# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1982 | 0 | 1.0000 | Comamonas resistens Co-Producing GES-5 and OXA-17 in Urban Wastewater as a Potential Novel Disseminator of Clinically Relevant β-Lactamases. Comamonas species have been isolated from different sources, with Comamonas testosteroni and Comamonas resistens commonly related to human diseases and multidrug resistance, respectively. During a surveillance study to monitor carbapenem resistance in bacteria from wastewater samples in Brazil, a carbapenem-resistant strain, named M13, was obtained and identified as C. resistens (ANI 98.90%, dDDH 94.60%) by genomic analysis, being a species distinct from C. testosteroni. It exhibited multidrug resistance and presented small inhibition zones around disks containing novel β-lactams and β-lactam-β-lactamase inhibitor combinations. Comparative genomics showed significant single nucleotide polymorphism divergence between M13 and other C. resistens genomes, suggesting geographically driven genomic diversity. Strain M13 uniquely harbored genes related to antimicrobial resistance and metal tolerance as follows: bla(GES-5) (carbapenem resistance), bla(OXA-17) (third-generation cephalosporin resistance), mer operon (mercury tolerance), and pco operon (copper tolerance). The bla(GES-5) and bla(OXA-17) genes were located on distinct plasmids that lacked conjugative genes but contained mobilization elements, indicating the potential for horizontal transfer. Unlike C. resistens strains from China, M13 strain may have acquired clinically relevant antimicrobial resistance genes via interactions with Brazilian microbial communities. These findings highlight the relevance of monitoring Comamonas species as potential reservoirs and disseminators of clinically relevant antimicrobial resistance genes and underscore the need for environmental monitoring of carbapenem-resistant strains. | 2025 | 40719913 |
| 1978 | 1 | 0.9997 | Antibiotic resistance plasmids in Enterobacteriaceae isolated from fresh produce in northern Germany. In this study, the genomes of 22 Enterobacteriaceae isolates from fresh produce and herbs obtained from retail markets in northern Germany were completely sequenced with MiSeq short-read and MinION long-read sequencing and assembled using a Unicycler hybrid assembly. The data showed that 17 of the strains harbored between one and five plasmids, whereas in five strains, only the circular chromosomal DNA was detected. In total, 38 plasmids were identified. The size of the plasmids detected varied between ca. 2,000 and 326,000 bp, and heavy metal resistance genes were found on seven (18.4%) of the plasmids. Eleven plasmids (28.9%) showed the presence of antibiotic resistance genes. Among large plasmids (>32,000 bp), IncF plasmids (specifically, IncFIB and IncFII) were the most abundant replicon types, while all small plasmids were Col-replicons. Six plasmids harbored unit and composite transposons carrying antibiotic resistance genes, with IS26 identified as the primary insertion sequence. Class 1 integrons carrying antibiotic resistance genes were also detected on chromosomes of two Citrobacter isolates and on four plasmids. Mob-suite analysis revealed that 36.8% of plasmids in this study were found to be conjugative, while 28.9% were identified as mobilizable. Overall, our study showed that Enterobacteriaceae from fresh produce possess antibiotic resistance genes on both chromosome and plasmid, some of which are considered to be transferable. This indicates the potential for Enterobacteriaceae from fresh produce that is usually eaten in the raw state to contribute to the transfer of resistance genes to bacteria of the human gastrointestinal system. IMPORTANCE: This study showed that Enterobacteriaceae from raw vegetables carried plasmids ranging in size from 2,715 to 326,286 bp, of which about less than one-third carried antibiotic resistance genes encoding resistance toward antibiotics such as tetracyclines, aminoglycosides, fosfomycins, sulfonamides, quinolones, and β-lactam antibiotics. Some strains encoded multiple resistances, and some encoded extended-spectrum β-lactamases. The study highlights the potential of produce, which may be eaten raw, as a potential vehicle for the transfer of antibiotic-resistant bacteria. | 2024 | 39287384 |
