Hospital sewage in Brazil: a reservoir of multidrug-resistant carbapenemase-producing Enterobacteriaceae. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
190801.0000Hospital sewage in Brazil: a reservoir of multidrug-resistant carbapenemase-producing Enterobacteriaceae. The One Health concept recognizes that human health is clearly linked to the health of animals and the environment. Infections caused by bacteria resistant to carbapenem antibiotics have become a major challenge in hospitals due to limited therapeutic options and consequent increase in mortality. In this study, we investigated the presence of carbapenem-resistant Enterobacteriaceae in 84 effluent samples (42 from hospital and 42 from non-hospital) from Campo Grande, midwest Brazil. First, sewage samples were inoculated in a selective culture medium. Bacteria with reduced susceptibility to meropenem and ertapenem were then identified and their antimicrobial susceptibility was determined using the Vitek-2 system. The blaKPC genes were detected using PCR and further confirmed by sequencing. Carbapenem-resistant Enterobacteriaceae (CRE) were identified in both hospital (n=32) and non-hospital effluent (n=16), with the most common being Klebsiella pneumoniae and of the Enterobacter cloacae complex species. This is the first study to indicate the presence of the blaKPC-2 gene in carbapenem-resistant Enterobacteriaceae, classified as a critical priority by the WHO, in hospital sewage in this region. The dissemination of carbapenem antibiotic-resistant genes may be associated with clinical pathogens. Under favorable conditions and microbial loads, resistant bacteria and antimicrobial-resistance genes found in hospital sewage can disseminate into the environment, causing health problems. Therefore, sewage treatment regulations should be implemented to minimize the transfer of antimicrobial resistance from hospitals.202438985067
190910.9999Multidrug-Resistant Gram-Negative Bacteria and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from the Poultry Farm Environment. The indiscriminate use and overuse of various antibiotics have caused the rapid emergence of antibiotic-resistant bacteria (ARB) in poultry products and the surrounding environment, giving rise to global public health issues. This study aimed to determine the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (GNB) found in the environment of poultry farms and to evaluate the risk of contamination in these farms based on multiple antibiotic resistance (MAR) index values. Soil and effluent samples were collected from 13 poultry farms. The VITEK 2 system was used for bacterial identification and susceptibility testing of the isolates. The identified Gram-negative isolates were Acinetobacter spp., Aeromonas spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Providencia spp., Pseudomonas spp., and Sphingomonas paucimobilis. The results showed that Enterobacter spp., Aeromonas spp., and Providencia spp. exhibited the highest MDR rates and MAR indices; 14% of K. pneumoniae isolates (3/21 isolates) were resistant to 13 antibiotics and found to be extended-spectrum β-lactamase (ESBL)-producing bacteria. As for the tested antibiotics, 96.6% of the isolates (28/29 isolates) demonstrated resistance to ampicillin, followed by ampicillin-sulbactam (55.9% [33/59 isolates]) and cefazolin (54.8% [57/104 isolates]). The high percentage of MDR bacteria and the presence of ESBL-producing K. pneumoniae strains suggested the presence of MDR genes from the poultry farm environment, which poses an alarming threat to the effectiveness of the available antibiotic medicines to treat infectious diseases. Therefore, the use of antibiotics should be regulated and controlled, while studies addressing One Health issues are vital for combating and preventing the development and spread of ARB. IMPORTANCE The occurrence and spread of ARB due to high demand in poultry industries are of great public health concern. The widespread emergence of antibiotic resistance, particularly MDR among bacterial pathogens, poses challenges in clinical treatment. Some pathogens are now virtually untreatable with current antibiotics. However, those pathogens were rarely explored in the environment. In alignment with the concept of One Health, it is imperative to study the rate of resistance in the environment, because this domain plays an important role in the dissemination of bacteria to humans, animals, and other environmental areas. Reliable data on the prevalence of MDR bacteria are crucial to curb the spread of bacterial pathogens that can cause antimicrobial-resistant infections.202235467407
