# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1967 | 0 | 1.0000 | Identification of molecular determinants of antibiotic resistance in some fish farms of Ghana. Antimicrobial resistance is a global health challenge caused by the ability of microorganisms including bacteria, fungi, protozoans and viruses to survive the effects of drugs that hitherto were effective against them. This study sought to investigate the presence of antibiotic-resistant bacteria and their corresponding molecular determinants in fish farms of the Central and Western Regions of Ghana. Management practices and antibiotic use at the fish farms were obtained through the administration of a questionnaire. Coliform and Gram-positive bacterial loads of catfish (Clarias gariepinus), tilapia (Oreochromis niloticus) intestinal microbiota, and pond water samples recovered on MacConkey Agar and Mannitol Salt Agar were determined. Bacterial isolates were identified using various biochemical assays. Antibiotic resistance profiles and possible responsible genes of bacterial isolates were determined using the disc diffusion and Polymerase Chain Reaction (PCR) methods respectively. The study revealed that none of the fish farm managers admitted using antibiotics for prevention and treatment of diseases and no major disease outbreak had ever been recorded. Bacterial loads of pond water exceeded the acceptable level of ≤100 E. coli and <10 coliforms per mL for wastewater recommended for use in fish farming. In all, 145 bacterial isolates comprising 99 Gram negative and 46 Gram-positive bacteria were stored and identified. Most isolates were resistant to at least an antibiotic. Both Gram-negative and Gram-positive bacteria were highly resistant to beta-lactam antibiotics with a corresponding high percentage detection of the bla (TEM) gene compared to other classes of antibiotics. This study has revealed the presence of various molecular determinants of antibiotic resistance including bla (TEM), cmIA, qnrS, tetB and bla (CTX-M), in multidrug-resistant bacteria at some fish farms in Ghana. There is the need to increase awareness about risks associated with the misuse and overuse of antibiotics by humans and the potential risk of spread of multi-drug resistant-bacteria in the environment. | 2022 | 36097488 |
| 1929 | 1 | 0.9999 | Research Note: Detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Antibiotics are routinely used in commercial poultry farms for the treatment of economically important bacterial diseases. Repeated use of antibiotics, usually administered in the feed or drinking water, may also result in the selection of resistant bacteria in animal feces, able to transfer their antimicrobial-resistance genes (ARG), residing on mobile elements, to other microorganisms, including human pathogens. In this study, single and multiplex PCR protocols were performed to detect tetracycline-, lincomycin-, chloramphenicol-, aminoglycoside-, colistin-, vancomycin-, and carbapenem-resistance genes, starting from 38 litter samples collected from 6 poultry and 2 turkey Italian flocks. The ARG were confirmed for all investigated classes of antimicrobials, except for colistin (mcr-1, mcr-2, mcr-3,mcr-4 mcr-5) and carbapenem (IMP, OXA-48, NDM, KPC), while the vanB gene was only detected for vancomycin. The highest positivity was obtained for tetracycline (tet[L], tet[M], tet[K], tetA[P]] and aminoglycoside (aadA2) ARG, confirming the predominant use of these antimicrobials in the veterinary practice and their potential to enhance the resistance patterns also in humans as a consequence of environmental contamination. On the contrary, the dissemination by poultry of ARG for critically important antimicrobials seems to be of minor concern, suggesting a negligible environmental dissemination by these genes in the Italian poultry industry. Finally, the molecular screening performed in this study using a noninvasive sampling method represents a simple and rapid tool for monitoring the ARG patterns at the farm level. | 2021 | 33799114 |
| 1960 | 2 | 0.9999 | Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, bla(PER), ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge. | 2024 | 38787042 |
