Characterization of small plasmids carrying florfenicol resistance gene floR in Actinobacillus pleuropneumoniae and Pasteurella multocida isolates from swine in China. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
201901.0000Characterization of small plasmids carrying florfenicol resistance gene floR in Actinobacillus pleuropneumoniae and Pasteurella multocida isolates from swine in China. Actinobacillus pleuropneumoniae and Pasteurella multocida are two important bacterial pathogens in swine industry. In the present study, resistance profiles of nine commonly used antibiotics of A. pleuropneumoniae and P. multocida isolates of swine origin from different regions of China were investigated by determination of minimum inhibitory concentrations (MICs). In addition, genetic relationship of the florfenicol-resistant A. pleuropneumoniae and P. multocida isolates was determined by pulsed-field gel electrophoresis (PFGE). The genetic basis of florfenicol resistance in these isolates were explored by floR detection and whole genome sequencing. High resistance rates (>25%) of florfenicol, tetracycline and trimethoprim- sulfamethoxazole were observed for both bacteria. No ceftiofur- and tiamulin- resistant isolates were detected. Furthermore, all the 17 florfenicol-resistant isolates (nine for A. pleuropneumoniae and eight for P. multocida) were positive for floR gene. The presence of similar PFGE types in these isolates suggested that clonal expansion of some floR-producing strains occurred in the pig farms from same regions. WGS and PCR screening showed that three plasmids, named pFA11, pMAF5, and pMAF6, were the cargos of the floR genes in the 17 isolates. Plasmid pFA11 exhibited novel structure and carried several resistance genes, including floR, sul2, aacC2d, strA, strB, and bla (ROB - 1). Plasmids pMAF5 and pMAF6 were presented in A. pleuropneumoniae and P. multocida isolates from different regions, suggesting horizontal transfer of the two plasmids are important for the floR dissemination in these Pasteurellaceae pathogens. Further studies of florfenicol resistance and its transfer vectors in Pasteurellaceae bacteria of veterinary origin are warranted.202336793377
291910.9997Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Salmon farming industry in Chile currently uses a significant quantity of antimicrobials to control bacterial pathologies. The main aims of this study were to investigate the presence of transferable sulfonamide- and trimethoprim-resistance genes, sul and dfr, and their association with integrons among bacteria associated to Chilean salmon farming. For this purpose, 91 Gram-negative strains resistant to sulfisoxazole and/or trimethoprim recovered from various sources of seven Chilean salmonid farms and mainly identified as belonging to the Pseudomonas genus (81.0%) were studied. Patterns of antimicrobial resistance of strains showed a high incidence of resistance to florfenicol (98.9%), erythromycin (95.6%), furazolidone (90.1%) and amoxicillin (98.0%), whereas strains exhibited minimum inhibitory concentrations (MIC(90)) values of sulfisoxazole and trimethoprim of >4,096 and >2,048 μg mL(-1), respectively. Strains were studied for their carriage of these genes by polymerase chain reaction, using specific primers, and 28 strains (30.8%) were found to carry at least one type of sul gene, mainly associated to a class 1 integron (17 strains), and identified by 16S rRNA gene sequencing as mainly belonging to the Pseudomonas genus (21 strains). Of these, 22 strains carried the sul1 gene, 3 strains carried the sul2 gene, and 3 strains carried both the sul1 and sul2 genes. Among these, 19 strains also carried the class 1 integron-integrase gene intI1, whereas the dfrA1, dfrA12 and dfrA14 genes were detected, mostly not inserted in the class 1 integron. Otherwise, the sul3 and intI2 genes were not found. In addition, the capability to transfer by conjugation these resistance determinants was evaluated in 22 selected strains, and sul and dfr genes were successfully transferred by 10 assayed strains, mainly mediated by a 10 kb plasmid, with a frequency of transfer of 1.4 × 10(-5) to 8.4 × 10(-3) transconjugant per recipient cell, and exhibiting a co-transference of resistance to florfenicol and oxytetracycline, currently the most used in Chilean salmon industry, suggesting an antibacterial co-selection phenomenon. This is the first report of the characterization and transferability of integrons as well as sul and dfr genes among bacteria associated to Chilean salmon farms, evidencing a relevant role of this environment as a reservoir of these genes.201931031727