| 1859 | 2 | 0.9997 | Transcontinental Dissemination of Enterobacterales Harboring bla(NDM-1) in Retail Frozen Shrimp. The global food trade provides a means of disseminating antimicrobial resistant (AMR) bacteria and genes. Using selective media, carbapenem-resistant species of Enterobacterales (Providencia sp. and Citrobacter sp.), were detected in a single package of imported frozen shrimp purchased from a grocery store in Ohio, USA. Polymerase chain reaction confirmed that both isolates harbored bla(NDM-1) genes. Following PacBio long read sequencing, the sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline. The bla(NDM-1) genes were found in IncC plasmids, each with different antimicrobial resistance island configuration. We found that the bla(NDM-1) AMR islands had close relationships with previously reported environmental, food, and clinical isolates detected in Asia and the United States, highlighting the importance of the food chain in the global dissemination of antimicrobial resistance. | 2025 | 38563789 |
| 1592 | 3 | 0.9997 | Identification of ESBL-Producing Enterobacterales From Vegetable Plants: Preliminary Findings From a Small Cross-Sectional Study in a Rural Area of Madagascar. Extended-spectrum beta-lactamases (ESBL)-producing enterobacterales are considered a key indicator for antimicrobial resistance (AMR) epidemiological surveillance in animal, human, and environment compartments. In this study, we aim to investigate the presence and genetic diversity of ESBL-producing enterobacterales on vegetable plants. We isolated beta-lactam resistant enterobacterales from several vegetable plants and sequenced their whole genome. Utilising standard genomic and phylogenetic methods, we sought to (i) characterise the resistance genes and plasmid content of the plant-isolated strains, (ii) investigate their genetic structure, and (iii) determine their relationships with strains from other reservoirs. Among the 22 strains collected from vegetable plants, 6 showed resistance to beta-lactam antibiotics, with 5 of them identified as ESBL producers. Our results indicated the presence of multidrug-resistant (MDR) strains containing multiple antibiotic resistance genes (ARGs). Importantly, no host-specific lineages were identified among the plant-isolated ESBL-producing E. coli (ESBL-Ec). Instead, these strains exhibited genetic and epidemiological connections with strains isolated from animals, humans, and the environment, suggesting transfer of ESBL-Ec between plants and other sources in rural Madagascar. These preliminary findings suggest that vegetable plants are contaminated as a result of human activities, posing a potential risk of human and animal exposure to antibiotic-resistant bacteria and genes. | 2025 | 40528688 |
| 1870 | 4 | 0.9997 | Novel Insights into bla(GES) Mobilome Reveal Extensive Genetic Variation in Hospital Effluents. Mobile genetic elements contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance among different bacterial species and genera. This study characterizes the genetic backbone of bla(GES) in Aeromonas spp. and Klebsiella spp. isolated from untreated hospital effluents. Plasmids ranging in size from 9 to 244 kb, sequenced using Illumina and Nanopore platforms, revealed representatives of plasmid incompatibility groups IncP6, IncQ1, IncL/M1, IncFII, and IncFII-FIA. Different GES enzymes (GES-1, GES-7, and GES-16) were located in novel class 1 integrons in Aeromonas spp. and GES-5 in previously reported class 1 integrons in Klebsiella spp. Furthermore, in Klebsiella quasipneumoniae, bla(GES-5) was found in tandem as a coding sequence that disrupted the 3' conserved segment (CS). In Klebsiella grimontii, bla(GES-5) was observed in two different plasmids, and one of them carried multiple IncF replicons. Three Aeromonas caviae isolates presented bla(GES-1), one Aeromonas veronii isolate presented bla(GES-7), and another A. veronii isolate presented bla(GES-16). Multilocus sequence typing (MLST) analysis revealed novel sequence types for Aeromonas and Klebsiella species. The current findings highlight the large genetic diversity of these species, emphasizing their great adaptability to the environment. The results also indicate a public health risk because these antimicrobial-resistant genes have the potential to reach wastewater treatment plants and larger water bodies. Considering that they are major interfaces between humans and the environment, they could spread throughout the community to clinical settings. IMPORTANCE In the "One Health" approach, which encompasses human, animal, and environmental health, emerging issues of antimicrobial resistance are associated with hospital effluents that contain clinically relevant antibiotic-resistant bacteria