| 2744 | 3 | 0.9999 | Bacteria isolated from hospital, municipal and slaughterhouse wastewaters show characteristic, different resistance profiles. Multidrug-resistant bacteria cause difficult-to-treat infections and pose a risk for modern medicine. Sources of multidrug-resistant bacteria include hospital, municipal and slaughterhouse wastewaters. In this study, bacteria with resistance to 3rd generation cephalosporins were isolated from all three wastewater biotopes, including a maximum care hospital, municipal wastewaters collected separately from a city and small rural towns and the wastewaters of two pig and two poultry slaughterhouses. The resistance profiles of all isolates against clinically relevant antibiotics (including β-lactams like carbapenems, the quinolone ciprofloxacin, colistin, and trimethoprim/sulfamethoxazole) were determined at the same laboratory. The bacteria were classified according to their risk to human health using clinical criteria, with an emphasis on producers of carbapenemases, since carbapenems are prescribed for hospitalized patients with infections with multi-drug resistant bacteria. The results showed that bacteria that pose the highest risk, i. e., bacteria resistant to all β-lactams including carbapenems and ciprofloxacin, were mainly disseminated by hospitals and were present only in low amounts in municipal wastewater. The isolates from hospital wastewater also showed the highest rates of resistance against antibiotics used for treatment of carbapenemase producers and some isolates were susceptible to only one antibiotic substance. In accordance with these results, qPCR of resistance genes showed that 90% of the daily load of carbapenemase genes entering the municipal wastewater treatment plant was supplied by the clinically influenced wastewater, which constituted approximately 6% of the wastewater at this sampling point. Likewise, the signature of the clinical wastewater was still visible in the resistance profiles of the bacteria isolated at the entry into the wastewater treatment plant. Carbapenemase producers were not detected in slaughterhouse wastewater, but strains harboring the colistin resistance gene mcr-1 could be isolated. Resistances against orally available antibiotics like ciprofloxacin and trimethoprim/sulfamethoxazole were widespread in strains from all three wastewaters. | 2020 | 32763594 |
| 5571 | 4 | 0.9999 | ESβL E. coli isolated in pig's chain: Genetic analysis associated to the phenotype and biofilm synthesis evaluation. Resistance to new generation cephalosporins is an important public health problem globally, in terms of economic and social costs, morbidity and mortality. Βeta-lactamase enzymes are mainly responsible for the antibiotic resistance of Gram negative bacteria and extended-spectrum-β-lactamases (ESβLs) are one of the major determinants of resistance against oxymino-cephalosporins in Enterobacteriaceae. Food-producing animals represent one of the sources of antibiotic resistant bacteria, including pigs. Here we analysed the presence of E. coli resistant to III generation cephalosporins isolated from different matrices collected from intensively bred pigs. A total of 498 E. coli were isolated from faeces and carcasses of pigs at slaughterhouse as well as from pork meat and sausages. Among these, 73 were phenotypically confirmed to be ESβL producers. Genetic analysis revealed that all except two harboured at least one of the three selected genes: bla(CTX-M), bla(TEM), and bla(SHV). Furthermore, six of the E. coli ESβL isolated from faeces and carcasses swabs, were also able to produce biofilm, highlighting the virulence potential of these strains. The presence of Multi-Drug-Resistance patterns (MDR) recorded by the 73 ESβL E. coli was significant (60% of the strains were resistant to more than six antibiotics in MIC test). Results from the present study show that the transmission of resistant bacteria is possible along the food chain, including production of pork, one the most highly consumed meats around the world. Transmission is possible through the ingestion of raw meat products, and following cross-contamination between raw and cooked foods during preparation. The potential risk for human health demonstrated here, associated with the consumption of pork contaminated with bacterial strains characterized by multidrug resistance patterns, and the ability to produce ESβL and biofilm, is cause for concern. It is imperative to study future control strategies to avoid or limit as much as possible the transmission of these highly pathogenic strains through food consumption and/or contact with the environment. | 2019 | 30245289 |