291420.9997The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. OBJECTIVES: The aim of this study was to investigate the genetic background for streptomycin resistance in Escherichia coli and perform analysis of the MICs in relation to genetic background. METHODS: The 136 strains investigated, with streptomycin MICs of > or =16 mg/L, originated from meat and meat products and were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET). PCR was carried out for detection of the streptomycin resistance genes strA-strB and the integron-associated aadA gene cassettes. RESULTS: The strA-strB genes and/or an aadA gene cassette were detected in 110 of the 136 (80.9%) strains investigated. The strA-strB genes were the most prevalent, and were detected in 90 strains. The aadA gene cassettes were detected in 29 strains, and nine strains harboured both the strA-strB genes and an aadA gene cassette. The distribution of MICs differed considerably between isolates harbouring the strA-strB genes (solely) (MIC(50) = 128 mg/L) and isolates harbouring an aadA gene cassette (solely) (MIC(50) = 16 mg/L). Strains harbouring both the strA-strB genes and an aadA gene cassette had higher streptomycin MICs than those harbouring either alone. CONCLUSIONS: The distribution of streptomycin MICs in E. coli can be greatly influenced by the genes encoding resistance to streptomycin. The strA-strB genes are probably involved in conferring high-level resistance to streptomycin, whereas the opposite seems to be the case for the aadA gene cassettes. The low-level streptomycin resistance, caused by the presence of aadA gene cassettes in integrons, represents an obstacle in classifying E. coli as susceptible or resistant to streptomycin. Furthermore, the determination of an epidemiological cut-off value for surveillance purposes is also complicated by dissemination of integrons containing the aadA cassettes.200515897222
586730.9996Molecular analysis of florfenicol-resistant Pasteurella multocida isolates in Germany. OBJECTIVES: Three florfenicol-resistant Pasteurella multocida isolates from Germany, two from swine and one from a calf, were investigated for the genetics and transferability of florfenicol resistance. METHODS: The isolates were investigated for susceptibility to antimicrobial agents and plasmid content. Florfenicol resistance plasmids carrying the gene floR were identified by transformation and PCR. Plasmids were mapped, and a novel plasmid type was sequenced completely. PFGE served to determine the clonality of the isolates. RESULTS: In one porcine and the bovine P. multocida isolate, florfenicol resistance was associated with the plasmid pCCK381 previously described in a bovine P. multocida isolate from the UK. The remaining porcine isolate harboured a new type of floR-carrying plasmid, the 10 226 bp plasmid pCCK1900. Complete sequence analysis identified an RSF1010-like plasmid backbone with the mobilization genes mobA, mobB and mobC, the plasmid replication genes repA, repB and repC, the sulphonamide resistance gene sul2 and the streptomycin resistance genes strA and strB. The floR gene area was integrated into a region downstream of strB, which exhibited homology to the floR flanking regions found in various bacteria. PFGE revealed that the floR-carrying P. multocida strains from Germany were unrelated and also different from the UK strain. CONCLUSIONS: After the UK and France, floR-mediated florfenicol resistance has now also been identified in target bacteria from Germany. PFGE data and the analysis of plasmids strongly suggested that the spread of florfenicol resistance is due to the horizontal transfer of plasmids rather than the clonal dissemination of a resistant P. multocida isolate.200818786941
