9998Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Despite a trend of declining consumption, resistance to co-trimoxazole has increased during a 12-year period in Stockholm. The molecular background to this surprising development was investigated by using PCR to screen for integrons and specific resistance genes, followed by sequence analysis of selected integrons, in 105 clinical urinary isolates of Gram-negative bacteria selected partly for trimethoprim resistance. Sixty-five integrons of class 1 or 2 were detected in a subset of 59 isolates, and of these positive isolates, all but one were resistant to trimethoprim. However, 11 isolates were resistant to trimethoprim, but negative for integrons. Isolates positive for integrons were resistant to an average of 4.2 antibiotics, compared with 1.9 antibiotics for integron-negative isolates. Despite this, the only gene cassettes identified in 19 class 1 integrons analysed were dfr and aadA cassettes. Thus, only resistance to trimethoprim, streptomycin, spectinomycin and sulphonamides could be explained by the presence of integrons in these isolates. A new dfr gene, named dfrA22, was discovered as a single gene cassette in a class 1 integron. In addition, sulphonamide resistance in many isolates was caused by carriage of sul2, which has no known association with integrons. Resistance to co-trimoxazole and many other antibiotics was thus not accounted for fully by the presence of integrons in these isolates.200515715715
2055120.9998Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. The purpose of this study was to investigate the prevalence and characteristics of plasmid-mediated quinolone resistance (PMQR) genes qnr, aac(6')-Ib-cr, and qepA in a total of 185 non-duplicate Salmonella spp. isolated from hatcheries, poultry farms, and poultry slaughterhouses during the period 2001 to 2010 in Korea. Additionally, mutation analysis of quinolone resistance determining regions (QRDRs), conjugation experiments, and plasmid analysis were performed in the PMQR-positive isolates. Among the 185 isolates, six (3.2%) contained qnr genes (two qnrB4 and four qnrS1) but none carried the aac(6')-Ib-cr or qepA genes. Among the six PMQR-positive isolates, one showed a single mutation (Ser83-Phe substitution) in the QRDRs of gyrA. Among them, three were non-susceptible (intermediate or resistant) to nalidixic acid (minimum inhibitory concentration [MIC] ≥256 µg/ml), ciprofloxacin (MIC 2 µg/ml), and levofloxacin (MIC 4 µg/ml), but others were susceptible to all of the three fluoroquinolones. They were resistant to six or more antimicrobial agents tested and were able to transfer quinolone resistance to recipient Escherichia coli J53 by conjugation. By performing a hybridization test, plasmids harbouring qnrB4 and qnrS1 genes were less than 8 kb and about 70 kb in size, respectively. The horizontal dissemination of qnrS1 gene was mediated by IncN plasmid. Compared with the recipient strain, MICs of the transconjugants increased two-fold to four-fold for nalidixic acid, and eight-fold to 16-fold for ciprofloxacin and levofloxacin. This report is the first to describe the detection of qnr genes in Salmonella spp. isolated from poultry in Korea. Widespread horizontal transfer of these genes among bacteria may be a serious public health concern because these can rapidly increase fluoroquinolone resistance. To ensure the public health, it is essential to continuously survey and carefully monitor the spread of PMQR genes in Salmonella from poultry.201323607509
2906130.9998The mef(A) gene predominates among seven macrolide resistance genes identified in gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Of the 176 randomly selected, commensal, gram-negative bacteria isolated from healthy children with low exposure to antibiotics, 138 (78%) carried one or more of the seven macrolide resistance genes tested in this study. These isolates included 79 (91%) isolates from the oral cavity and 59 (66%) isolates from urine samples. The mef(A) gene, coding for an efflux protein, was found in 73 isolates (41%) and was the most frequently carried gene. The mef(A) gene could be transferred from the donors into a gram-positive E. faecalis recipient and a gram-negative Escherichia coli recipient. The erm(B) gene transferred and was maintained in the E. coli transconjugants but was found in 0 to 100% of the E. faecalis transconjugants tested, while the other five genes could be transferred only into the E. coli recipient. The individual macrolide resistance genes were identified in 3 to 12 new genera. Eight (10%) of the oral isolates and 30 (34%) of the urine isolates for which the MICs were 2 to >500 microg of erythromycin per ml did not hybridize with any of the seven genes and may carry novel macrolide resistance genes.200415328110
