# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1915 | 0 | 1.0000 | Low Prevalence of Carbapenem-Resistant Bacteria in River Water: Resistance Is Mostly Related to Intrinsic Mechanisms. Carbapenems are last-resort antibiotics to handle serious infections caused by multiresistant bacteria. The incidence of resistance to these antibiotics has been increasing and new resistance mechanisms have emerged. The dissemination of carbapenem resistance in the environment has been overlooked. The main goal of this research was to assess the prevalence and diversity of carbapenem-resistant bacteria in riverine ecosystems. The presence of frequently reported carbapenemase-encoding genes was inspected. The proportion of imipenem-resistant bacteria was on average 2.24 CFU/ml. Imipenem-resistant strains (n=110) were identified as Pseudomonas spp., Stenotrophomonas maltophilia, Aeromonas spp., Chromobacterium haemolyticum, Shewanella xiamenensis, and members of Enterobacteriaceae. Carbapenem-resistant bacteria were highly resistant to other beta-lactams such as quinolones, aminoglycosides, chloramphenicol, tetracyclines, and sulfamethoxazole/trimethoprim. Carbapenem resistance was mostly associated with intrinsically resistant bacteria. As intrinsic resistance mechanisms, we have identified the blaCphA gene in 77.3% of Aeromonas spp., blaL1 in all S. maltophilia, and blaOXA-48-like in all S. xiamenensis. As acquired resistance mechanisms, we have detected the blaVIM-2 gene in six Pseudomonas spp. (5.45%). Integrons with gene cassettes encoding resistance to aminoglycosides (aacA and aacC genes), trimethoprim (dfrB1b), and carbapenems (blaVIM-2) were found in Pseudomonas spp. Results suggest that carbapenem resistance dissemination in riverine ecosystems is still at an early stage. Nevertheless, monitoring these aquatic compartments for the presence of resistance genes and its host organisms is essential to outline strategies to minimize resistance dissemination. | 2015 | 26430939 |
| 2570 | 1 | 0.9998 | Metallo-beta-lactamase-producing Escherichia coli in the sewage of Mexico City: where do they come from? While monitoring the presence of antibiotic resistance in municipal wastewater bacteria from Mexico City, five Escherichia coli isolates were found to be resistant to carbapenems, antibiotics of "last resort" used mostly in hospitals. Further analysis revealed that these carbapenem-resistant isolates carried the gene encoding a metallo-beta-lactamase, NDM-5. The gene was found to be beared by a large, ∼145 kb conjugative plasmid, which also carries putative genes encoding resistance to sulfonamides, trimethoprim, tetracycline, ciprofloxacin, and chloramphenicol (although no phenotypic chloramphenicol resistance was detected) and quaternary-ammonium compounds. The plasmid also carried gene mobility determinants, such as integron integrase and two transposases. In addition to the direct public health threat posed by the presence of such multi-resistant organisms in wastewater released into the environment and used for crop irrigation; it is particularly concerning that carbapenem-resistant E. coli is rather rare in Mexican hospitals (<1%), but was found in small, 100 mL samples of municipal wastewater. This suggests that these organisms are under-reported by clinical microbiology laboratories, underlining the usefulness of wastewater monitoring, or that there is an unknown source of such carbapenem-resistant organisms that are being dumped into the wastewater. The source of these bacteria must be assessed and controlled to prevent further spread of this multi-resistance plasmid among other environmental and clinical microorganisms. | 2022 | 34662521 |
| 2571 | 2 | 0.9998 | Multidrug-resistant Enterobacter spp. in wastewater and surface water: Molecular characterization of β-lactam resistance and metal tolerance genes. Among the ESKAPE group pathogens, Enterobacter spp. is an opportunistic Gram-negative bacillus, widely dispersed in the environment, that causes infections. In the present study, samples of hospital wastewater, raw and treated urban wastewater, as well as surface receiving water, were collected to assess the occurrence of multidrug-resistant (MDR) Enterobacter spp. A molecular characterization of β-lactam antibiotic resistance and metal tolerance genes was performed. According to identification by MALDI-TOF MS, 14 isolates were obtained: 7 E. bugandensis, 5 E. kobei, and 2 E. cloacae. The isolates showed resistance mainly to β-lactam antibiotics, including those used to treat infections caused by MDR bacteria. Multiple antibiotic resistance index was calculated for all isolates. It allowed verify whether sampling points showed a high risk due to antibiotic resistant Enterobacter spp., as well as to determine if the isolates have been in environments with a frequent antibiotic use. Twelve isolates showed β-lactam antibiotic resistance gene, being the bla(KPC) widely detected. Regarding metal tolerance, 13 isolates showed at least two genes that encode metal tolerance mechanisms. Overall, metal tolerance mechanisms to silver, copper, mercury, arsenic and tellurium were found. New data on metal tolerance mechanisms dispersion and antibiotic-resistance characterization of the E. bugandensis and E. kobei species were here provided. The occurrence of MDR Enterobacter spp. in analyzed samples draws attention to an urgent need to put control measures into practice. It also evidences waterborne spread of clinically important antibiotic-resistant bacteria recognized as critical priority pathogens. | 2023 | 37356524 |