203540.9996In Vitro Susceptibility and Florfenicol Resistance in Citrobacter Isolates and Whole-Genome Analysis of Multidrug-Resistant Citrobacter freundii. The genus Citrobacter is an opportunistic pathogen causing infections in animals, and the published data for its resistance to florfenicol are scarce. In this study, we investigated the antimicrobial susceptibility and molecular characteristics of florfenicol resistance genes among Citrobacter isolates from animal and relevant environmental samples and conducted a comparative analysis of a multidrug-resistant Citrobacter freundii strain isolated from a rabbit. Among 20 Citrobacter strains isolated from animal samples, resistance was most commonly observed to ampicillin (100%), tetracycline (75%), streptomycin (65%), florfenicol (60%), chloramphenicol (60%), and aztreonam (50%), while all the strains found in environmental samples were resistant to few antibiotics. The florfenicol resistance gene floR was detected in 12 isolates (48%, 12/25) from animal samples, and all of the floR-positive isolates were resistant to florfenicol with minimum inhibitory concentration (MIC) values ≥256 μg/mL. Sequencing and comparative analysis of the plasmids from a multidrug-resistant C. freundii isolate named R47 showed that the floR-containing region in the plasmid pR47-54 was a truncated transposon-like structure and could be found on both plasmids and chromosomes of bacteria of either animal or human origin. Furthermore, a range of antimicrobial and metal resistance genes associated with mobile genetic elements could be identified in pR47-54 and the other plasmid pR47-309 of C. freundii R47. These results provide in-depth views into the phenotypic and molecular characteristics of Citrobacter isolates recovered from animal and relevant environmental samples, as well as highlight the role horizontal gene transfer plays in the dissemination of plasmid-encoded resistance genes.201931828082
202050.9996Whole genome-based antimicrobial resistance, virulence, and phylogenetic characteristics of Trueperella pyogenes clinical isolates from humans and animals. Trueperella pyogenes is an opportunistic zoonotic bacterial pathogen, whose antimicrobial resistance, virulence, and genetic relatedness between strains from animals and humans are barely studied. These characteristics were therefore analyzed for clinical T. pyogenes strains from 31 animals of 11 different species and 8 humans determining their complete circular genome sequence and antimicrobial susceptibility. The MICs of 19 antimicrobials including 3 antiseptics correlated to the resistance genes identified in silico within the genomes revealing a predominance of resistance to streptomycin (aadA9), sulfamethoxazole (sul1), and tetracycline (tet(33), tet(W/N/W)) among strains from humans and cattle. Additional resistance genes (erm(X), erm(56), cmx, drfA1, aadA1, aph(3'')-Ib (strA), aph(6)-Id (strB), aac(3)-IVa, aph(4)-Ia) were found only sporadically. The resistance genes were localized on genetic elements integrated into the chromosome. A cgMLST-based phylogenetic analysis revealed two major clusters each containing genetically diverse strains. The human strains showed the closest relatedness to strains from cattle. Virulence genes coding for fimbriae (fimA, fimC), neuroamidase (nanP, nanH), pyolysin (plo), and collagen binding protein (cbpA) were identified in strains from different hosts, but no correlation was observed between virulence factors and strain origin. The existence of resistance genes typically found in Gram-negative bacteria within the Gram-positive T. pyogenes indicates a wider capacity to adapt to antimicrobial selective pressure. Moreover, the presence of similar antimicrobial resistance profiles found in cattle and human strains as well as their closest relatedness suggests common zoonotic features and cattle as the potential source for human infections.202438749210
202760.9996In Silico Detection of Integrons and Their Relationship with Resistance Phenotype of Salmonella Isolates from a Brazilian Pork Production Chain. The pork production chain is an important reservoir of antimicrobial resistant bacteria. This study identified and characterized integrons in Salmonella isolates from a Brazilian pork production chain and associate them with their antibiotic resistance pattern. A total of 41 whole-genome sequencing data of nontyphoidal Salmonella were analyzed using PlasmidSPAdes and IntegronFinder software. Nine isolates (21.9%) had some integrons identified (complete and/or incomplete). Six complete class 1 integrons were