274520.9999Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. Carbapenem antibiotics constitute the mainstay therapy of nosocomial infections with extended spectrum beta-lactamase producing Gram-negative bacteria; however, resistance against these compounds is increasing. This study was designed to demonstrate that carbapenemase-producing bacteria are disseminated from hospitals into the environment. To this end, resistant bacteria were isolated from a clinical/urban and from a rural catchment system in Germany in 2016/17. The study followed the dissemination of resistant bacteria from the wastewater through the wastewater treatment plant (WWTP) into the receiving surface waters. The bacteria were cultivated on selective agar and characterized by antibiotic testing, real-time PCR targeting carbapenemase genes and typing. Bacteria with resistance to third generation cephalosporins were isolated from all sample sites. 134 isolates harboring carbapenemase genes encoding VIM, NDM and OXA-48 and 26 XDR (extensively drug-resistant) strains with susceptibility to only one or two antibiotics were isolated from the clinical/urban system. The rural system yielded eight carbapenemase producers and no XDR strains. In conclusion, clinical wastewaters were charged with a high proportion of multidrug resistant bacteria. Although most of these bacteria were eliminated during wastewater treatment, dissemination into surface waters is possible as single carbapenemase producers were still present in the effluent of the WWTP.201829659796
159330.9999Epidemiological Description and Detection of Antimicrobial Resistance in Various Aquatic Sites in Marseille, France. Antibiotic resistance is a worldwide public health concern and has been associated with reports of elevated mortality. According to the One Health concept, antibiotic resistance genes are transferrable to organisms, and organisms are shared among humans, animals, and the environment. Consequently, aquatic environments are a possible reservoir of bacteria harboring antibiotic resistance genes. In our study, we screened water and wastewater samples for antibiotic resistance genes by culturing samples on different types of agar media. Then, we performed real-time PCR to detect the presence of genes conferring resistance to beta lactams and colistin, followed by standard PCR and gene sequencing for verification. We mainly isolated Enterobacteriaceae from all samples. In water samples, 36 Gram-negative bacterial strains were isolated and identified. We found three extended-spectrum β-lactamase (ESBL)-producing bacteria-Escherichia coli and Enterobacter cloacae strains-harboring the CTX-M and TEM groups. In wastewater samples, we isolated 114 Gram-negative bacterial strains, mainly E. coli, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis strains. Forty-two bacterial strains were ESBL-producing bacteria, and they harbored at least one gene belonging to the CTX-M, SHV, and TEM groups. We also detected carbapenem-resistant genes, including NDM, KPC, and OXA-48, in four isolates of E. coli. This short epidemiological study allowed us to identify new antibiotic resistance genes present in bacterial strains isolated from water in Marseille. This type of surveillance shows the importance of tracking bacterial resistance in aquatic environments. IMPORTANCE Antibiotic-resistant bacteria are involved in serious infections in humans. The dissemination of these bacteria in water, which is in close contact with human activities, is a serious problem, especially under the concept of One Health. This study was done to survey and localize the circulation of bacterial strains, along with their antibiotic resistance genes, in the aquatic environment in Marseille, France. The importance of this study is to monitor the frequency of these circulating bacteria by creating and surveying water treatments.202336976002
190740.9999Nationwide surveillance of carbapenem-resistant Gram-negative pathogens in the Lebanese environment. Gram-negative ESKAPE pathogens with carbapenem resistance pose a significant health threat. Despite extensive research on the spread of these pathogens within Lebanese hospital settings, their emergence in environmental settings remains understudied. This study aimed to explore the environmental spread of carbapenem resistance among Gram-negative bacteria isolated from environmental samples in nine districts across Lebanon. A total of 250 samples were collected from wild animals, sewage, water, and soil between June 2022 and September 2023. Samples were streaked on MacConkey agar plates supplemented with 2 mg/L meropenem. Bacterial species were identified primarily using API20E. Antimicrobial