# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1920 | 0 | 1.0000 | Exploring the resistome, virulome, and mobilome of multidrug-resistant Klebsiella pneumoniae isolates: deciphering the molecular basis of carbapenem resistance. BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, bla(NDM,) and bla(OXA), respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources. | 2024 | 38664636 |
| 1919 | 1 | 0.9999 | Combining Functional Genomics and Whole-Genome Sequencing to Detect Antibiotic Resistance Genes in Bacterial Strains Co-Occurring Simultaneously in a Brazilian Hospital. (1) Background: The rise of multi-antibiotic resistant bacteria represents an emergent threat to human health. Here, we investigate antibiotic resistance mechanisms in bacteria of several species isolated from an intensive care unit in Brazil. (2) Methods: We used whole-genome analysis to identify antibiotic resistance genes (ARGs) and plasmids in 34 strains of Gram-negative and Gram-positive bacteria, providing the first genomic description of Morganella morganii and Ralstonia mannitolilytica clinical isolates from South America. (3) Results: We identified a high abundance of beta-lactamase genes in resistant organisms, including seven extended-spectrum beta-lactamases (OXA-1, OXA-10, CTX-M-1, KPC, TEM, HYDRO, BLP) shared between organisms from different species. Additionally, we identified several ARG-carrying plasmids indicating the potential for a fast transmission of resistance mechanism between bacterial strains. Furthermore, we uncovered two pairs of (near) identical plasmids exhibiting multi-drug resistance. Finally, since many highly resistant strains carry several different ARGs, we used functional genomics to investigate which of them were indeed functional. In this sense, for three bacterial strains (Escherichia coli, Klebsiella pneumoniae, and M. morganii), we identified six beta-lactamase genes out of 15 predicted in silico as those mainly responsible for the resistance mechanisms observed, corroborating the existence of redundant resistance mechanisms in these organisms. (4) Conclusions: Systematic studies similar to the one presented here should help to prevent outbreaks of novel multidrug-resistant bacteria in healthcare facilities. | 2021 | 33920372 |
| 5715 | 2 | 0.9999 | Genomic Characterization of Mobile Genetic Elements Associated with Multidrug-Resistant Acinetobacter Non-baumannii Species from Southern Thailand. This study investigated the genetic diversity, antimicrobial resistance profiles, and virulence characteristics of Acinetobacter non-baumannii isolates obtained from four hospitals in southern Thailand. Clinical data, genome information, and average nucleotide identity (ANI) were analyzed for eight isolates, revealing diverse genetic profiles and novel sequence types (STs). Minimum spanning tree analysis indicated potential clonal spread of certain STs across different geographic regions. Antimicrobial resistance genes (ARGs) were detected in all isolates, with a high prevalence of genes conferring resistance to carbapenems, highlighting the challenge of antimicrobial resistance in Acinetobacter spp. infections. Mobile genetic elements (MGEs) carrying ARGs were also identified, emphasizing the role of horizontal gene transfer in spreading resistance. Evaluation of virulence-associated genes revealed a diverse range of virulence factors, including those related to biofilm formation and antibiotic resistance. However, no direct correlation was found between virulence-associated genes in Acinetobacter spp. and specific clinical outcomes, such as infection severity or patient mortality. This complexity suggests that factors beyond gene presence may influence disease progression and outcomes. This study emphasizes the importance of continued surveillance and molecular epidemiological studies to combat the spread of multidrug-resistant (MDR) Acinetobacter non-baumannii strains. The findings provide valuable insights into the epidemiology and genetic characteristics of this bacteria in southern Thailand, with implications for infection control and antimicrobial management efforts. | 2024 | 38391535 |
| 1573 | 3 | 0.9999 | Genomic Analysis of a Pan-Resistant Isolate of Klebsiella pneumoniae, United States 2016. Antimicrobial resistance is a threat to public health globally and leads to an estimated 23,000 deaths annually in the United States alone. Here, we report the genomic characterization of an unusual Klebsiella pneumoniae, nonsusceptible to all 26 antibiotics tested, that was isolated from a U.S. PATIENT: The isolate harbored four known beta-lactamase genes, including plasmid-mediated bla(NDM-1) and bla(CMY-6), as well as chromosomal bla(CTX-M-15) and bla(SHV-28), which accounted for resistance to all beta-lactams tested. In addition, sequence analysis identified mechanisms that could explain all other reported nonsusceptibility results, including nonsusceptibility to