found, with streptomycin resistance genes (aadA1, aadA2) alone or downstream of a trimethoprim resistance gene (dfrA1, dfrA12), and some also containing resistance genes for sulfonamides (sul1, sul3) and chloramphenicol (cmlA1). Class 2 integron was detected in only one isolate, containing dfrA1-sat2-aadA1 gene cassettes. Five isolates harbored CALINs-clusters attC but lacking integrases-with antimicrobial resistance genes typically found in integron structures. In all, integrons were observed among four serotypes: Derby, Bredeney, Panama, and monophasic var. Typhimurium I 4,[5],12:i:-. The association of integrons with antibiotic resistance phenotype showed that these elements were predominantly identified in multidrug resistance isolates, and six of the seven gentamicin-resistant isolates had integrons. So, surveillance of integrons in Salmonella should be performed to identify the potential for the spread of antimicrobial resistance genes among bacteria.202438917456
201870.9996Genetic diversity of three classes of integrons in antibiotic-resistant bacteria isolated from Jiulong River in southern China. We identified antibiotic-resistant bacterial isolates from the surface waters of Jiulong River basin in southern China and determined their extent of resistance, as well as the prevalence and characterization of three classes of integrons. A phylogenetic analysis of 16S ribosomal DNA (rDNA) sequences showed that 20 genera were sampled from a total of 191 strains and the most common genus was Acinetobacter. Antimicrobial susceptibility testing revealed that the 191 isolates were all multiresistant and there were high levels of resistance to 19 antimicrobials that were tested, particularly the β-lactam, sulfonamide, amphenicol, macrolide, and rifamycin classes. Moreover, class 1 integrons were ubiquitous while only five out of 191 strains harbored class 2 integrons and no class 3 integrons were detected. The variable region of the class 1 integrons contained 30 different gene cassette arrays. Nine novel arrays were found in 65 strains, and seven strains had empty integrons. Among these 30 arrays, there were 34 different gene cassettes that included 25 resistance genes, six genes with unknown functions, two mutant transposase genes, and a new gene. The unique array dfrA1-sat2-aadA1 was detected in all five isolates carrying the class 2 integron. We found that antibiotic-resistant bacterial isolates from Jiulong River were diverse and antibiotic resistance genes associated with integrons were widespread.201525869436
201780.9996Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. OBJECTIVES: To investigate the presence and distribution of integron-carrying bacteria from a slaughterhouse wastewater treatment plant (WWTP). METHODS: Enterobacteriaceae and aeromonads were isolated at different stages of the wastewater treatment process and screened for the presence of integrase genes by dot-blot hybridization. Integrase-positive strains were characterized in terms of phylogenetic affiliation, genetic content of integrons and antimicrobial resistance profiles. Plasmid location of some integrons was established by Southern-blot hybridization. Strains containing integron-carrying plasmids were selected for mating experiments. RESULTS: Integrase genes were present in all samples, including the final effluent. The global prevalence was determined to be 35%, higher than in other aquatic environments. Forty-two integrase-positive isolates were further characterized. Nine distinct cassette arrays were found, containing genes encoding resistance to beta-lactams (bla(OXA-30)), aminoglycosides (aadA1, aadA2, aadA13, aadB), streptothricin (sat1, sat2), trimethoprim (dfrA1, dfrA12), a putative esterase (estX) and a protein with unknown function (orfF). Gene cassette arrays aadA1, dfrAI-aadA1 and estX-sat2-aadA1 were common to aeromonads and Enterobacteriaceae. The class 2 integron containing an estX-sat2-aadA1 cassette array was detected for the first time in Aeromonas sp. Nearly 12% (5 out of 43) of intI genes were located in plasmids. intI genes from isolates MM.1.3 and MM.1.5 were successfully conjugated into Escherichia coli at frequencies of 3.79 x 10(-5) and 5.46 x 10(-5) per recipient cell, respectively. CONCLUSIONS: Our data support the hypothesis that WWTPs constitute a potential hot spot for horizontal gene transfer and for selection of antimicrobial resistance genes among aquatic bacteria. Moreover, water discharges represent a possible risk for dissemination of undesirable genetic traits.200717913715