| 5545 | 5 | 0.9999 | Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Wide varieties of antibiotics are used in poultry farms to improve the growth and also to control the infection in broiler chicken. To identify the seriousness of the same in the poultry sector, current study has been designed to analyze the presence of tetracycline in poultry feed and also the tetracycline resistance among the bacteria released through the excreta of poultry. In the study, 27 bacteria belonging to the Escherichiacoli and Klebsiellapneumoniae. were isolated from the faecal samples collected from five different farms. Antibiotic susceptibility analysis showed 77% of E. coli and 100% of the K. pneumoniae. to be resistant to tetracycline. Further, molecular screening for tetA and tetB genes showed 85.18% of isolates to have tetA and 22.22% with tetB. The presence of tetracycline in collected feed samples was also analysed quantitatively by Liquid chromatography-mass spectrometry (LC-MS). Here, three out of five feed samples were found to be positive for tetracycline. The study showed a direct correlation between the antibiotic supplemented feed and the emergence of antimicrobial resistance among the intestinal microflora. The results of the study indicate the need for strict control over antibiotic use in animal feed to limit the rapid evolution and spread of antimicrobial resistance. | 2020 | 33039593 |
| 1958 | 6 | 0.9999 | Isolation, identification, and characterization of resistant bacteria to antibiotics from pharmaceutical effluent and study of their antibiotic resistance. Pharmaceutical effluents primarily enter aquatic environments through the discharge of treated and untreated wastewater from various sources, including hospitals, pharmaceutical manufacturing facilities, and households. Microbes sourced from pharmaceutical effluents such as Pseudomonas spp. pose a significant public health concern because of their high levels of resistance to multiple drugs and extreme multidrug resistance. Therefore, the present study was conducted for the isolation, identification, and molecular characterization of selected isolates from pharmaceutical effluents and also determined their antibiotic sensitivity patterns. From June 2016 to March 2017, a study was conducted on four well-known pharmaceutical companies specializing in antibiotic production in Dhaka and Gazipur. Four wastewater samples were collected from various origins and then brought to the Bacteriology laboratory for microbiological examination. Twelve pure isolates were obtained and characterized through cultural and biochemical tests while molecular identification of Pseudomonas spp. was performed using the 16S rRNA gene sequence. Twelve commercially available antibiotics were used for antibiotic sensitivity tests using Kirby-Bauer disk diffusion methods. We isolated the most predominant isolates, Pseudomonas aeruginosa (41.67%), followed by Bacillus spp. (33.33%) and Staphylococcus spp. (25%) respectively. Among 12 antibiotics, ciprofloxacin is 100% sensitive against P. aeruginosa, while the remaining 11 antibiotics are 100% resistant. Bacillus spp. showed 100% resistance to all antibiotics while 50% sensitive to vancomycin and 100% to chloramphenicol, respectively. Staphylococcus spp. was 100% resistant to all antibiotics. Our research suggested that P. aeruginosa is the reservoir of antibiotic resistance genes and spreads disease to humans from the environment. The findings of this study, i.e., the isolation, identification, and characterization of antibiotic-resistant bacteria from pharmaceutical effluent have highlighted, comprehended, and mitigated the dissemination of antibiotic resistance and opportunistic bacteria. | 2023 | 38230310 |
| 1935 | 7 | 0.9999 | Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related. | 2021 | 34356729 |
| 5550 | 8 | 0.9999 | Prevalence, plasmids and antibiotic resistance correlation of enteric bacteria in different drinking water resources in sohag, egypt. BACKGROUND: One of the major health causing problems is contamination of drinking water sources with human pathogenic bacteria. Enteric bacteria such as Shigella, Salmonella and Escherichia coli are most enteric bacteria causing serious health problems. Occurrence of such bacteria infection, which may resist antibiotics, increases the seriousness of problem. OBJECTIVES: The aim of this study was to examine the prevalence of some enteric bacteria (Shigella, Salmonella and E. coli) in addition to Pseudomonas. The antibiotic susceptibility of these bacteria was also tested, in addition to assessing plasmid(s) roles in supposed resistance. MRSA genes in non-staphylococci were clarified. MATERIALS AND METHODS: Water samples were collected from different drinking sources (Nile, ground water) and treated tap water. Selective media were used to isolate enteric bacteria and Pseudomonas. These bacteria were identified, counted and examined for its susceptibility against 10 antibiotics. The plasmids were screened in these strains. MRSA genes were also examined using PCR. RESULTS: Thirty-two bacterial strains were isolated from Nile and ground water and identified as S. flexneri, S. sonnei, S. serovar Newport, Pseudomonas aeruginosa and E. coli strains according to standard methods. According to antibiotic susceptibility test, 81% of