| 2730 | 3 | 0.9998 | Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant. This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem. | 2016 | 26469134 |
| 1909 | 4 | 0.9997 | Multidrug-Resistant Gram-Negative Bacteria and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from the Poultry Farm Environment. The indiscriminate use and overuse of various antibiotics have caused the rapid emergence of antibiotic-resistant bacteria (ARB) in poultry products and the surrounding environment, giving rise to global public health issues. This study aimed to determine the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (GNB) found in the environment of poultry farms and to evaluate the risk of contamination in these farms based on multiple antibiotic resistance (MAR) index values. Soil and effluent samples were collected from 13 poultry farms. The VITEK 2 system was used for bacterial identification and susceptibility testing of the isolates. The identified Gram-negative isolates were Acinetobacter spp., Aeromonas spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Providencia spp., Pseudomonas spp., and Sphingomonas paucimobilis. The results showed that Enterobacter spp., Aeromonas spp., and Providencia spp. exhibited the highest MDR rates and MAR indices; 14% of K. pneumoniae isolates (3/21 isolates) were resistant to 13 antibiotics and found to be extended-spectrum β-lactamase (ESBL)-producing bacteria. As for the tested antibiotics, 96.6% of the isolates (28/29 isolates) demonstrated resistance to ampicillin, followed by ampicillin-sulbactam (55.9% [33/59 isolates]) and cefazolin (54.8% [57/104 isolates]). The high percentage of MDR bacteria and the presence of ESBL-producing K. pneumoniae strains suggested the presence of MDR genes from the poultry farm environment, which poses an alarming threat to the effectiveness of the available antibiotic medicines to treat infectious diseases. Therefore, the use of antibiotics should be regulated and controlled, while studies addressing One Health issues are vital for combating and preventing the development and spread of ARB. IMPORTANCE The occurrence and spread of ARB due to high demand in poultry industries are of great public health concern. The widespread emergence of antibiotic resistance, particularly MDR among bacterial pathogens, poses challenges in clinical treatment. Some pathogens are now virtually untreatable with current antibiotics. However, those pathogens were rarely explored in the environment. In alignment with the concept of One Health, it is imperative to study the rate of resistance in the environment, because this domain plays an important role in the dissemination of bacteria to humans, animals, and other environmental areas. Reliable data on the prevalence of MDR bacteria are crucial to curb the spread of bacterial pathogens that can cause antimicrobial-resistant infections. | 2022 | 35467407 |
| 2576 | 5 | 0.9997 | Freshwater and Marine Environments in California Are a Reservoir of Carbapenem-Resistant Bacteria. Carbapenems are last-resort antibiotics used to treat multidrug-resistant bacterial infections. Resistance to carbapenems has been designated as an urgent threat and is increasing in healthcare settings. However, little is still known about the distribution and characteristics of carbapenem-resistant bacteria (CRB) outside of healthcare settings. Here, we surveyed the distribution of CRB in ten diverse freshwater and seawater environments in California, U.S., ranging from San Luis Obispo County to San Bernardino County, combining both direct isolation and enrichment approaches to increase the diversity of isolated CRB. From the locations surveyed, we selected 30 CRB for further characterization. These isolates were identified as members of the genera Aeromonas, Enterobacter, Enterococcus, Paenibacillus, Pseudomonas, Sphingobacterium, and Stenotrophomonas. These isolates were resistant to carbapenems, other β-lactams, and often to other antibiotics (tetracycline, gentamicin, or ciprofloxacin). We also found that nine isolates belonging to the genera Aeromonas, Enterobacter (bla(IMI-2)), and Stenotrophomonas (bla(L1)) produced carbapenemases. Overall, our findings indicate that sampling different types of aquatic environments and combining different isolation approaches increase the diversity of the environmental CRB obtained. Moreover, our study supports the increasingly recognized role of natural water systems as an underappreciated reservoir of bacteria resistant to carbapenems and other antibiotics, including bacteria carrying carbapenemase genes. | 2024 | 38674746 |