292590.9996Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. An increasing incidence of multidrug resistance amongst Aeromonas spp. isolates, which are both fish pathogens and emerging opportunistic human pathogens, has been observed worldwide. This can be attributed to the horizontal transfer of mobile genetic elements, viz.: plasmids and class 1 integrons. The antimicrobial susceptibilities of 37 Aeromonas spp. isolates, from tilapia, trout and koi aquaculture systems, were determined by disc-diffusion testing. The plasmid content of each isolate was examined using the alkaline lysis protocol. Tet determinant type was determined by amplification using two degenerate primer sets and subsequent HaeIII restriction. The presence of integrons was determined by PCR amplification of three integrase genes, as well as gene cassettes, and the qacEDelta1-sulI region. Thirty-seven Aeromonas spp. isolates were differentiated into six species by aroA PCR-RFLP, i.e., A. veronii biovar sobria, A. hydrophila, A. encheleia, A. ichtiosoma, A. salmonicida, and A. media. High levels of resistance to tetracycline (78.3%), amoxicillin (89.2%), and augmentin (86.5%) were observed. Decreased susceptibility to erythromycin was observed for 67.6% of isolates. Although 45.9% of isolates displayed nalidixic acid resistance, majority of isolates were susceptible to the fluoroquinolones. The MAR index ranged from 0.12 to 0.59, with majority of isolates indicating high-risk contamination originating from humans or animals where antibiotics are often used. Plasmids were detected in 21 isolates, with 14 of the isolates displaying multiple plasmid profiles. Single and multiple class A family Tet determinants were observed in 27% and 48.7% of isolates, respectively, with Tet A being the most prevalent Tet determinant type. Class 1 integron and related structures were amplified and carried different combinations of the antibiotic resistance gene cassettes ant(3'')Ia, aac(6')Ia, dhfr1, oxa2a and/or pse1. Class 2 integrons were also amplified, but the associated resistance cassettes could not be identified. Integrons and Tet determinants were carried by 68.4% of isolates bearing plasmids, although it was not a strict association. These plasmids could potentially mobilize the integrons and Tet determinants, thus transferring antimicrobial resistance to other water-borne bacteria or possible human pathogens. The identification of a diversity of resistance genes in the absence of antibiotic selective pressure in Aeromonas spp. from aquaculture systems highlights the risk of these bacteria serving as a reservoir of resistance genes, which may be transferred to other bacteria in the aquaculture environment.200717173998
2916100.9996The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group. In order to investigate whether resistance genes present in bacteria in manure could transfer to indigenous soil bacteria, resistant isolates belonging to the Bacillus cereus group (Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis) were isolated from farm soil (72 isolates) and manure (12 isolates) samples. These isolates were screened for tetracycline resistance genes (tet(K), tet(L), tet(M), tet(O), tet(S) and tet(T)). Of 88 isolates examined, three (3.4%) isolates carried both tet(M) and tet(L) genes, while four (4.5%) isolates carried the tet(L) gene. Eighty-one (92.1%) isolates did not contain any of the tested genes. All tet(M) positive isolates carried transposon Tn916 and could transfer this mobile DNA element to other Gram-positive bacteria.200212351239