colistin, tigecycline, and chloramphenicol. Two plasmids, IncA/C2 and IncFIB, were closely related to mobile elements described previously and isolated from Gram-negative bacteria from China, Nepal, India, the United States, and Kenya, suggesting possible origins of the isolate and plasmids. This is one of the first K. pneumoniae isolates in the United States to have been reported to the Centers for Disease Control and Prevention (CDC) as nonsusceptible to all drugs tested, including all beta-lactams, colistin, and tigecycline.IMPORTANCE Antimicrobial resistance is a major public health threat worldwide. Bacteria that are nonsusceptible or resistant to all antimicrobials available are of major concern to patients and the public because of lack of treatment options and potential for spread. A Klebsiella pneumoniae strain that was nonsusceptible to all tested antibiotics was isolated from a U.S. PATIENT: Mechanisms that could explain all observed phenotypic antimicrobial resistance phenotypes, including resistance to colistin and beta-lactams, were identified through whole-genome sequencing. The large variety of resistance determinants identified demonstrates the usefulness of whole-genome sequencing for detecting these genes in an outbreak response. Sequencing of isolates with rare and unusual phenotypes can provide information on how these extremely resistant isolates develop, including whether resistance is acquired on mobile elements or accumulated through chromosomal mutations. Moreover, this provides further insight into not only detecting these highly resistant organisms but also preventing their spread. | 2018 | 29615503 |
| 1918 | 4 | 0.9999 | Molecular Detection of Class 1 Integron-Associated Gene Cassettes in KPC-2-Producing Klebsiella pneumoniae Clones by Whole-Genome Sequencing. The dissemination of antimicrobial resistance genes and the bacterium that harbor them have increasingly become a public concern, especially in low- and middle-income countries. The present study used whole-genome sequencing to analyze 10 KPC-2-producing Klebsiella pneumoniae isolates obtained from clinical specimens originated from Brazilian hospitals. The study documents a relevant "snapshot" of the presence of class 1 integrons in 90% of the strains presenting different gene cassettes (dfrA30, dfrA15, dfrA12, dfrA14, aadA1, aadA2, and aac(6')Iq), associated or not with transposons. Two strains presented nonclassical integron (lacking the normal 3'conserved segment). In general, most strains showed a complex resistome, characterizing them as highly resistant. Integrons, a genetically stable and efficient system, confer to bacteria as highly adaptive and low cost evolution potential to bacteria, even more serious when associated with high-risk clones, indicating an urgent need for control and prevention strategies to avoid the spread of resistance determinants in Brazil. Despite this, although the class 1 integron identified in the KPC-2-producing K. pneumoniae clones is important, our findings suggest that other elements probably have a greater impact on the spread of antimicrobial resistance, since many of these important genes were not related to this cassette. | 2019 | 31074706 |
| 1835 | 5 | 0.9999 | Insights into Acinetobacter baumannii AMA205's Unprecedented Antibiotic Resistance. The rise of antibiotic-resistant bacteria in clinical settings has become a significant global concern. Among these bacteria, Acinetobacter baumannii stands out due to its remarkable ability to acquire resistance genes and persist in hospital environments, leading to some of the most challenging infections. Horizontal gene transfer (HGT) plays a crucial role in the evolution of this pathogen. The A. baumannii AMA205 strain, belonging to sequence type ST79, was isolated from a COVID-19 patient in Argentina in 2021. This strain's antimicrobial resistance profile is notable as it harbors multiple resistance genes, some of which had not been previously described in this species. The AmpC family β-lactamase bla(CMY-6), commonly found in Enterobacterales, had never been detected in A. baumannii before. Furthermore, this is the first ST79 strain known to carry the carbapenemase bla(NDM-1) gene. Other acquired resistance genes include the carbapenemase bla(OXA-23), further complicating treatment. Susceptibility testing revealed high resistance to most antibiotic families, including cefiderocol, with significant contributions from bla(CMY-6) and bla(NDM-1) genes to the cephalosporin and carbapenem resistance profiles. The A. baumannii AMA205 genome also contains genetic traits coding for 111 potential virulence factors, such as the iron-uptake system and biofilm-associated proteins. This study underscores A. baumannii's ability to acquire multiple resistance genes and highlights the need for alternative therapies and effective antimicrobial stewardship to control the spread of these highly resistant strains. | 2024 | 39518977 |