strains were resistant to Cefepime, whereas 93.75% were sensitive to Ciprofloxacin. Correlation analysis between plasmids profiles and antibiotics sensitivities showed that 50% of the total strains had plasmids. These strains showed resistance to 50% of the used antibiotics (as average value); whereas, the plasmids free strains (50%) were resistant to 48.7% of the antibiotics. No distinct correlation between plasmids and antibiotic resistance in some strains could be concluded in this study. No MRSA gene was detected among these non-staphylococci strains. No bacteria were isolated from treated tap water. CONCLUSIONS: Thirty-three bacterial strains; 10 strains of E. coli, 10 strains of S. flexneri, 3 strains S. sonnei, 2 strains of S. serovar Newport, and 7 strains of P. aeruginosa, were isolated and identified from Nile water and ground water in Sohag governorate. The prevalence of enteric bacteria in water sources in studying area was considerable. No clear or distinct correlation could be concluded between plasmids and antibiotic resistance. No MRSA gene was detected in these non-staphylococci strains, and no pathogenic bacteria were isolated from treated tap water. The hygiene procedures in the studying area seem to be adequate, despite the failure to maintain water sources form sewage pollution. | 2015 | 25763135 |
| 1909 | 9 | 0.9999 | Multidrug-Resistant Gram-Negative Bacteria and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from the Poultry Farm Environment. The indiscriminate use and overuse of various antibiotics have caused the rapid emergence of antibiotic-resistant bacteria (ARB) in poultry products and the surrounding environment, giving rise to global public health issues. This study aimed to determine the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (GNB) found in the environment of poultry farms and to evaluate the risk of contamination in these farms based on multiple antibiotic resistance (MAR) index values. Soil and effluent samples were collected from 13 poultry farms. The VITEK 2 system was used for bacterial identification and susceptibility testing of the isolates. The identified Gram-negative isolates were Acinetobacter spp., Aeromonas spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Providencia spp., Pseudomonas spp., and Sphingomonas paucimobilis. The results showed that Enterobacter spp., Aeromonas spp., and Providencia spp. exhibited the highest MDR rates and MAR indices; 14% of K. pneumoniae isolates (3/21 isolates) were resistant to 13 antibiotics and found to be extended-spectrum β-lactamase (ESBL)-producing bacteria. As for the tested antibiotics, 96.6% of the isolates (28/29 isolates) demonstrated resistance to ampicillin, followed by ampicillin-sulbactam (55.9% [33/59 isolates]) and cefazolin (54.8% [57/104 isolates]). The high percentage of MDR bacteria and the presence of ESBL-producing K. pneumoniae strains suggested the presence of MDR genes from the poultry farm environment, which poses an alarming threat to the effectiveness of the available antibiotic medicines to treat infectious diseases. Therefore, the use of antibiotics should be regulated and controlled, while studies addressing One Health issues are vital for combating and preventing the development and spread of ARB. IMPORTANCE The occurrence and spread of ARB due to high demand in poultry industries are of great public health concern. The widespread emergence of antibiotic resistance, particularly MDR among bacterial pathogens, poses challenges in clinical treatment. Some pathogens are now virtually untreatable with current antibiotics. However, those pathogens were rarely explored in the environment. In alignment with the concept of One Health, it is imperative to study the rate of resistance in the environment, because this domain plays an important role in the dissemination of bacteria to humans, animals, and other environmental areas. Reliable data on the prevalence of MDR bacteria are crucial to curb the spread of bacterial pathogens that can cause antimicrobial-resistant infections. | 2022 | 35467407 |