2910110.9996Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in strains from humans (35 isolates), chickens (15 isolates), food (21 isolates), soil (16 isolates) and veterinary sources (6 isolates) was determined, and tetracycline-resistance genes were detected. Resistance was most common in strains isolated from chickens, followed by those from soils, clinical samples and foods. The most highly resistant strains were found among clinical and food isolates. tetA(P) was the most common resistance gene, and along with tetB(P) was found in all resistant strains and some sensitive strains. One tetracycline-resistant food isolate had an intact tet(M) gene. However, PCR fragments of 0.4 or 0.8 kb with high degrees of identity to parts of the tet(M) sequences of other bacteria were found, mainly in clinical isolates, and often in isolates with tetB(P). No correlation between level of sensitivity to tetracycline or minocycline and the presence of tetA(P), tetB(P) or part of tet(M) was found. The presence of part of tet(M) in some strains of C. perfringens containing tetB(P) may have occurred by recent gene transfer.201020661548
2922120.9996Tetracycline-resistance genes in gram-negative isolates from estuarine waters. AIMS: To investigate the diversity and dissemination of tetracycline resistance genes in isolates from estuarine waters. METHODS AND RESULTS: Forty-two out of 164 multi-resistant isolates previously obtained were resistant or less-susceptible to tetracycline, as evaluated by the disc diffusion method. Minimal inhibitory concentration for resistant bacteria ranged from 16 to 256 mg l(-1). Screening of tet genes by polymerase chain reaction showed that 88% of the isolates carried at least one of the genes tested, namely tet(A) (present in 13 isolates), tet(B) (present in 13 isolates), tet(C) (present in 3 isolates), tet(D) (present in 1 isolate), tet(E) (present in 6 isolates) and tet(M) (present in 1 isolate). One isolate carried tet(A) and tet(M). To our knowledge, this study presents the first description of a tet(D) gene in Morganella morganii. Hybridization revealed that tet genes were plasmid-located in 31% of the isolates. Those isolates were included as donors in conjugation experiments and 38% transferred tetracycline resistance. CONCLUSIONS: A considerable diversity of tet genes was detected in the estuary. Frequently, these genes were associated with plasmids and could be transferred to Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented provide further evidence of the role played by estuarine reservoirs in antibiotic resistance maintenance and dissemination.200819120920
2912130.9996Detection and characterization of antibiotic-resistance genes in Arcanobacterium pyogenes strains from abscesses of forest musk deer. Arcanobacterium pyogenes is commonly isolated from ruminant animals as an opportunistic pathogen that co-infects with other bacteria, normally causing surface or internal abscesses. Twenty-eight strains of A. pyogenes isolated from forest musk deer suppurative samples were identified by their 16S rRNA gene sequences, and confirmed by amplification of the pyolysin-encoding gene (plo) in all isolates. The MICs of 14 commonly used antibiotics were determined by an agar dilution method. Class 1 and 2 intI genes were amplified to determine whether integrons were present in the A. pyogenes genome. Class 1 gene cassettes were detected by specific primers and analysed by sequencing. All of the strains were susceptible to most fluoroquinolone antibiotics; however, high resistance rates were observed for β-lactams and trimethoprim. A total of 18 of the isolates (64.3%) were positive for the class 1 intI gene, and 16 (57.1%) contained class 1 gene cassettes with the aacC, aadA1, aadA2, blaP1 and dfr2a genes. Most were present in the multi-resistant isolates, indicating a general concordance between the presence of gene cassettes and antibiotic resistance, and that the integrons have played an important role in the dissemination of antimicrobial resistance in this species.201121852523
2896140.9996Resistance gene patterns of tetracycline resistant Escherichia coli of human and porcine origin. Resistance transfer from animals to humans (and vice versa) is a frequently discussed topic in human and veterinary medicine, albeit relevant studies focus mainly on phenotypic antibiotic resistance. In order to get a comparative insight regarding the distribution of selected resistance genes [tet(A/B/C/D/M/K/L/O/S/W/Z), sulI, II, III, str(A/B), aad(A)] in Escherichia coli of different origins, phenotypically tetracycline resistant isolates of porcine and human origin (n=137 and 152) were investigated using PCR. The most common gene was tet(A) in porcine, but tet(B) in human isolates (>55%). Tet(C/M/D) were rare (1-7%); tet(K/L/O/S/W/Z) were not detected. Co-occurrence of tet(A) and tet(B) was more frequent in human strains (11% vs. 2%). 