| 1572 | 6 | 0.9999 | Phenotypic and Genomic Characterization of AmpC-Producing Klebsiella pneumoniae From Korea. The prevalence of multidrug-resistant gram-negative bacteria has continuously increased over the past few years; bacterial strains producing AmpC β-lactamases and/or extended-spectrum β-lactamases (ESBLs) are of particular concern. We combined high-resolution whole genome sequencing and phenotypic data to elucidate the mechanisms of resistance to cephamycin and β-lactamase in Korean Klebsiella pneumoniae strains, in which no AmpC-encoding genes were detected by PCR. We identified several genes that alone or in combination can potentially explain the resistance phenotype. We showed that different mechanisms could explain the resistance phenotype, emphasizing the limitations of the PCR and the importance of distinguishing closely-related gene variants. | 2018 | 29611388 |
| 5700 | 7 | 0.9999 | Gram-negative bacterial colonization in the gut: Isolation, characterization, and identification of resistance mechanisms. BACKGROUND: The gut microbiome is made up of a diverse range of bacteria, especially gram-negative bacteria, and is crucial for human health and illness. There is a great deal of interest in the dynamic interactions between gram-negative bacteria and their host environment, especially considering antibiotic resistance. This work aims to isolate gram-negative bacteria that exist in the gut, identify their species, and use resistance-associated gene analysis to define their resistance mechanisms. METHODS: Samples were collected from all patients who had a stool culture at a tertiary care center in Lebanon. Each type of bacteria that was identified from the stool samples was subjected to critical evaluations, and all discovered strains underwent antimicrobial susceptibility testing. Polymerase chain reaction was used to profile the genes for Carbapenem-resistant Enterobacteriaceae (CRE), Extended-spectrum beta-lactamase (ESBL), and that of Pseudomonas aeruginosa strains. RESULTS: Escherichia coli, Klebsiella species, and Pseudomonas aeruginosa turned out to be the predominant microbiota members. Escherichia coli strains had a high frequency of extended-spectrum beta-lactamase genes, with the most discovered gene being bla CTX-M. Additionally, a considerable percentage of isolates had carbapenemase-resistant Enterobacteriaceae genes, suggesting the rise of multidrug-resistant strains. Multidrug resistance genes, such as bla mexR, bla mexB, and bla mexA, were found in strains of Pseudomonas aeruginosa, highlighting the possible difficulties in treating infections brought on by these bacteria. CONCLUSION: The findings highlight the critical importance of effective surveillance and response measures to maintain the effectiveness of antibiotics considering the introduction of multidrug resistance genes in Pseudomonas aeruginosa and ESBL and CRE genes in Escherichia coli. | 2024 | 39216133 |
| 1898 | 8 | 0.9999 | Multiple-Replicon Resistance Plasmids of Klebsiella Mediate Extensive Dissemination of Antimicrobial Genes. Multiple-replicon resistance plasmids have become important carriers of resistance genes in Gram-negative bacteria, and the evolution of multiple-replicon plasmids is still not clear. Here, 56 isolates of Klebsiella isolated from different wild animals and environments between 2018 and 2020 were identified by phenotyping via the micro-broth dilution method and were sequenced and analyzed for bacterial genome-wide association study. Our results revealed that the isolates from non-human sources showed more extensive drug resistance and especially strong resistance to ampicillin (up to 80.36%). The isolates from Malayan pangolin were particularly highly resistant to cephalosporins, chloramphenicol, levofloxacin, and sulfamethoxazole. Genomic analysis showed that the resistance plasmids in these isolates carried many antibiotic resistance genes. Further analysis of 69 plasmids demonstrated that 28 plasmids were multiple-replicon plasmids, mainly carrying beta-lactamase genes such as bla (CTX-M-) (15), bla (CTX-M-) (14), bla (CTX-M-) (55), bla (OXA-) (1), and bla (TEM-) (1). The analysis of plasmids carried by different isolates showed that Klebsiella pneumoniae might be an important multiple-replicon plasmid host. Plasmid skeleton and structure analyses showed that a multiple-replicon plasmid was formed by the fusion of two or more single plasmids, conferring strong adaptability to the antibiotic environment and continuously increasing the ability of drug-resistant isolates to spread around the world. In conclusion, multiple-replicon plasmids are better able to carry resistance genes than non-multiple-replicon plasmids, which may be an important mechanism underlying bacterial responses to environments with high-antibiotic pressure. This phenomenon will be highly significant for exploring bacterial resistance gene transmission and diffusion mechanisms in the future. | 2021 | 34777312 |