| 5548 | 10 | 0.9999 | Prevalence of Antimicrobial Resistance Among the Hydrogen Sulfide Producing Bacteria Isolated on XLD Agar from the Poultry Fecal Samples. Poultry products remain as one of the most popular and extensively consumed foods in the world and the introduction of hydrogen sulfide (H(2)S) producing antibiotic resistant bacterial species into it is an emerging challenge. The current study has been designed to analyze the distribution of antibiotic resistance among the H(2)S producing bacteria isolated from the fecal samples of chickens from different poultry farms. Here, twenty bacterial isolates were selected based on their ability to produce H(2)S on XLD agar, and the16S rDNA sequencing was carried out for their molecular identification. The results showed the isolates as belong to Salmonella spp. and Citrobacter spp. and in the antibiotic susceptibility test (AST), three of the Salmonella strains were found to be resistant to antibiotics such as tetracycline, doxycycline, nalidixic acid, and amikacin. Also, fourteen Citrobacter strains showed resistance towards azithromycin, and furthermore, eleven of them were also resistant to streptomycin. Resistance towards tetracycline was observed among five of the Citrobacter strains, and seven were resistant to doxycycline. Further molecular screening by the PCR has showed three of the Salmonella strains along with eight Citrobacter isolates to have tetA gene along with four of the Citrobacter strains to have co-harbored bla(TEM) gene. The results on biofilm formation have also demonstrated three Salmonella strains along with nine Citrobacter strains to have the ability to form moderate biofilm. The study thus describes the occurrence of H(2)S producing multidrug-resistant bacteria in poultry feces, which might contribute towards the dissemination of antibiotic resistance genes to other microorganisms including human pathogens with likely risk to treat disease conditions. | 2024 | 37540287 |
| 1948 | 11 | 0.9999 | Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle. Third-generation cephalosporins are an important class of antibiotics that are widely used in treatment of serious Gram-negative bacterial infections. In this study, we report the isolation of bacteria resistant to the third-generation cephalosporin cefotaxime from cattle with no previous cefotaxime antibiotic exposure. The prevalence of cefotaxime-resistant bacteria was examined by a combination of culture based and molecular typing methods in beef cattle (n = 1341) from 8 herds located in North Central Florida. The overall prevalence of cefotaxime-resistant bacteria was 15.8% (95% CI: 13.9, 17.8), varied between farms, and ranged from 5.2% to 100%. A subset of isolates (n = 23) was further characterized for the cefotaxime minimum inhibitory concentration (MIC) and antibiotic susceptibility against 10 different antibiotics, sequencing of nine β- lactamase genes, and species identification by 16S rRNA sequencing. Most of the bacterial isolates were resistant to cefotaxime (concentrations, > 64 μg/mL) and showed high levels of multi-drug resistance. Full length 16S rRNA sequences (~1300 bp) revealed that most of the isolates were not primary human or animal pathogens; rather were more typical of commensal, soil, or other environmental origin. Six extended spectrum β-lactamase (ESBL) genes identical to those in clinical human isolates were identified. Our study highlights the potential for carriage of cefotaxime resistance (including "human" ESBL genes) by the bacterial flora of food animals with no history of cefotaxime antibiotic exposure. A better understanding of the origin and transmission of resistance genes in these pre-harvest settings will be critical to development of strategies to prevent the spread of antimicrobial resistant microorganisms to hospitals and communities. | 2016 | 27642751 |
| 2571 | 12 | 0.9999 | Multidrug-resistant Enterobacter spp. in wastewater and surface water: Molecular characterization of β-lactam resistance and metal tolerance genes. Among the ESKAPE group pathogens, Enterobacter spp. is an opportunistic Gram-negative bacillus, widely dispersed in the environment, that causes infections. In the present study, samples of hospital wastewater, raw and treated urban wastewater, as well as surface receiving water, were collected to assess the occurrence of multidrug-resistant (MDR) Enterobacter spp. A molecular characterization of β-lactam antibiotic resistance and metal tolerance genes was performed. According to identification by MALDI-TOF MS, 14 isolates were obtained: 7 E. bugandensis, 5 E. kobei, and 2 E. cloacae. The isolates showed resistance mainly to β-lactam antibiotics, including those used to treat infections caused by MDR bacteria. Multiple antibiotic resistance index was calculated for all isolates. It allowed verify whether sampling points showed a high risk due to antibiotic resistant Enterobacter spp., as well as to determine if the isolates have been in environments with a frequent antibiotic use. Twelve isolates showed β-lactam antibiotic resistance gene, being the bla(KPC) widely detected. Regarding metal tolerance, 13 isolates showed at least two genes that encode metal tolerance mechanisms. Overall, metal tolerance mechanisms to silver, copper, mercury, arsenic and tellurium were found. New data on metal tolerance mechanisms dispersion and antibiotic-resistance characterization of the E. bugandensis and E. kobei species were here provided. The occurrence of MDR Enterobacter spp. in analyzed samples draws attention to an urgent need to put control measures into practice. It also evidences waterborne spread of clinically important antibiotic-resistant bacteria recognized as critical priority pathogens. | 2023 | 37356524 |