along with a wide range of antibiotic concentrations, and lack regulatory status for mandatory prior and effective treatment. bla(GES) genes have been reported in aquatic environments despite the low detection of these genes among clinical isolates within the studied hospitals. Carbapenemase enzymes, which are relatively unusual globally, such as GES type inserted into new integrons on plasmids, are worrisome. Notably, K. grimontii, a newly identified species, carried two plasmids with bla(GES-5), and K. quasipneumoniae carried two copies of bla(GES-5) at the same plasmid. These kinds of plasmids are primarily responsible for multidrug resistance among bacteria in both clinical and natural environments, and they harbor resistant genes against antibiotics of key importance in clinical therapy, possibly leading to a public health problem of large proportion. | 2022 | 35880869 |
| 5613 | 5 | 0.9997 | Characterizing Antimicrobial Resistance in Clinically Relevant Bacteria Isolated at the Human/Animal/Environment Interface Using Whole-Genome Sequencing in Austria. Antimicrobial resistance (AMR) is a public health issue attributed to the misuse of antibiotics in human and veterinary medicine. Since AMR surveillance requires a One Health approach, we sampled nine interconnected compartments at a hydrological open-air lab (HOAL) in Austria to obtain six bacterial species included in the WHO priority list of antibiotic-resistant bacteria (ARB). Whole genome sequencing-based typing included core genome multilocus sequence typing (cgMLST). Genetic and phenotypic characterization of AMR was performed for all isolates. Eighty-nine clinically-relevant bacteria were obtained from eight compartments including 49 E. coli, 27 E. faecalis, 7 K. pneumoniae and 6 E. faecium. Clusters of isolates from the same species obtained in different sample collection dates were detected. Of the isolates, 29.2% were resistant to at least one antimicrobial. E. coli and E. faecalis isolates from different compartments had acquired antimicrobial resistance genes (ARGs) associated with veterinary drugs such as aminoglycosides and tetracyclines, some of which were carried in conjugative and mobilizable plasmids. Three multidrug resistant (MDR) E. coli isolates were found in samples from field drainage and wastewater. Early detection of ARGs and ARB in natural and farm-related environments can identify hotspots of AMR and help prevent its emergence and dissemination along the food/feed chain. | 2022 | 36232576 |
| 1981 | 6 | 0.9997 | Detecting Class 1 Integrons and Their Variable Regions in Escherichia coli Whole-Genome Sequences Reported from Andean Community Countries. Various genetic elements, including integrons, are known to contribute to the development of antimicrobial resistance. Class 1 integrons have been identified in E. coli isolates and are associated with multidrug resistance in countries of the Andean Community. However, detailed information on the gene cassettes located on the variable regions of integrons is lacking. Here, we investigated the presence and diversity of class 1 integrons, using an in silico approach, in 2533 whole-genome sequences obtained from EnteroBase. IntFinder v1.0 revealed that almost one-third of isolates contained these platforms. Integron-bearing isolates were associated with environmental, food, human, and animal origins reported from all countries under scrutiny. Moreover, they were identified in clones known for their pathogenicity or multidrug resistance. Integrons carried cassettes associated with aminoglycoside (aadA), trimethoprim (dfrA), cephalosporin (blaOXA; blaDHA), and fluoroquinolone (aac(6')-Ib-cr; qnrB) resistance. These platforms showed higher diversity and larger numbers than previously reported. Moreover, integrons carrying more than three cassettes in their variable regions were determined. Monitoring the prevalence and diversity of genetic elements is necessary for recognizing emergent patterns of resistance in pathogenic bacteria, especially in countries where various factors are recognized to favor the selection of resistant microorganisms. | 2024 | 38786123 |