| 1920 | 6 | 0.9997 | Exploring the resistome, virulome, and mobilome of multidrug-resistant Klebsiella pneumoniae isolates: deciphering the molecular basis of carbapenem resistance. BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, bla(NDM,) and bla(OXA), respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources. | 2024 | 38664636 |
| 2749 | 7 | 0.9997 | Culture-independent methods reveal high diversity of OXA-48-like genes in water environments. The carbapenemase OXA-48 was identified for the first time in 2001 and is now one of the greatest concerns in terms of antibiotic resistance. While many studies report clinical OXA-48-like producers, few reports refer bla(OXA-48-like) genes in environmental bacteria. The main goal of this study was to evaluate the diversity of bla(OXA-48-like) genes in aquatic systems, using culture-independent approaches. For that, environmental DNA was obtained from riverine and estuarine water and used to construct clone libraries of bla(OXA-48-like) gene polymerase chain reaction amplicons. bla(OXA-48-like) libraries from river and estuarine water DNA comprised 75 and 70 clones, respectively. Sequence analysis showed that environmental bla(OXA-48-like) genes show a broader diversity than that so far observed in clinical settings. In total, 50 new OXA-48 variants were identified as well as sequences identical to previously reported OXA-48, OXA-181, OXA-199, OXA-204 and OXA-162. Though we have no evidence that these genes were carried by bacteria that are members of the natural heterotrophic flora or bacteria that have entered this particular water environment through anthropogenic sources, these results reinforce the role of aquatic systems as antibiotic resistance reservoirs. The variants of bla(OXA-48) here described should be taken into account when designing molecular strategies for detecting this gene. | 2017 | 28771149 |
| 5699 | 8 | 0.9997 | Presence of β-Lactamase Encoding Genes in Burkholderia cepacia Complex Isolated from Soil. Burkholderia cepacia complex has emerged as an important opportunistic bacteria group for immunocompromised patients, and it has a high level of intrinsic resistance for different antibiotic classes. Hydrolysis of β-lactam antibiotics by β-lactamases is the most common resistance mechanism in Gram-negative bacteria, and the presence of such enzymes complicates the selection of appropriate therapy. This study aimed at investigating the antimicrobial resistance profile and the presence of β-lactamase encoding genes in B. cepacia complex isolated from Brazilian soils. High-level ceftazidime resistance and several β-lactamase encoding genes were found, including the first report of bla(KPC) genes in bacteria isolated from soil. | 2018 | 28915359 |
| 3393 | 9 | 0.9997 | Antibiotic resistance of gram-negative bacteria in rivers, United States. Bacteria with intrinsic resistance to antibiotics are found in nature. Such organisms may acquire additional resistance genes from bacteria introduced into soil or water, and the resident bacteria may be the reservoir or source of widespread resistant organisms found in many environments. We isolated antibiotic-resistant bacteria in freshwater samples from 16 U.S. rivers at 22 sites and measured the prevalence of organisms resistant to beta-lactam and non-beta-lactam antibiotics. Over 40% of the bacteria resistant to more than one antibiotic had at least one plasmid. Ampicillin resistance genes, as well as other resistance traits, were identified in 70% of the plasmids. The most common resistant organisms belonged to the following genera: Acinetobacter, Alcaligenes, Citrobacter, Enterobacter, Pseudomonas, and Serratia. | 2002 | 12095440 |
| 2745 | 10 | 0.9997 | Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. Carbapenem antibiotics constitute the mainstay therapy of nosocomial infections with extended spectrum beta-lactamase producing Gram-negative bacteria; however, resistance against these compounds is increasing. This study was designed to demonstrate that carbapenemase-producing bacteria are disseminated from hospitals into the environment. To this end, resistant bacteria were isolated from a clinical/urban and from a rural catchment system in Germany in 2016/17. The study followed the dissemination of resistant bacteria from the wastewater through the wastewater treatment plant (WWTP) into the receiving surface waters. The bacteria were cultivated on selective agar and characterized by antibiotic testing, real-time PCR targeting carbapenemase genes and typing. Bacteria with resistance to third generation cephalosporins were isolated from all sample sites. 134 isolates harboring carbapenemase genes encoding VIM, NDM and OXA-48 and 26 XDR (extensively drug-resistant) strains with susceptibility to only one or two antibiotics were isolated from the clinical/urban system. The rural system yielded eight carbapenemase producers and no XDR strains. In conclusion, clinical wastewaters were charged with a high proportion of multidrug resistant bacteria. Although most of these bacteria were eliminated during wastewater treatment, dissemination into surface waters is possible as single carbapenemase producers were still present in the effluent of the WWTP. | 2018 | 29659796 |