| 4932 | 9 | 0.9999 | Comprehensive analysis of beta-lactamase genes in clinical strains of Escherichia coli and Klebsiella pneumoniae: molecular characterization, and in Silico predictions. The emergence of beta-lactamase producing multidrug-resistant (MDR) gram-negative bacteria presents a significant challenge to effective treatment of infections. This study focuses on the isolation, amplification, and molecular characterization of β-lactamase genes from clinical strains of Escherichia coli and Klebsiella pneumoniae. Seven new partial gene sequences, including novel variants of blaOXA and blaNDM, were identified after screening 108 clinical samples and submitted to NCBI GenBank. In silico analysis revealed considerable diversity and distribution of these resistance genes among different strains of bacteria. Gene structure predictions using GENSCAN showed that blaOXA genes typically contain single exons with moderate GC content, whereas blaNDM genes feature longer exons with higher GC content. Multiple sequence alignment showed that NDM and OXA β-lactamases were highly similar, with only slight differences in a few amino acids. The study also analyzed the physico-chemical properties, functional domains, and phosphorylation patterns of the β-lactamase proteins. Secondary structure prediction indicated a dominance of beta sheets, contributing to protein stability, while tertiary modeling provided insights into their 3D structure. Overall, these findings provide critical insights into the genetic diversity and potential mechanisms of β-lactamase-mediated resistance, offering valuable information for the development of novel therapeutic strategies and surveillance programs. | 2025 | 40898000 |
| 1867 | 10 | 0.9998 | Plasmid diversity of Serratia marcescens and Klebsiella pneumoniae isolates involved in two carbapenem-resistant Enterobacteriaceae outbreaks in a Swiss hospital. This study investigates two distinct carbapenemase-producing Enterobacteriaceae outbreaks involving patients and contaminated sink traps at the University Hospital of Lausanne. It focuses on the diversity and transmission dynamics of plasmids carrying carbapenemase genes. Between 2022 and 2023, 57 carbapenem-resistant Klebsiella pneumoniae and Serratia marcescens isolates were collected and analyzed. Core-genome MLST confirmed genetic similarity among isolates, linking the outbreaks to sink trap contamination. DNA extraction, sequencing (MinION/Illumina MiSeq), and assembly were performed, followed by ARG screening and plasmid typing. Plasmids were annotated, clustered, and compared using core SNP distances and structural analyses. Known plasmids were identified through PLSDB database matching. Eight MLST types were identified in K. pneumoniae and one (ST356) in S. marcescens. Analysis of 52 bla-carrying plasmids revealed 22 plasmid clusters, including 6 bla(NDM-1) clusters in K. pneumoniae and 4 bla(KPC-2) clusters in S. marcescens. Plasmids showed close relatedness within and across patient and environmental isolates, with core SNP distances ranging from 0 to 18. Some bla(NDM-1) plasmids in K. pneumoniae clustered tightly, suggesting persistence and potential cross-contamination routes. The findings highlight sink traps as critical reservoirs for carbapenem-resistant Enterobacteriaceae and plasmids, promoting resistance gene spread across species. The observed plasmid diversity indicates transmission can occur independently of bacterial clonal spread, challenging traditional outbreak definitions. IMPORTANCE: This research is critical in addressing the growing threat of antibiotic resistance, driven by the spread of resistance genes through plasmids. Plasmids, which can transfer between different bacteria, play a major role in spreading multidrug resistance, posing a serious challenge to healthcare systems worldwide. By highlighting how plasmids can move independently of bacterial spread, this study reveals the complexity of resistance transmission. It also underscores the importance of environmental reservoirs, such as hospital sink traps, in harboring and spreading resistant bacteria. These findings emphasize the need for better monitoring of plasmids and targeted infection control measures to prevent the spread of resistance genes and protect the effectiveness of current antibiotics. | 2025 | 40396774 |