| 5570 | 13 | 0.9998 | Monitoring the Spread of Multidrug-Resistant Escherichia coli Throughout the Broiler Production Cycle. The extensive use of antimicrobials in broiler production is changing the bird microbiota, fostering drug-resistant bacteria, and complicating therapeutic interventions, making the problem of multidrug resistance global. The monitoring of antimicrobial virulence and resistance genes are tools that have come to assist the breeding of these animals, directing possible treatments as already used in human medicine and collecting data to demonstrate possible dissemination of multidrug-resistant strains that may cause damage to industry and public health. This work aimed to monitor broiler farms in southern Brazil, isolating samples of E. coli and classifying them according to the profile of resistance to antimicrobials of interest to human and animal health. We also monitored the profile of virulence genes and conducted an epidemiological survey of possible risk factors that contribute to this selection of multidrug-resistant isolates. Monitoring was carried out on farms in the three southern states of the country, collecting samples of poultry litter, cloacal swabs, and beetles of the species Alphitobius diaperinus, isolating E. coli from each of these samples. These were evaluated by testing their susceptibility to antimicrobials of animal and human interest; detecting whether the samples were extended-spectrum β-lactamase enzyme (ESBL) producers; and when positive, selected for genotypic tests to identify resistant genes (CTX-M, TEM, and SHV) and virulence. Among the antimicrobials tested, enrofloxacin and ciprofloxacin demonstrated some of the highest frequencies of resistance in the isolated strains, with significant statistical results. The use of these antimicrobials increased the likelihood of resistance by over three times and was associated with a 1.5-fold higher probability of multidrug resistance. Of all isolates, 95% were multidrug-resistant, raising concerns for production and public health. Among 231 ESBL-positive samples, the CTX-M1 group predominated. | 2025 | 39858355 |
| 1933 | 14 | 0.9998 | Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination. | 2022 | 36139170 |
| 5567 | 15 | 0.9998 | Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry. Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria. | 2015 | 26579536 |
| 1968 | 16 | 0.9998 | Multidrug-resistant pattern of food borne illness associated bacteria isolated from cockroaches in meal serving facilities, Jimma, Ethiopia. INTRODUCTION: An increase in the emergence and spread of multidrug-resistant (MDR) bacteria in recent years is becoming worrisome. Domestic cockroaches can play a significant role in the dissemination of such bacteria between the environment and human beings. This study aimed at determining anti-microbial resistance pattern of food borne illness associated bacteria identified from cockroaches trapped in restaurants and cafeterias. METHODS: Trapped cockroaches were picked with surgical gloves, sealed in sterile plastic bags and transported to the Microbiology laboratory. Standard microbiological techniques were used to isolate and identify bacteria. Anti-microbial susceptibility testing was done using Kirby Bauer diffusion technique. RESULT: A total of five species of food borne illness associated bacteria were detected. Majority (57.1%) of the bacteria were isolated from the gut of cockroaches. More than 89% of the isolates were multi drug resistance (MDR). MDR was higher on gram positive bacteria. S. aureus showed 53.3% resistance against oxacillin(MRSA) and 33.3% against vancomycin. CONCLUSION: A very high percentage of MDR bacteria was seen in this study. Most of the bacteria tested were isolated from the gut of cockroaches. Potential factors associated with cockroaches that contributed to this high MDR rate of the isolates should be investigated in future. | 2018 | 29977255 |