| 4954 | 11 | 0.9997 | Integron class 1 reservoir among highly resistant gram-negative microorganisms recovered at a Dutch teaching hospital. Integrons play an important role in the dissemination of resistance genes among bacteria. Nearly 70% of highly resistant gram-negative bacteria isolated at a tertiary care hospital harbored an integron. Epidemiologic analysis suggests that horizontal gene transfer is an important mechanism of resistance spread and has a greater contribution than cross-transmission to levels of resistance in settings where highly resistant gram-negative bacteria are endemic. | 2009 | 19719415 |
| 2754 | 12 | 0.9997 | Antimicrobial resistance in Aeromonas species isolated from aquatic environments in Brazil. AIM: The current study was conducted to determine the antimicrobial resistance profile and genetic relatedness of Aeromonas sp. isolated from healthcare and urban effluents, wastewater treatment plant (WWTP) and river water. METHODS AND RESULTS: We detected the presence of genes conferring resistance to β-lactam, quinolone and aminoglycoside. Multilocus sequence typing was carried out to differentiate the strains, and multilocus phylogenetic analysis was used to identify the species. A total of 28 cefotaxime-resistant Aeromonas sp. strains were identified, harbouring uncommon Guiana-extended-spectrum (GES)-type β-lactamases (GES-1, GES-5, GES-7 and GES-16). Multidrug-resistant Aeromonas sp. were found in hospital wastewater, WWTP and sanitary effluent, and A. caviae was identified as the most prevalent species (85·7%). CONCLUSION: The release of untreated healthcare effluents, presence of antimicrobials in the environment, in addition to multidrug-resistant Aeromonas sp., are all potential factors for the spread of resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: We identified a vast repertoire of antimicrobial resistance genes (ARG) in Aeromonas sp. from diverse aquatic ecosystems, including those that encode enzymes degrading broad-spectrum antimicrobials widely used to treat healthcare-associated infections. Hospital and sanitary effluents serve as potential sources of bacteria harbouring ARG and are a threat to public health. | 2021 | 33306232 |
| 1593 | 13 | 0.9997 | Epidemiological Description and Detection of Antimicrobial Resistance in Various Aquatic Sites in Marseille, France. Antibiotic resistance is a worldwide public health concern and has been associated with reports of elevated mortality. According to the One Health concept, antibiotic resistance genes are transferrable to organisms, and organisms are shared among humans, animals, and the environment. Consequently, aquatic environments are a possible reservoir of bacteria harboring antibiotic resistance genes. In our study, we screened water and wastewater samples for antibiotic resistance genes by culturing samples on different types of agar media. Then, we performed real-time PCR to detect the presence of genes conferring resistance to beta lactams and colistin, followed by standard PCR and gene sequencing for verification. We mainly isolated Enterobacteriaceae from all samples. In water samples, 36 Gram-negative bacterial strains were isolated and identified. We found three extended-spectrum β-lactamase (ESBL)-producing bacteria-Escherichia coli and Enterobacter cloacae strains-harboring the CTX-M and TEM groups. In wastewater samples, we isolated 114 Gram-negative bacterial strains, mainly E. coli, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis strains. Forty-two bacterial strains were ESBL-producing bacteria, and they harbored at least one gene belonging to the CTX-M, SHV, and TEM groups. We also detected carbapenem-resistant genes, including NDM, KPC, and OXA-48, in four isolates of E. coli. This short epidemiological study allowed us to identify new antibiotic resistance genes present in bacterial strains isolated from water in Marseille. This type of surveillance shows the importance of tracking bacterial resistance in aquatic environments. IMPORTANCE Antibiotic-resistant bacteria are involved in serious infections in humans. The dissemination of these bacteria in water, which is in close contact with human activities, is a serious problem, especially under the concept of One Health. This study was done to survey and localize the circulation of bacterial strains, along with their antibiotic resistance genes, in the aquatic environment in Marseille, France. The importance of this study is to monitor the frequency of these circulating bacteria by creating and surveying water treatments. | 2023 | 36976002 |