| 2571 | 11 | 0.9998 | Multidrug-resistant Enterobacter spp. in wastewater and surface water: Molecular characterization of β-lactam resistance and metal tolerance genes. Among the ESKAPE group pathogens, Enterobacter spp. is an opportunistic Gram-negative bacillus, widely dispersed in the environment, that causes infections. In the present study, samples of hospital wastewater, raw and treated urban wastewater, as well as surface receiving water, were collected to assess the occurrence of multidrug-resistant (MDR) Enterobacter spp. A molecular characterization of β-lactam antibiotic resistance and metal tolerance genes was performed. According to identification by MALDI-TOF MS, 14 isolates were obtained: 7 E. bugandensis, 5 E. kobei, and 2 E. cloacae. The isolates showed resistance mainly to β-lactam antibiotics, including those used to treat infections caused by MDR bacteria. Multiple antibiotic resistance index was calculated for all isolates. It allowed verify whether sampling points showed a high risk due to antibiotic resistant Enterobacter spp., as well as to determine if the isolates have been in environments with a frequent antibiotic use. Twelve isolates showed β-lactam antibiotic resistance gene, being the bla(KPC) widely detected. Regarding metal tolerance, 13 isolates showed at least two genes that encode metal tolerance mechanisms. Overall, metal tolerance mechanisms to silver, copper, mercury, arsenic and tellurium were found. New data on metal tolerance mechanisms dispersion and antibiotic-resistance characterization of the E. bugandensis and E. kobei species were here provided. The occurrence of MDR Enterobacter spp. in analyzed samples draws attention to an urgent need to put control measures into practice. It also evidences waterborne spread of clinically important antibiotic-resistant bacteria recognized as critical priority pathogens. | 2023 | 37356524 |
| 4954 | 12 | 0.9998 | Integron class 1 reservoir among highly resistant gram-negative microorganisms recovered at a Dutch teaching hospital. Integrons play an important role in the dissemination of resistance genes among bacteria. Nearly 70% of highly resistant gram-negative bacteria isolated at a tertiary care hospital harbored an integron. Epidemiologic analysis suggests that horizontal gene transfer is an important mechanism of resistance spread and has a greater contribution than cross-transmission to levels of resistance in settings where highly resistant gram-negative bacteria are endemic. | 2009 | 19719415 |
| 5508 | 13 | 0.9998 | Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. Patient-derived isolates of the opportunistic pathogen Pseudomonas aeruginosa are frequently resistant to antibiotics due to the presence of sequence variants in resistance-associated genes. However, the frequency of antibiotic resistance and of resistance-associated sequence variants in environmental isolates of P. aeruginosa has not been well studied. Antimicrobial susceptibility testing (ciprofloxacin, ceftazidime, meropenem, tobramycin) of environmental (n=50) and cystic fibrosis (n=42) P. aeruginosa isolates was carried out. Following whole genome sequencing of all isolates, 25 resistance-associated genes were analysed for the presence of likely function-altering sequence variants. Environmental isolates were susceptible to all antibiotics with one exception, whereas patient-derived isolates had significant frequencies of resistance to each antibiotic and a greater number of likely resistance-associated genetic variants. These findings indicate that the natural environment does not act as a reservoir of antibiotic-resistant P. aeruginosa, supporting a model in which antibiotic susceptible environmental bacteria infect patients and develop resistance during infection. | 2019 | 31553303 |
| 5680 | 14 | 0.9998 | Multidrug-Resistant Acinetobacter baumannii Genetic Characterization and Spread in Lithuania in 2014, 2016, and 2018. Bacterial resistance to antimicrobial agents plays an important role in the treatment of bacterial infections in healthcare institutions. The spread of multidrug-resistant bacteria can occur during inter- and intra-hospital transmissions among patients and hospital personnel. For this reason, more studies must be conducted to understand how resistance occurs in bacteria and how it moves between hospitals by comparing data from different years and looking out for any patterns that might emerge. Multidrug-resistant (MDR) Acinetobacter spp. was studied at 14 healthcare institutions in Lithuania during 2014, 2016, and 2018 using samples from human bloodstream infections. In total, 194 isolates were collected and identified using MALDI-TOF and VITEK2 analyzers as Acinetobacter baumannii group bacteria. After that, the isolates were analyzed for the presence of different resistance genes (20 genes were analyzed) and characterized by using the Rep-PCR and MLVA (multiple-locus variable-number tandem repeat analysis) genotyping methods. The results of the study showed the relatedness of the different Acinetobacter spp. isolates and a possible circulation of resistance genes or profiles during the different years of the study. This study provides essential information, such as variability and diversity of resistance genes, genetic profiling, and clustering of isolates, to better understand the antimicrobial resistance patterns of Acinetobacter spp. These results can be used to strengthen the control of multidrug-resistant infections in healthcare institutions and to prevent potential outbreaks of this pathogen in the future. | 2021 | 33669401 |