2913140.9998Distribution of resistance genetic determinants among Vibrio cholerae isolates of 2012 and 2013 outbreaks in IR Iran. The objective of this study was to characterize antimicrobial resistance determinants in relation to antimicrobial susceptibility and genotyping profile in 20 clinical isolates of Vibrio cholerae. All of the isolates were resistant to streptomycin. The second most prevalent resistance was observed to trimethoprim (75%), co-trimoxazole (60%), tetracycline (50%), and minocycline (45%). About 50% of the isolates fulfilled the criteria of Multi Drug Resistance (MDR) phenotype. None of the isolates carried tet A, B, C, and, D determinants. This finding shows that tetracycline resistance determinants recognized so far, does not satisfactorily describe the 50% tetracycline resistance phenotype in this study, suggesting the possible contribution of other not yet characterized resistance mechanisms involved. Class 1 integron, widely distributed among enteric bacteria, was not detected among V. cholerae strains under study. Conversely, 100% of the isolates harbored SXT constin((int)), among which 70% were positive for dfrA1, strA, and strB genes. The sul1gene was present in 60% of the isolates while none of them contained floR gene. All the isolates uniformly appeared to be identical in fingerprinting profiles expected from outbreak strains. In conclusion, SXT element with its mosaic structure was the exclusive antimicrobial resistance determinant of clonal V. cholerae isolates taken from outbreaks of 2012 and 2013 in Iran.201728062293
2042150.9998Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria. Escherichia coli is one of the most common commensal bacteria of the gastrointestinal tract of humans and warm-blooded animals. Contaminated poultry can lead to disease outbreaks in consumers causing massive economic losses in the poultry industry. Additionally, commensal E. coli can harbor antibiotic resistance genes that can be transferred to other bacteria, including pathogens, in a colonized human host. In a previous study on antimicrobial resistance of E. coli from food animals from Nigeria, multidrug-resistant E. coli were detected. Three of those isolates were selected for further study using whole-genome sequencing due to the extensive drug resistance exhibited. All of the isolates carried the extended-spectrum β-lactamase (ESBL) genes, bla(CTX-M15) and bla(TEM-1), whereas one isolate harbored an additional ESBL, bla(OXA-1). All of the tetracycline-resistant isolates carried tet(A). The genes aac3-IIa and aacA4, conferring resistance to aminoglycosides, were identified in an E. coli isolate resistant to gentamicin and tobramycin. In two E. coli isolates, dfrA14, qnrS1, and sulII, were detected conferring resistance to trimethoprim, fluoroquinolones, and sulfonamides, respectively. The third isolate carried dfrA17, no fluoroquinolone resistance gene, an additional sulI gene, and a chloramphenicol resistance gene, catB3. Mutations in candidate genes conferring resistance to fosfomycin and fluoroquinolones were also detected. Several efflux systems were detected in all the E. coli isolates and virulence-associated genes related to serum resistance, motility, and adhesion. E. coli and non-E. coli origin prophages were also identified in the isolates. The results underline the higher resolution power of whole-genome sequencing for investigation of antimicrobial resistance, virulence, and phage in E. coli.202031509034
2691160.9998Antibiotic Resistant and Biofilm-Associated Escherichia coli Isolates from Diarrheic and Healthy Dogs. Bacteria isolated from companion animals are attracting concerns in a view of public health including antimicrobial resistance and biofilm development, both contributing to difficult-to-treat infections. The purpose of this study was to evaluate the minimum inhibitory concentrations (MIC) of 18 antibiotics in Escherichia coli isolated from two groups of dogs (healthy and diarrheic). Isolates were classified into phylogroups, examined for the presence of resistance genes and biofilm-formation capacity. In healthy dogs, phylogenetic analysis showed that 47.37% and 34.22% of E. coli isolates belonged to commensal groups (A; B1) in contrast to diarrheic dogs; 42.2% of isolates were identified as the B2 phylogroup, and these E. coli bacteria formed a stronger biofilm. The results of healthy dogs showed higher MIC levels for tetracycline (32 mg/L), ampicillin (64 mg/L), ciprofloxacin (8 mg/L) and trimethoprim-sulphonamide (8 mg/L) compared to clinical breakpoints. The most detected gene encoding plasmid-mediated resistance to quinolones in the healthy group was qnrB, and in dogs with diarrhea, qnrS. The resistance genes were more frequently detected in healthy dogs. The presence of the integron int1 and the transposon tn3 increases the possibility of transfer of many different cassette-associated antibiotic-resistance genes. These results suggest that dogs could be a potential reservoir of resistance genes.202134205399