| 1980 | 7 | 0.9997 | Genotypic analyses of IncHI2 plasmids from enteric bacteria. Incompatibility (Inc) HI2 plasmids are large (typically > 200 kb), transmissible plasmids that encode antimicrobial resistance (AMR), heavy metal resistance (HMR) and disinfectants/biocide resistance (DBR). To better understand the distribution and diversity of resistance-encoding genes among IncHI2 plasmids, computational approaches were used to evaluate resistance and transfer-associated genes among the plasmids. Complete IncHI2 plasmid (N = 667) sequences were extracted from GenBank and analyzed using AMRFinderPlus, IntegronFinder and Plasmid Transfer Factor database. The most common IncHI2-carrying genera included Enterobacter (N = 209), Escherichia (N = 208), and Salmonella (N = 204). Resistance genes distribution was diverse, with plasmids from Escherichia and Salmonella showing general similarity in comparison to Enterobacter and other taxa, which grouped together. Plasmids from Enterobacter and other taxa had a higher prevalence of multiple mercury resistance genes and arsenic resistance gene, arsC, compared to Escherichia and Salmonella. For sulfonamide resistance, sul1 was more common among Enterobacter and other taxa, compared to sul2 and sul3 for Escherichia and Salmonella. Similar gene diversity trends were also observed for tetracyclines, quinolones, β-lactams, and colistin. Over 99% of plasmids carried at least 25 IncHI2-associated conjugal transfer genes. These findings highlight the diversity and dissemination potential for resistance across different enteric bacteria and value of computational-based approaches for the resistance-gene assessment. | 2024 | 38684834 |
| 2835 | 8 | 0.9997 | Wastewater used for urban agriculture in West Africa as a reservoir for antibacterial resistance dissemination. State of art metagenomics were used to investigate the microbial population, antibiotic resistance genes and plasmids of medical interest in wastewater used for urban agriculture in Ouagadougou (Burkina Faso). Wastewater samples were collected from three canals near agricultural fields in three neighbourhoods. Assessment of microbial population diversity revealed different microbial patterns among the different samples. Sequencing reads from the wastewaters revealed different functional specializations of microbial communities, with the predominance of carbohydrates and proteins metabolism functions. Eleven pathogen-specific and 56 orthologous virulence factor genes were detected in the wastewater samples. These virulence factors are usually found in human pathogens that cause gastroenteritis and/or diarrhoea. A wide range of antibiotic resistance genes was identified; 81 are transmissible by mobile genetic elements. These included seven different extended spectrum β-lactamase genes encoding synthesis of four enzyme families, including two metallo-β-lactamases (bla(AIM-1) and bla(GES-21)). Ten different incompatibility groups of Enterobacteriaceae plasmid replicons (ColE, FIB, FIC, FII, P, Q, R, U, Y, and A/C), and 30 plasmid replicon types from Gram-positive bacteria. All are implicated in the wide distribution of antibiotic resistance genes. We conclude that wastewater used for urban agriculture in the city represents a high risk for spreading bacteria and antimicrobial resistance among humans and animals. | 2019 | 30253312 |
| 1901 | 9 | 0.9997 | Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that bla(CTX-M) is the dominant ESBL gene type found in South Korea. The spread of bla(CTX-M) appears to have been facilitated by both clonal spread between different host species and conjugation. Most bla(CTX-M) genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of bla(CTX-M)-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes. | 2024 | 38554973 |
| 1902 | 10 | 0.9997 | Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. INTRODUCTION: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. METHODS: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. RESULTS: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the bla(KPC-2), bla(NDM-5), bla(OXA-1), bla(OXA-48), and bla(OXA-181) β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. DISCUSSION: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance. | 2023 | 37323902 |
| 1596 | 11 | 0.9997 | Distribution of bla(CTX-M-)gene variants in E. coli from different origins in Ecuador. The increasing abundance of extended spectrum (β-lactamase (ESBL) genes in E. coli, and other commensal and pathogenic bacteria, endangers the utility of third or more recent generation cephalosporins, which are major tools for fighting deadly infections. The role of domestic animals in the transmission of ESBL carrying bacteria has been recognized, especially in low- and middle-income countries, however the horizontal gene transfer of these genes is difficult to assess. Here we investigate bla(CTX-M) gene diversity (and flanking nucleotide sequences) in E. coli from chicken and humans, in an Ecuadorian rural community and from chickens in another location in Ecuador. The bla(CTX-M) associated sequences in isolates from humans and chickens in the same remote community showed greater similarity than those found in E. coli in a chicken industrial operation 200 km away. Our study may provide evidence of bla(CTX-M) transfer between chickens and humans in the community. | 2023 | 38148908 |