| 1582 | 15 | 0.9998 | Integrated Genomic and Phenotypic Characterization of an Mcr-10.1-Harboring Multidrug Resistant Escherichia coli Strain From Migratory Birds in China. Background: The global rise in antibiotic resistance among multidrug resistant (MDR) Gram-negative (GN) bacteria has posed significant health challenges, leading to the resurgence of colistin as a key defense against these bacteria. However, the widespread use of colistin has resulted in the rapid emergence of colistin resistance on a global scale. Ten members of the (mobile colistin resistance) mcr gene family, mcr-1 through mcr-10, have been reported and documented. Currently, bacteria reported to carry the mcr-10.1 gene are sensitive to colistin, but the mechanism underlying the low-level resistance phenomenon mediated by mcr-10.1 remains unclear. Methods: In this study, antimicrobial susceptibility testing (AST) was conducted on Escherichia coli (E.coli) isolated from Chinese migratory birds, resulting in the selection of 87 strains exhibiting MDR phenotypes. Whole-genome sequencing (draft) was performed on these 87 MDR E. coli strains, and for one of the E. coli strains carrying the mcr-10.1 gene, whole-genome sequencing, phenotypic characterization, AST and conjugation experiments were conducted to identify its resistance phenotypes and genetic characteristics. Results: Whole-genome sequencing (draft) of 87 MDR E. coli isolates revealed a diverse array of resistance genes, predominantly including aminoglycoside, β-lactam, tetracycline, and sulfonamide resistance genes. Remarkably, one isolate, despite being sensitive to colistin, harbored the mcr-10.1 gene. Further sequencing showed that mcr-10.1 was located in the conserved region of xerC-mcr-10.1, a hotspot for movable elements with various insertion sequences (ISs) or transposons nearby. Phenotypic characterization indicated that the MDR plasmid pGN25-mcr10.1 had no significant effect on the growth of GN25 and its derivatives but reduced the number of bacterial flagella. Conclusions: It is particularly important to note that bacteria harboring the mcr-10.1 gene may exhibit low minimum inhibitory concentration (MIC) values, but that the MIC values under colistin selective pressure can become progressively higher and exacerbate the difficulty of treating infections caused by mcr-10.1-associated bacteria. Therefore, vigilance for such "silent transmission" is warranted, and continuous monitoring of the spread of mcr-10.1 is necessary in the future. | 2025 | 40343190 |
| 5714 | 16 | 0.9998 | Characterization of cephalosporin and fluoroquinolone resistant Enterobacterales from Irish farm waste by whole genome sequencing. BACKGROUND: The Enterobacterales are a group of Gram-negative bacteria frequently exhibiting extended antimicrobial resistance (AMR) and involved in the transmission of resistance genes to other bacterial species present in the same environment. Due to their impact on human health and the paucity of new antibiotics, the World Health Organization (WHO) categorized carbapenem resistant and ESBL-producing as critical. Enterobacterales are ubiquitous and the role of the environment in the transmission of AMR organisms or antimicrobial resistance genes (ARGs) must be examined in tackling AMR in both humans and animals under the one health approach. Animal manure is recognized as an important source of AMR bacteria entering the environment, in which resistant genes can accumulate. METHODS: To gain a better understanding of the dissemination of third generation cephalosporin and fluoroquinolone resistance genes between isolates in the environment, we applied whole genome sequencing (WGS) to Enterobacterales (79 E. coli, 1 Enterobacter cloacae, 1 Klebsiella pneumoniae, and 1 Citrobacter gillenii) isolated from farm effluents in Ireland before (n = 72) and after (n = 10) treatment by integrated constructed wetlands (ICWs). DNA was extracted using the MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) followed by WGS on a MiSeq platform (Illumina, Eindhoven, Netherlands) using v3 chemistry as 300-cycle paired-end runs. AMR genes and point mutations were identified and compared to the phenotypic results for better understanding of the mechanisms of resistance and resistance transmission. RESULTS: A wide variety of cephalosporin and fluoroquinolone resistance genes (mobile genetic elements (MGEs) and chromosomal mutations) were identified among isolates that mostly explained the phenotypic AMR patterns. A total of 31 plasmid replicon types were identified among the 82 isolates, with a subset of them (n = 24), identified in E. coli isolates. Five plasmid replicons were confined to the Enterobacter cloacae isolate and two were confined to the Klebsiella pneumoniae isolate. Virulence genes associated with functions including stress, survival, regulation, iron uptake secretion systems, invasion, adherence and toxin production were identified. CONCLUSION: Our study showed that antimicrobial resistant organisms (AROs) can persist even following wastewater treatment and could transmit AMR of clinical relevance to the environment and ultimately pose a risk to human or animal health. | 2023 | 37032887 |