susceptibility profiles were determined by the disk diffusion method and the Vitek 2 compact system. Meropenem-resistant Gram-negative bacteria were further characterized by whole-genome sequencing, and each of the bacterial species, sequence types, resistance genes, and plasmids was detected by sequence data analysis. We successfully isolated 130 carbapenem-resistant isolates from various samples, 67 of which belonged to the ESKAPE pathogens list and showed a multidrug-resistant (MDR) profile. The distribution of the latter was as follows: Escherichia coli (65.67%), Acinetobacter baumannii (16.42%), Pseudomonas aeruginosa (11.94%), and Klebsiella pneumoniae (5.97%). Several carbapenem resistance genes were detected, with a prevalence of blaNDM-5 in Escherichia coli and Klebsiella pneumoniae, blaIMP-1 and mexAB-OprM efflux pumps in Pseudomonas aeruginosa, and blaOXA-23 in Acinetobacter baumannii. Our findings revealed a widespread distribution of carbapenem-resistant ESKAPE bacteria in Lebanon, underscoring the significant public health risk posed by these pathogens. This highlights the urgent need to address the dissemination of antibiotic resistance in Lebanese environmental settings. IMPORTANCE: The emergence of antimicrobial resistance (AMR) extremely burdens public health and increases morbid and mortal threats in Lebanon. While the majority of the studies in our country target antimicrobial resistance in clinical settings, fewer studies focus on antimicrobial resistance dissemination in the environment. The significance of our research is that it sheds light on the environment as a less explored yet equally crucial sector in the spread of AMR. Here, we isolated carbapenemase-producing bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) that were categorized as multidrug resistant (MDR) from diverse environmental sources in multiple provinces across Lebanon. The finding of carbapenem-resistant bacteria carrying plasmids represents a potential risk due to the possible spread of resistance genes via horizontal gene transfer across the environment and hospital settings. This highly recommends the implementation of regular surveillance to monitor the spread of antimicrobial resistance among environmental bacteria, which consequently leads to its spread within communities and thus poses a great threat to human health.202540492734
225450.9999Hospitalized Pets as a Source of Carbapenem-Resistance. The massive and irrational use of antibiotics in livestock productions has fostered the occurrence and spread of resistance to "old class antimicrobials." To cope with that phenomenon, some regulations have been already enforced in the member states of the European Union. However, a role of livestock animals in the relatively recent alerts on the rapid worldwide increase of resistance to last-choice antimicrobials as carbapenems is very unlikely. Conversely, these antimicrobials are increasingly administered in veterinary hospitals whose role in spreading bacteria or mobile genetic elements has not adequately been addressed so far. A cross-sectional study was carried out on 105 hospitalized and 100 non-hospitalized pets with the aim of measuring the prevalence of carbapenem-resistant Gram-negative bacteria (GNB) colonizing dogs and cats, either hospitalized or not hospitalized and estimating the relative odds. Stool samples were inoculated on MacConkey agar plates containing 1 mg/L imipenem which were then incubated aerobically at 37°C ± 1 for 48 h. Isolated bacteria were identified first by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and were confirmed by 16S rRNA sequencing. The genetic basis of resistance was investigated using PCR methods, gene or whole genome sequencing (WGS). The prevalence of pets harboring carbapenem-resistant bacteria was 11.4 and 1.0% in hospitalized and not-hospitalized animals, respectively, with an odds ratio of 12.8 (p < 0.01). One pet carried two diverse isolates. Overall, 14 gram-negative non-fermenting bacteria, specifically, one Acinetobacter radioresistens, five Acinetobacter baumannii, six Pseudomonas aeruginosa and two Stenotrophomonas maltophilia were isolated. The Acinetobacter species carried acquired carbapenemases genes encoded by bla (NDM-1) and bla (OXA-23). In contrast, Pseudomonas phenotypic resistance was associated with the presence of mutations in the oprD gene. Notably, inherent carbapenem-resistant isolates of S. maltophilia were also resistant to the first-line recommended chemotherapeutic trimethoprim/sulfamethoxazole. This study estimates the risk of colonization by carbapenem-resistant non-fermenting GNB in pets hospitalized in veterinary tertiary care centers and highlights their potential role in spreading resistance genes among the animal and human community. Public health authorities should consider extending surveillance systems and putting the release of critical antibiotics under more strict control in order to manage the infection/colonization of pets in veterinary settings.201830574124