88% of the porcine isolates had one, and 9% had two tet-genes. By contrast, only 69% of the human strains had one tet-gene, whereas 17% were carriers of two tet-determinants. The most common sulfonamide resistance gene was represented by sulII (40% in porcine, 62% in human isolates), followed by sulI. SulIII was present in eight isolates. Streptomycin resistance was mostly mediated by str(A)/str(B) in porcine, and by str(A)/str(B)/aad(A) in human strains (35% each). In one E. coli of human origin, 7 resistance genes were simultaneously detected. Co-occurrence of 5 or 6 resistance genes was more present in human strains, whereas porcine isolates carried more often only 1-4 genes. The huge diversities between gene patterns of bacteria of human and porcine origin indicate that genetic transfers between microorganisms from different sources are less frequent than transfers within populations of the same source.201019939589
2920150.9996The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand. OBJECTIVES: To determine the genetic basis for tetracycline and sulphonamide resistance and the prevalence of class I and II integrons in oxytetracycline-resistant Acinetobacter spp. from integrated fish farms in Thailand. METHODS: A total of 222 isolates were screened for tetracycline resistance genes [tet(A), tet(B), tet(H), tet(M) and tet(39)] and class II integrons by PCR. One hundred and thirty-four of these isolates were also sulphonamide resistant and these isolates were screened for sulphonamide resistance genes (sulII and sulIII) as well as class I integrons. Plasmid extraction and Southern blots with sulII and tet(39) probes were performed on selected isolates. RESULTS: The recently identified tetracycline resistance gene tet(39) was demonstrated in 75% (166/222) of oxytetracycline-resistant Acinetobacter spp. from integrated fish farms in Thailand. Isolates that were also sulfamethoxazole-resistant contained sulII (96%; 129/134) and/or sulI (14%; 19/134) (as part of class I integrons). sulII and tet(39) were located on plasmids differing in size in the isolates tested. CONCLUSIONS: The study shows tet(39) and sulII to be common resistance genes among clonally distinct Acinetobacter spp. from integrated fish farms and these bacteria may constitute reservoirs of resistance genes that may increase owing to a selective pressure caused by the use of antimicrobials in the overlaying animal production.200717095527
5999160.9996Food isolate Listeria monocytogenes harboring tetM gene plasmid-mediated exchangeable to Enterococcus faecalis on the surface of processed cheese. The genetic basis of tetracycline resistance in a food isolate Listeria monocytogenes (Lm16) was evaluated. Resistance to tetracycline was associated with the presence of the tetM gene in plasmid DNA. The sequence of tetM showed 100% of similarity with the Enterococcus faecalis sequences found in the EMBL database, suggesting that Lm16 received this gene from E. faecalis. Various size bands were detected in the DNA plasmid analysis, the largest being approximately 54.38 kb. Transferability of the tetM gene was achieved in vitro by agar matings between Lm16 and E. faecalis JH2-2, proving the potential for the spread of tetM by horizontal gene transfer. Furthermore, the conjugation experiments were performed on the surface of processed cheese, confirming the transferability in a food matrix. PCR assays were used to confirm the identity of E. faecalis and to detect the tetM gene in transconjugant bacteria. Additionally, the minimal inhibitory concentration for tetracycline and rifampicin and plasmid profiling were performed. This is the first report of a food isolate L. monocytogenes carrying the tetM gene in plasmid DNA, and it highlights the potential risk of spreading antimicrobial resistance genes between different bacteria.201829580513