| 2568 | 17 | 0.9998 | Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters. Contamination of surface waters in underdeveloped countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks which may represent a significant dissemination mechanism of antibiotic resistance genes among pathogenic bacterial populations. The present study aims to determine the multi-drug resistance patterns among isolated and identified bacterial strains in a pharmaceutical wastewater effluent in north Tunisia. Fourteen isolates were obtained and seven of them were identified. These isolates belong to different genera namely, Pseudomonas, Acinetobacter, Exiguobacterium, Delftia and Morganella. Susceptibility patterns of these isolates were studied toward commonly used antibiotics in Tunisia. All the identified isolates were found to have 100% susceptibility against colistin sulfate and 100% resistance against amoxicillin. Among the 11 antibiotics tested, six patterns of multi-drug resistance were obtained. The potential of the examined wastewater effluent in spreading multi-drug resistance and the associated public health implications are discussed. | 2015 | 26343496 |
| 1927 | 18 | 0.9998 | First Molecular Characterization and Antibiogram of Bacteria Isolated From Dairy Farm Wastewater in Bangladesh. This pioneering study in Bangladesh combines phenotypic and genotypic approaches to characterize antibiotic-resistant bacteria in dairy farm wastewater, addressing a critical gap in regional antimicrobial resistance (AMR) research. Dairy farming is integral to global food production, yet the wastewater generated by these operations is a significant source of environmental and public health concerns, particularly in the context of antibiotic resistance. This study aimed to isolate and identify antibiotic-resistant bacteria from dairy farm wastewater and evaluate their antibiogram profiles to inform effective management strategies. A total of 60 wastewater samples were collected and subjected to conventional bacterial characterization, followed by molecular detection via PCR and 16S rRNA gene sequencing. The study identified Pseudomonas aeruginosa (35%), Escherichia coli (30%), Bacillus subtilis (16.67%), and Acinetobacter junii (8.33%) as the predominant bacterial species. Sequencing results demonstrated high compatibility with reference sequences, confirming the identities of the isolates. Antibiogram analysis revealed significant resistance patterns: P. aeruginosa exhibited the highest resistance to penicillin (85.71%) and amoxicillin (76.19%), while demonstrating greater sensitivity to ciprofloxacin and cotrimoxazole. E. coli showed notable resistance to penicillin (88.89%), amoxicillin, and ceftriaxone, while B. subtilis and A. junii also demonstrated high levels of resistance to multiple antibiotics. Notably, a substantial proportion of the isolates exhibited multidrug resistance (MDR), with MAR indices ranging from 0.37 to 0.75. Moreover, several antibiotic resistance genes (ARGs) including penA, bla (TEM) , bla (CTX-M) , tetA, tetB, tetC, and ermB were detected across the bacterial species, with high prevalence rates in P. aeruginosa and A. junii, suggesting the potential for horizontal gene transfer and further spread of resistance. These findings underscore the critical need for a One Health approach to mitigate the risks posed by antibiotic-resistant bacteria in dairy farm wastewater, emphasizing the critical importance of responsible antibiotic use and sustainable farming practices to protect public health and environmental integrity. | 2025 | 40458482 |
| 1923 | 19 | 0.9998 | Emerging Issues on Antibiotic-Resistant Bacteria Colonizing Plastic Waste in Aquatic Ecosystems. Antibiotic-resistant bacteria (ARB) adhesion onto plastic substrates is a potential threat to environmental and human health. This current research investigates the prevalence of two relevant human pathogens, Staphylococcus spp. and Klebsiella spp., and their sophisticated equipment of antibiotic-resistant genes (ARGs), retrieved from plastic substrates submerged into an inland water body. The results of microbiological analysis on selective and chromogenic media revealed the presence of colonies with distinctive phenotypes, which were identified using biochemical and molecular methods. 16S rDNA sequencing and BLAST analysis confirmed the presence of Klebsiella spp., while in the case of Staphylococcus spp., 63.6% of strains were found to be members of Lysinibacillus spp., and the remaining 36.3% were identified as Exiguobacterium acetylicum. The Kirby-Bauer disc diffusion assay was performed to test the susceptibility of the isolates to nine commercially available antibiotics, while the genotypic resistant profile was determined for two genes of class 1 integrons and eighteen ARGs belonging to different classes of antibiotics. All isolated bacteria displayed a high prevalence of resistance against all tested antibiotics. These findings provide insights into the emerging risks linked to colonization by potential human opportunistic pathogens on plastic waste commonly found in aquatic ecosystems. | 2024 | 38667014 |