| 1913 | 14 | 0.9997 | Citrobacter spp. and Enterobacter spp. as reservoirs of carbapenemase bla(NDM) and bla(KPC) resistance genes in hospital wastewater. Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of β-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 β-lactamase genes; bla(TEM) in 33.1%, bla(CTX-M) in 25.4%, bla(KPC) in 25.4%, bla(NDM) 8.8%, bla(SHV) in 5.3%, and bla(OXA-48) in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase bla(KPC) was found in six Citrobacter spp. and E. coli, while bla(NDM) was detected in two distinct Enterobacter spp. and E. coli. Notably, bla(NDM-1) was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase bla(KPC) and bla(NDM). We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE: The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as bla(KPC) and bla(NDM) within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies. | 2024 | 39012101 |
| 1869 | 15 | 0.9997 | An update on the prevalence of colistin and carbapenem-resistant Gram-negative bacteria in aquaculture: an emerging threat to public health. Aquaculture has been recognized as a hotspot for the emergence and spread of antimicrobial resistance genes conferring resistance to clinically important antibiotics. This review gives insights into studies investigating the prevalence of colistin and carbapenem resistance (CCR) among Gram-negative bacilli in aquaculture. Overall, a high incidence of CCR has been reported in aquatic farms in several countries, with CCR being more prevalent among opportunistic human pathogens such as Acinetobacter nosocomialis, Shewanella algae, Photobacterium damselae, Vibrio spp., Aeromonas spp., as well as members of Enterobacteriaceae family. A high proportion of isolates in these studies exhibited wide-spectrum profiles of antimicrobial resistance, highlighting their multidrug-resistance properties (MDR). Several mobile colistin resistance genes (including, mcr-1, mcr-1.1, mcr-2, mcr-2.1, mcr-3, mcr-3.1, mcr-4.1, mcr-4.3, mcr-5.1, mcr-6.1, mcr-7.1, mcr-8.1, and mcr-10.1) and carbapenemase encoding genes (including, blaOXA-48, blaOXA-55, blaNDM, blaKPC, blaIMI, blaAIM, blaVIM, and blaIMP) have been detected in aquatic farms in different countries. The majority of these were carried on MDR Incompatibility (Inc) plasmids including IncA/C, and IncX4, which have been associated with a wide host range of different sources. Thus, there is a risk for the possible spread of resistance genes between fish, their environments, and humans. These findings highlight the need to monitor and regulate the usage of antimicrobials in aquaculture. A multisectoral and transdisciplinary (One Health) approach is urgently needed to reduce the spread of resistant bacteria and/or resistance genes originating in aquaculture and avoid their global reach. | 2024 | 38059867 |
| 1950 | 16 | 0.9997 | In treacherous waters: detection of colistin-resistant bacteria in water and plastic litter from a recreational estuary. Colistin resistance poses a major therapeutic challenge and resistant strains have now been reported worldwide. However, the occurrence of such bacteria in aquatic environments is considerably less understood. This study aimed to isolate and characterize colistin-resistant strains from water and plastic litter collected in an urban recreational estuary. Altogether, 64 strains with acquired colistin resistance were identified, mainly Acinetobacter spp. and Enterobacter spp. From these, 40.6% were positive for at least one mcr variant (1-9), 26.5% harbored, extended-spectrum beta-lactamases, 23.4% harbored, sulfonamide resistance genes, and 9.3% harbored, quinolone resistance genes. merA, encoding mercury resistance, was detected in 10.5% of these strains, most of which were also strong biofilm producers. The minimum inhibitory concentration toward colistin was determined for the mcr-positive strains and ranged from 2 to ≥512 µg ml-1. Our findings suggest that Gram-negative bacteria highly resistant to a last-resort antimicrobial can be found in recreational waters and plastic litter, thereby evidencing the urgency of the One Health approach to mitigate the antimicrobial resistance crisis. | 2024 | 39227173 |