| 1834 | 17 | 0.9998 | Multiple host colonization and differential expansion of multidrug-resistant ST25-Acinetobacter baumannii clades. The Acinetobacter baumannii clonal lineage ST25 has been identified in humans and animals and found associated with outbreaks globally. To highlight possible similarities among ST25 A. baumannii of animal and human origins and to gather clues on the dissemination and evolution of the ST25 lineage, we conducted a phylogenetic analysis on n = 106 human and n = 35 animal A. baumannii ST25 genomes, including 44 sequenced for this study. Resistance genes and their genetic background were analyzed, as well. ST25 genomes are clustered into four clades: two are widespread in South America, while the other two are largely distributed in Europe, Asia and America. One particular clade was found to include the most recent strains and the highest number of acquired antibiotic resistance genes. OXA-23-type carbapenemase was the most common. Other resistance genes such as bla(NDM-1), bla(PER-7), and armA were found embedded in complex chromosomal regions present in human isolates. Genomic similarity among multidrug resistant ST25 isolates of either animal or human origin was revealed, suggesting cross-contaminations between the two sectors. Tracking the clonal complex ST25 between humans and animals should provide new insights into the mode of dissemination of these bacteria, and should help defining strategies for preserving global health. | 2023 | 38071225 |
| 1902 | 18 | 0.9998 | Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. INTRODUCTION: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. METHODS: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. RESULTS: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the bla(KPC-2), bla(NDM-5), bla(OXA-1), bla(OXA-48), and bla(OXA-181) β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. DISCUSSION: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance. | 2023 | 37323902 |
| 1683 | 19 | 0.9998 | Colonization of a hand washing sink in a veterinary hospital by an Enterobacter hormaechei strain carrying multiple resistances to high importance antimicrobials. BACKGROUND: Hospital intensive care units (ICUs) are known reservoirs of multidrug resistant nosocomial bacteria. Targeted environmental monitoring of these organisms in health care facilities can strengthen infection control procedures. A routine surveillance of extended spectrum beta-lactamase (ESBL) producers in a large Australian veterinary teaching hospital detected the opportunistic pathogen Enterobacter hormaechei in a hand washing sink of the ICU. The organism persisted for several weeks, despite two disinfection attempts. Four isolates were characterized in this study. METHODS: Brilliance-ESBL selective plates were inoculated from environmental swabs collected throughout the hospital. Presumptive identification was done by conventional biochemistry. Genomes of multidrug resistant Enterobacter were entirely sequenced with Illumina and Nanopore platforms. Phylogenetic markers, mobile genetic elements and antimicrobial resistance genes were identified in silico. Antibiograms of isolates and transconjugants were established with Sensititre microdilution plates. RESULTS: The isolates possessed a chromosomal Tn7-associated silver/copper resistance locus and a large IncH12 conjugative plasmid encoding resistance against tellurium, arsenic, mercury and nine classes of antimicrobials. Clusters of antimicrobial resistance genes were associated with class 1 integrons and IS26, IS903 and ISCR transposable elements. The blaSHV-12, qnrB2 and mcr-9.1 genes, respectively conferring resistance to cephalosporins, quinolones and colistin, were present in a locus flanked by two IS903 copies. ESBL production and enrofloxacin resistance were confirmed phenotypically. The isolates appeared susceptible to colistin, possibly reflecting the inducible nature of mcr-9.1. CONCLUSIONS: The persistence of this strain in the veterinary hospital represented a risk of further accumulation and dissemination of antimicrobial resistance, prompting a thorough disinfection of the ICU. The organism was not recovered from subsequent environmental swabs, and nosocomial Enterobacter infections were not observed in the hospital during that period. This study shows that targeted routine environmental surveillance programs to track organisms with major resistance phenotypes, coupled with disinfection procedures and follow-up microbiological cultures are useful to control these risks in sensitive areas of large veterinary hospitals. | 2020 | 33087168 |