| 1865 | 12 | 0.9997 | Characterization of mobile resistance elements in extended-spectrum β-lactamase producing gram-negative bacteria from aquatic environment. Extended-spectrum β-lactamase producing (ESBL) bacteria from aquatic environments can pose potential threats to public health due to their capability of spreading antimicrobial resistance (AMR) genes through mobile genetic elements (MGEs), such as plasmids, insertion sequences (ISs), transposons, and integrons. Currently, there is no policy for routine monitoring of AMR genes in aquatic environments and their roles in transmission are therefore unknown. Previous metagenomic and PCR-based culture-independent approaches are limited in recovering AMR resistant aquatic bacteria isolates and the data resolution generated are not able to provide detailed genetic comparison with known human pathogens particularly for determining genetic islands harbouring AMR genes. To address these gaps, we thus investigated the genetic profiles of ESBL-producing gram-negative aquatic bacteria found from water body sites within Singapore, examining the AMR genes carried and their associated MGEs. In total, 16 ESBL-producing gram-negative bacteria were identified, of which 8 were Escherichia coli, 3 Klebsiella pneumoniae, and 5 Aeromonas spp. Whole genome sequencing (WGS) analysis revealed the presence of 12 distinct classes of AMR genes, including 16 distinct variants of β-lactamase, of which bla(CTX-M) was the dominant beta-lactamase genotype in all 11 Enterobacterales. The AMR genetic islands in the aquatic bacteria were also found to share similar genetic structures similar to those of circulating ESBL bacteria causing human infections. These findings underscore the potential role of aquatic ESBL bacteria as AMR reservoirs for human pathogens, suggesting that aquatic bacteria may facilitate the hidden transmission of AMR mediated by MGEs through horizontal gene transfer across different sources and species, highlighting the importance of integrating environmental AMR monitoring into local surveillance strategies. | 2025 | 40245502 |
| 1857 | 13 | 0.9997 | Diverse Acinetobacter in retail meat: a hidden vector of novel species and antimicrobial resistance genes, including plasmid-borne bla(OXA-58), mcr-4.3 and tet(X3). Acinetobacter species, particularly Acinetobacter baumannii, are recognized pathogens in clinical settings, yet their presence in food systems, including fresh meat remains underexplored. This comprehensive study investigated the prevalence, diversity, concentration, and antimicrobial resistance of Acinetobacter spp. in 100 fresh meat samples from diverse animal sources across various packaging conditions. Acinetobacter isolates were initially characterized by MALDI-TOF MS, with comprehensive genomic characterization through whole-genome sequencing (WGS) of 116 representative isolates. Taxonomic refinement was performed using GTDB-Tk, core-genome, rpoB gene and Average Nucleotide Identity (ANI) phylogenomic approaches. Antimicrobial resistance genes (ARGs), and their plasmidic locations, were identified, and antimicrobial susceptibility profiles were determined for 33 A. baumannii isolates. Acinetobacter spp. were detected in 74 % of samples, with turkey meat showing the highest occurrence. The counts of this bacterium ranged from < 0.23 to 3.13 log(10) CFU/g. A total of 20 know species and 2 putative novel Acinetobacter species were identified by genomic analysis. Moreover, 16 novel A. baumannii sequence types (STs) were identified. ARG profiling revealed a complex resistome, including plasmid-located ARGs spanning multiple antibiotic classes. Critical findings include the presence of plasmid-borne bla(OXA-58), mcr-4.3, and tet(X3) genes. This study expands our understanding of Acinetobacter spp. diversity and reveals fresh meat as a significant vector for this genus, including species associated with human infections. Moreover, the detection of diverse resistance genes, including some associated with plasmids and conferring resistance to critically important antibiotics, underscores the potential public health implications of meat as a transmission pathway for these bacteria. | 2025 | 40513431 |