| 1914 | 17 | 0.9997 | Comprehensive analysis of distribution characteristics and horizontal gene transfer elements of bla(NDM-1)-carrying bacteria. The worldwide dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to almost all clinical β-lactam antibiotics, is a major public health problem. The global distribution, species, sources, and potential transfer risk of bla(NDM-1)-carrying bacteria are unclear. Results of a comprehensive analysis of literature in 2010-2022 showed that a total of 6002 bla(NDM-1) carrying bacteria were widely distributed around 62 countries with a high trend in the coastal areas. Opportunistic pathogens or pathogens like Klebsiella sp., Escherichia sp., Acinetobacter sp. and Pseudomonas sp. were the four main species indicating the potential microbial risk. Source analysis showed that 86.45 % of target bacteria were isolated from the source of hospital (e.g., Hospital patients and wastewater) and little from surface water (5.07 %) and farms (3.98 %). A plasmid-encoded bla(NDM-1)Acinetobacter sp. with the resistance mechanisms of antibiotic efflux pump, antibiotic target change and antibiotic degradation was isolated from the wastewater of a typical tertiary hospital. Insertion sequences (IS3 and IS30) located in the adjacent 5 kbp of bla(NDM-1)-ble(MBL) gene cluster indicating the transposon-mediated horizontal gene transfer risk. These results showed that the worldwide spread of bla(NDM-1)-carrying bacteria and its potential horizontal gene transfer risk deserve good control. | 2024 | 38906294 |
| 2732 | 18 | 0.9997 | Biofilms in hospital effluents as a potential crossroads for carbapenemase-encoding strains. Bacterial resistance to carbapenem, which is mainly due to the successful dissemination of carbapenemase-encoding genes, has become a major health problem. Few studies have aimed to characterize the level of resistance in the environment, notably in hospital wastewater, which is a likely hotspot for exchange of antibiotic resistance genes. In this work, we looked for the presence of imipenem-resistant bacteria and imipenem in the effluent of the teaching hospital of Clermont-Ferrand, France. Selective growth of bacteria from 14-day old biofilms formed in the pipe sewer showed that 22.1% of the isolates were imipenem-resistant and identified as Aeromonas (n = 23), Pseudomonas (n = 10), Stenotrophomonas (n = 4) and Acinetobacter (n = 1). Fifteen of these strains harbored acquired carbapenemase-encoding genes bla(VIM) (n = 11), bla(OXA-48) (n = 2), bla(GES) (n = 1), bla(NDM) (n = 1). All isolates also harbored associated resistances to aminoglycosides, fluoroquinolones and/or tetracyclin. S1-nuclease pulsed-field gel electrophoresis analysis of eight selected isolates showed that four of them harbored one to two plasmids of molecular weight between 48.5 Kb and 194 Kb. In vitro transformation assays evidenced the presence of bla(VIM) and bla(NDM) on plasmids with the bla(VIM) harboring 80 Kb plasmid having conjugative capacity. The predicted environmental concentration of imipenem in the hospital effluent was 3.16 μg/L, suggesting that biofilm bacteria are subjected to sub-MICs of imipenem within the effluent. However, no imipenem molecule was detected in the hospital effluent, probably owing to its instability: in vitro assays indicated that imipenem's biological activity was no longer detectable after 45 h of storage. However, the predictive value of the hazard quotient relative to the development of resistance was >1.0 (HQr = 28.9 ± 1.9), which indicates a possible risk. The presence of carbapenemase-encoding genes in hospital effluent biofilm strains and their ability to transfer are therefore a potential hazard that should not be neglected and points to the need for monitoring antibiotic resistance in hospital wastewater. | 2019 | 30530220 |
| 5518 | 19 | 0.9997 | Analysis of Resistance Gene Prevalence in Whole-Genome Sequenced Enterobacteriales from Brazil. Enterobacteriales is an order of bacteria responsible for community and hospital-acquired infections related to high rates of antimicrobial resistance and increased treatment costs, morbidity, and mortality globally. The aims of this study were to analyze the frequency of the resistance genes detected and distribution over the years and sources of isolation in sequenced Enterobacteriales strains isolated in Brazil and available at the Pathogen Detection website. The presence of resistance genes was analyzed in 1,507 whole-genome sequenced strains of 19 Enterobacteriales species. A total of 58.0% of the strains presented resistance genes to at least one antimicrobial class and 684 strains presented a multidrug-resistant (MDR) profile. Resistance genes to 14 classes of antimicrobials were detected. Aminoglycosides presented the most prevalent and diverse resistance genes, while the sulfonamide resistance gene, sul2, was the most prevalent among the strains studied. The presence of resistance genes from 14 different antimicrobial classes, the high levels of MDR strains, and the detection of genes related to clinical and veterinary-used drugs reinforce the necessity of more efficient control measures. Moreover, it warns for the necessity of the rational use of antimicrobials in veterinary and clinical situations in Brazil, since contaminated food may act as a vehicle for human infections. | 2020 | 31746671 |