2981170.9998Investigation of plasmid-mediated resistance in E. coli isolated from healthy and diarrheic sheep and goats. Escherichia coli is zoonotic bacteria and the emergence of antimicrobial-resistant strains becomes a critical issue in both human and animal health globally. This study was therefore aimed to investigate the plasmid-mediated resistance in E. coli strains isolated from healthy and diarrheic sheep and goats. A total of 234 fecal samples were obtained from 157 sheep (99 healthy and 58 diarrheic) and 77 goats (32 healthy and 45 diarrheic) for the isolation and identification of E. coli. Plasmid DNA was extracted using the alkaline lysis method. Phenotypic antibiotic susceptibility profiles were determined against the three classes of antimicrobials, which resistance is mediated by plasmids (Cephalosporins, Fluoroquinolone, and Aminoglycosides) using the disc-diffusion method. The frequency of plasmid-mediated resistance genes was investigated by PCR. A total of 159 E. coli strains harbored plasmids. The isolates antibiogram showed different patterns of resistance in both healthy and diarrheic animals. A total of (82; 51.5%) E. coli strains were multidrug-resistant. rmtB gene was detected in all Aminoglycoside-resistant E. coli, and the ESBL-producing E. coli possessed different CTX-M genes. Similarly, fluoroquinolone-resistant E. coli possessed different qnr genes. On the analysis of the gyrB gene sequence of fluoroquinolone-resistant E. coli, multiple point mutations were revealed. In conclusion, a high prevalence of E. coli with high resistance patterns to antimicrobials was revealed in the current study, in addition to a wide distribution of their resistance determinants. These findings highlight the importance of sheep and goats as reservoirs for the dissemination of MDR E. coli and resistance gene horizontal transfer.202032127753
5925180.9998Antimicrobial Resistance and Transconjugants Characteristics of sul3 Positive Escherichia coli Isolated from Animals in Nanning, Guangxi Province. Sulfonamides are the second most popular antibiotic in many countries, which leads to the widespread emergence of sulfonamides resistance. sul3 is a more recent version of the gene associated with sulfonamide resistance, whose research is relatively little. In order to comprehend the prevalence of sul3 positive E. coli from animals in Nanning, a total of 146 strains of E. coli were identified from some farms and pet hospitals from 2015 to 2017. The drug resistance and prevalence of sul3 E. coli were analyzed by polymerase chain reaction (PCR) identification, multi-site sequence typing (MLST), drug sensitivity test, and drug resistance gene detection, and then the plasmid containing sul3 was conjugated with the recipient strain (C600). The effect of sul3 plasmid on the recipient was analyzed by stability, drug resistance, and competitive test. In this study, forty-six sul3 positive E. coli strains were separated. A total of 12 ST types were observed, and 1 of those was a previously unknown type. The ST350 is the most numerous type. All isolates were multidrug-resistant E. coli, with high resistant rates to penicillin, ceftriaxone sodium, streptomycin, tetracycline, ciprofloxacin, gatifloxacin, and chloramphenicol (100%, 73.9%, 82.6%, 100%, 80.4%, 71.7%, and 97.8%, respectively). They had at least three antibiotic resistance genes (ARGs) in addition to sul3. The plasmids transferred from three sul3-positive isolates to C600, most of which brought seven antimicrobial resistance (AMR) and increased ARGs to C600. The transferred sul3 gene and the plasmid carrying sul3 could be stably inherited in the recipient bacteria for at least 20 days. These plasmids had no effect on the growth of the recipient bacteria but greatly reduced the competitiveness of the strain at least 60 times in vitro. In Nanning, these sul3-positive E. coli had such strong AMR, and the plasmid carrying sul3 had the ability to transfer multiple resistance genes that long-term monitoring was necessary. Since the transferred plasmid would greatly reduce the competitiveness of the strain in vitro, we could consider limiting the spread of drug-resistant isolates in this respect.202235454223
2074190.9998Drug Resistance and Integron Genes in Escherichia coli Isolated from Urinary Tract Infection. Escherichia coli (E. coli) is a major cause of urinary tract infections. Treatment of these infections with antibiotics is often not effective due to the acquisition of drug-resistance genes by the bacteria. This process is mediated by integrons which belong to bacterial mobile genetic elements. Therefore, the present study addressed the issue of the relation between antibiotic resistance and integron genes in E. coli isolated from patients affected by urinary tract infection. Multiplex PCR assay employed to detect the E. coli integrase gene demonstrated that out of 49 bacterial strains, 26 were carrying class 1 integron and there was no case of bacteria harboring class 2 or class 3 integrons. Correlation analysis documented that E. coli strains harboring class 1 integron exhibited higher resistance towards tobramycin. The variable region gene cassette contained combinations of four genes responsible for antibiotic resistance: dfr17, aadA2, aadA5, and aac(6')-Ib-cr, of which the latter conferred tobramycin resistance. Together, the collected data underscore the need for identification and analysis of integrons in E. coli-induced urinary infections.201930961771