| 1774 | 14 | 0.9997 | Emergence of mobile tigecycline resistance gene tet(X4)-harbouring Shewanella xiamenensis in a water environment. OBJECTIVES: Tigecycline resistance mediated by the mobile tigecycline-inactivating enzyme gene tet(X) in Gram-negative bacteria is an emerging concern for global public health. However, limited information is available on the distribution of tet(X) in the natural environment. In this study, we investigated the presence of tet(X) in environmental Gram-negative bacteria. METHODS: A carbapenem- and tigecycline-resistant Shewanella xiamenensis isolate (NUITM-VS1) was obtained from an urban drainage in Hanoi, Vietnam, in March 2021. Whole-genome sequencing analysis was performed by long- and short-read sequencing, resulting in a complete genome sequence. Antimicrobial resistance genes (ARGs) in the genome were detected based on the custom ARG database, including all known tigecycline resistance genes. RESULTS: Shewanella xiamenensis isolate NUITM-VS1 harboured the tet(X4) gene and the bla(OXA-48) carbapenemase gene on the chromosome. tet(X4) was flanked by IS91 family transposase genes, suggesting that the acquisition of tet(X4) was mediated by this mobile gene element (MGE), whereas no MGE was found surrounding bla(OXA-48), consistent with previous findings that bla(OXA-48-like) β-lactamase genes are species-specific intrinsic ARGs in Shewanella spp. CONCLUSION: To the best of our knowledge, this is the first report of a tet(X4)-harbouring Shewanella sp. isolate. Our results provide genetic evidence of the complexity of the dynamics of clinically important ARGs among bacteria in the water environment. | 2022 | 35021125 |
| 2043 | 15 | 0.9997 | Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States. The presence of antibiotic resistance in commensal bacteria may be an influential factor in the persistence of resistance in pathogens. This is especially critical for Escherichia coli that consumers may be exposed to through the consumption of uncooked meat. In this study, E. coli isolates previously recovered from poultry in the US between 2001 and 2012 were whole-genome sequenced to identify their antibiotic resistance genes and mobile genetic elements. The genomes of 98 E. coli isolates from poultry carcass rinsates and 2 isolates from poultry diagnostic samples with multidrug resistance or potential extended-spectrum β-lactam (ESBL)-producing phenotypes as well as the genetic variabilities among the E. coli were assessed. All E. coli isolates were positive for at least one antibiotic resistance gene and plasmid replicon, with 37 resistance genes and 27 plasmid replicons detected among the isolates. While no ESBL genes were detected, bla(CMY-2) was the most common β-lactamase gene, and bla(TEM) and bla(CARB-2) were also identified. Most isolates (95%) harbored at least one intact phage, and as many as seven intact phages were identified in one isolate. These results show the occurrence of antibiotic resistance genes and mobile genetic elements in these 100 poultry-associated E. coli isolates, which may be responsible for the resistance phenotypes exhibited by the isolates. This retrospective study also enables comparisons of resistance genes and mobile genetic elements from more recent E. coli isolates associated with poultry to aid in understanding the trends of both antibiotic resistance phenotypes and genotypes in the poultry setting over time. | 2025 | 40872236 |
| 1867 | 16 | 0.9997 | Plasmid diversity of Serratia marcescens and Klebsiella pneumoniae isolates involved in two carbapenem-resistant Enterobacteriaceae outbreaks in a Swiss hospital. This study investigates two distinct carbapenemase-producing Enterobacteriaceae outbreaks involving patients and contaminated sink traps at the University Hospital of Lausanne. It focuses on the diversity and transmission dynamics of plasmids carrying carbapenemase genes. Between 2022 and 2023, 57 carbapenem-resistant Klebsiella pneumoniae and Serratia marcescens isolates were collected and analyzed. Core-genome MLST confirmed genetic similarity among isolates, linking the outbreaks to sink trap contamination. DNA extraction, sequencing (MinION/Illumina MiSeq), and assembly were performed, followed by ARG screening and plasmid typing. Plasmids were annotated, clustered, and compared using core SNP distances and structural analyses. Known plasmids were identified through PLSDB