2926170.9996Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. A collection of 116 motile Pseudomonas spp. and 92 Aeromonas spp. isolated from 15 Vietnamese intensive catfish farms was analyzed to examine the molecular antibiotic resistance characteristics and the transferability of resistance markers within and between species. High levels of resistance to ampicillin, trimethoprim/sulfamethoxazole, nalidixic acid, chloramphenicol, and nitrofurantoin were observed. The percentage of multiple drug resistance of Pseudomonas spp. and Aeromonas spp. isolates was 96.6% and 61.9%, respectively. The multiple antibiotic resistance (MAR) index mean values of 0.457 and 0.293 of Pseudomonas and Aeromonas isolates, respectively, indicated that these isolates were exposed to high risk sources of contamination where antibiotics were commonly used. Approximately 33% of Pseudomonas spp. and 28% of Aeromonas spp. isolates from catfish contained class 1 integrons, but no class 2 integrons were detected. Several common resistance genes including aadA, dfrA and catB were harbored in class 1 integrons. Large plasmids (>55 kb) were frequently detected in 50% and 71.4% of the plasmids extracted from Pseudomonas and Aeromonas isolates, respectively. Conjugation and transformation experiments demonstrated the successful transfer of all or part of the resistance phenotypes of catfish isolates to the recipient strains, including laboratory strains and strains isolated from this study. These results highlight the likely role of catfish bacteria as a reservoir of antibiotic resistant, Gram-negative bacteria harboring a pool of mobile genetic elements that can readily be transferred intra- and interspecies. To our knowledge, this is the first report on molecular characterization of antibiotic resistance of bacteria isolated from catfish in Vietnam.201424629778
5860180.9996Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. Twenty-three isolates of the two genera Pasteurella (P.) and Mannheimia (M.) were analysed for the presence of genes specifying resistance to sulfonamides, streptomycin, and chloramphenicol. Specific PCR assays for the detection of the genes sulII, strA and catAIII, but also for the confirmation of their physical linkage were developed. A resistance gene cluster consisting of all three genes and characterised by a PCR amplicon of 2.2 kb was detected on four different types of plasmids and also in the chromosomal DNA of seven isolates. Physically linked sulII and strA genes were detected on three different types of plasmids and in the chromosomal DNA of three isolates. Sequence analysis of the different PCR amplicons revealed that these genes were present in either the orientation sulII-strA separated by differently sized spacer sequences, or strA-sulII. A truncated strA gene preceding a sulII gene was also detected in two cases.200111750817
5927190.9996The prevalence of, associations between and conjugal transfer of antibiotic resistance genes in Escherichia coli isolated from Norwegian meat and meat products. OBJECTIVES: To investigate the distribution of, associations between and the transferability of antimicrobial resistance genes in resistant Escherichia coli strains isolated from Norwegian meat and meat products. METHODS: The 241 strains investigated were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET) during the years 2000-2003. PCR was carried out for detection of resistance genes. Conjugation experiments were carried out with the resistant isolates from meat as donor strains and E. coli DH5alpha as the recipient strain. Statistical analyses were performed with the SAS-PC-System version 9.1 for Windows. RESULTS: Resistance genes common in pathogenic E. coli were frequently found among the isolates investigated. Strains harbouring several genes encoding resistance to the same antimicrobial agent were significantly (P < 0.0001) more frequently multiresistant than others. Strong positive associations were found between the tet(A) determinant and the genetic elements sul1, dfrA1 and aadA1. Negative associations were found between resistance genes encoding resistance to the same antimicrobial agent: tet(A)/tet(B), sul1/sul2 and strA-strB/aadA1. The resistance genes were successfully transferred from 38% of the isolates. The transfer was more frequent from resistant isolates harbouring class 1 integrons (P < 0.001). CONCLUSIONS: Acquired resistance played a major role in conferring resistance among the isolates investigated. The possibility of transferring resistance increases both by increased multiresistance and by the presence of class 1 integrons. The conjugation experiments suggest that tet(A) and class 1 integrons are often located on the same conjugative plasmid.200616931539