database matching. Eight MLST types were identified in K. pneumoniae and one (ST356) in S. marcescens. Analysis of 52 bla-carrying plasmids revealed 22 plasmid clusters, including 6 bla(NDM-1) clusters in K. pneumoniae and 4 bla(KPC-2) clusters in S. marcescens. Plasmids showed close relatedness within and across patient and environmental isolates, with core SNP distances ranging from 0 to 18. Some bla(NDM-1) plasmids in K. pneumoniae clustered tightly, suggesting persistence and potential cross-contamination routes. The findings highlight sink traps as critical reservoirs for carbapenem-resistant Enterobacteriaceae and plasmids, promoting resistance gene spread across species. The observed plasmid diversity indicates transmission can occur independently of bacterial clonal spread, challenging traditional outbreak definitions. IMPORTANCE: This research is critical in addressing the growing threat of antibiotic resistance, driven by the spread of resistance genes through plasmids. Plasmids, which can transfer between different bacteria, play a major role in spreading multidrug resistance, posing a serious challenge to healthcare systems worldwide. By highlighting how plasmids can move independently of bacterial spread, this study reveals the complexity of resistance transmission. It also underscores the importance of environmental reservoirs, such as hospital sink traps, in harboring and spreading resistant bacteria. These findings emphasize the need for better monitoring of plasmids and targeted infection control measures to prevent the spread of resistance genes and protect the effectiveness of current antibiotics. | 2025 | 40396774 |
| 1894 | 17 | 0.9997 | Phenotypic and Genotypic Characterization of Multidrug-Resistant Enterobacter hormaechei Carrying qnrS Gene Isolated from Chicken Feed in China. Multidrug resistance (MDR) in Enterobacteriaceae including resistance to quinolones is rising worldwide. The plasmid-mediated quinolone resistance (PMQR) gene qnrS is prevalent in Enterobacteriaceae. However, the qnrS gene is rarely found in Enterobacter hormaechei (E. hormaechei). Here, we reported one multidrug resistant E. hormaechei strain M1 carrying the qnrS1 and bla(TEM-1) genes. This study was to analyze the characteristics of MDR E. hormaechei strain M1. The E. hormaechei strain M1 was identified as Enterobacter cloacae complex by biochemical assay and 16S rRNA sequencing. The whole genome was sequenced by the Oxford Nanopore method. Taxonomy of the E. hormaechei was based on multilocus sequence typing (MLST). The qnrS with the other antibiotic resistance genes were coexisted on IncF plasmid (pM1). Besides, the virulence factors associated with pathogenicity were also located on pM1. The qnrS1 gene was located between insertion element IS2A (upstream) and transposition element ISKra4 (downstream). The comparison result of IncF plasmids revealed that they had a common plasmid backbone. Susceptibility experiment revealed that the E. hormaechei M1 showed extensive resistance to the clinical antimicrobials. The conjugation transfer was performed by filter membrane incubation method. The competition and plasmid stability assays suggested the host bacteria carrying qnrS had an energy burden. As far as we know, this is the first report that E. hormaechei carrying qnrS was isolated from chicken feed. The chicken feed and poultry products could serve as a vehicle for these MDR bacteria, which could transfer between animals and humans through the food chain. We need to pay close attention to the epidemiology of E. hormaechei and prevent their further dissemination. IMPORTANCE Enterobacter hormaechei is an opportunistic pathogen. It can cause infections in humans and animals. Plasmid-mediated quinolone resistance (PMQR) gene qnrS can be transferred intergenus, which is leading to increase the quinolone resistance levels in Enterobacteriaceae. Chicken feed could serve as a vehicle for the MDR E. hormaechei. Therefore, antibiotic-resistance genes (ARGs) might be transferred to the intestinal flora after entering the gastrointestinal tract with the feed. Furthermore, antibiotic-resistant bacteria (ARB) were also excreted into environment with feces, posing a huge threat to public health. This requires us to monitor the ARB and antibiotic-resistant plasmids in the feed. Here, we demonstrated the characteristics of one MDR E. hormaechei isolate from chicken feed. The plasmid carrying the qnrS gene is a conjugative plasmid with transferability. The presence of plasmid carrying antibiotic-resistance genes requires the maintenance of antibiotic pressure. In addition, the E. hormaechei M1 belonged to new sequence type (ST). These data show the MDR E. hormaechei M1 is a novel strain that requires our further research. | 2022 | 35467399 |
| 1810 | 18 | 0.9997 | Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters. The dissemination of antimicrobial resistance (AMR) is an escalating problem and a threat to public health. Comparative metagenomics was used to investigate the occurrence of antibiotic resistant genes (ARGs) in wastewater and urban surface water environments in Singapore. Hospital and municipal wastewater (n = 6) were found to have higher diversity and average abundance of ARGs (303 ARG subtypes, 197,816 x/Gb) compared to treated wastewater effluent (n = 2, 58 ARG subtypes, 2,692 x/Gb) and surface water (n = 5, 35 subtypes, 7,985 x/Gb). A cluster analysis showed that the taxonomic composition of wastewaters was highly similar and had a bacterial community composition enriched in gut bacteria (Bacteroides, Faecalibacterium, Bifidobacterium, Blautia, Roseburia, Ruminococcus), the Enterobacteriaceae group (Klebsiella, Aeromonas, Enterobacter) and opportunistic pathogens (Prevotella, Comamonas, Neisseria). Wastewater, treated effluents and surface waters had a shared resistome of 21 ARGs encoding multidrug resistant efflux pumps or resistance to aminoglycoside, macrolide-lincosamide-streptogramins (MLS), quinolones, sulfonamide, and tetracycline resistance which suggests that these genes are wide spread across different environments. Wastewater had a distinctively higher average abundance of clinically relevant, class A beta-lactamase resistant genes (i.e., bla(KPC), bla(CTX-M), bla(SHV), bla(TEM)). The wastewaters from clinical isolation wards, in particular, had a exceedingly high levels of bla(KPC-2) genes (142,200 x/Gb), encoding for carbapenem resistance. Assembled scaffolds (16 and 30 kbp) from isolation ward wastewater samples indicated this gene was located on a Tn3-based transposon (Tn4401), a mobilization element found in Klebsiella pneumonia plasmids. In the longer scaffold, transposable elements were flanked by a toxin-antitoxin (TA) system and other metal resistant genes that likely increase the persistence, fitness and propagation of the plasmid in the bacterial host under conditions of stress. A few bacterial species (Enterobacter cloacae, Klebsiella pneumoniae, Citrobacter freundii, Pseudomonas aeruginosa) that were cultured from the isolation ward wastewaters on CHROMagar media harbored the bla(KPC-2) gene. This suggests that hospital wastewaters derived from clinical specialty wards are hotspots for the spread of AMR. Assembled scaffolds of other mobile genetic elements such as IncQ and IncF plasmids bearing quinolone resistance genes (qnrS1, qnrS2) and the class A beta-lactamase gene (bla(TEM-1)) were recovered in wastewater samples which may aid the transfer of AMR. | 2017 | 29201017 |
| 1918 | 19 | 0.9997 | Molecular Detection of Class 1 Integron-Associated Gene Cassettes in KPC-2-Producing Klebsiella pneumoniae Clones by Whole-Genome Sequencing. The dissemination of antimicrobial resistance genes and the bacterium that harbor them have increasingly become a public concern, especially in low- and middle-income countries. The present study used whole-genome sequencing to analyze 10 KPC-2-producing Klebsiella pneumoniae isolates obtained from clinical specimens originated from Brazilian hospitals. The study documents a relevant "snapshot" of the presence of class 1 integrons in 90% of the strains presenting different gene cassettes (dfrA30, dfrA15, dfrA12, dfrA14, aadA1, aadA2, and aac(6')Iq), associated or not with transposons. Two strains presented nonclassical integron (lacking the normal 3'conserved segment). In general, most strains showed a complex resistome, characterizing them as highly resistant. Integrons, a genetically stable and efficient system, confer to bacteria as highly adaptive and low cost evolution potential to bacteria, even more serious when associated with high-risk clones, indicating an urgent need for control and prevention strategies to avoid the spread of resistance determinants in Brazil. Despite this, although the class 1 integron identified in the KPC-2-producing K. pneumoniae clones is important, our findings suggest that other elements probably have a greater impact on the spread of antimicrobial resistance, since many of these important genes were not related to this cassette. | 2019 | 31074706 |