570060.9999Gram-negative bacterial colonization in the gut: Isolation, characterization, and identification of resistance mechanisms. BACKGROUND: The gut microbiome is made up of a diverse range of bacteria, especially gram-negative bacteria, and is crucial for human health and illness. There is a great deal of interest in the dynamic interactions between gram-negative bacteria and their host environment, especially considering antibiotic resistance. This work aims to isolate gram-negative bacteria that exist in the gut, identify their species, and use resistance-associated gene analysis to define their resistance mechanisms. METHODS: Samples were collected from all patients who had a stool culture at a tertiary care center in Lebanon. Each type of bacteria that was identified from the stool samples was subjected to critical evaluations, and all discovered strains underwent antimicrobial susceptibility testing. Polymerase chain reaction was used to profile the genes for Carbapenem-resistant Enterobacteriaceae (CRE), Extended-spectrum beta-lactamase (ESBL), and that of Pseudomonas aeruginosa strains. RESULTS: Escherichia coli, Klebsiella species, and Pseudomonas aeruginosa turned out to be the predominant microbiota members. Escherichia coli strains had a high frequency of extended-spectrum beta-lactamase genes, with the most discovered gene being bla CTX-M. Additionally, a considerable percentage of isolates had carbapenemase-resistant Enterobacteriaceae genes, suggesting the rise of multidrug-resistant strains. Multidrug resistance genes, such as bla mexR, bla mexB, and bla mexA, were found in strains of Pseudomonas aeruginosa, highlighting the possible difficulties in treating infections brought on by these bacteria. CONCLUSION: The findings highlight the critical importance of effective surveillance and response measures to maintain the effectiveness of antibiotics considering the introduction of multidrug resistance genes in Pseudomonas aeruginosa and ESBL and CRE genes in Escherichia coli.202439216133
191170.9999Distribution and molecular characterization of integron classes from Escherichia coli and Klebsiella pneumoniae isolates in Sulaymaniyah province of Iraq. The environmental pollution from the misuse of antimicrobial drugs is fueling selection pressure in bacteria, thereby exacerbating the threat to global health. In Iraq, the situation is made worse by the poor implementation of the World Health Organization's Global Antimicrobial Resistance and Use Surveillance System (WHO-GLASS). Consequently, this study aimed to increase surveillance of the spread of antimicrobial resistance in Sulaymaniyah, Iraq. A total of 296 Enterobacteriaceae comprising 147 Klebsiella pneumoniae and 149 Escherichia coli were isolated from humans, poultry, and dairy farms. The isolates were screened using multiplex PCR to assess the prevalence of the clinically important integron integrase (intI) classes and antimicrobial resistance genes (ARGs) of commonly used antibiotics. Remarkably, 81.14% of the isolates carried at least 2 ARGs, 10.47% intI1, and 3.72% intI2. No intI3 was detected. A total of 663 ARGs were identified using multiplex PCR in the two Enterobacteriaceae: beta-lactamase genes were 43%, tetracycline resistance genes 25.20%, sulfonamide resistance gene 16.10%, quinolone resistance gene 10.2%, and aminoglycoside resistance genes 5.7%. K. pneumoniae harbored more integrons and ARGs than E. coli, thus posing a higher antimicrobial resistance threat in this province. This study underscores the importance of implementing more stringent WHO-GLASS and antibiotic stewardship to end the multidrug resistance crisis in Iraq. IMPORTANCE: These data are about the prevalence of integrons and resistance genes, helping to fill a significant gap in global surveillance efforts. Results can be used by global health authorities and the World Health Organization to develop national and international antimicrobial resistance (AMR) control strategies. The study is important because integrons are key genetic platforms that capture and disseminate antibiotic resistance genes among bacteria. In addition, Escherichia coli and Klebsiella spp. are among the top causes of hospital- and community-acquired infections, especially urinary tract infections, bloodstream infections, and pneumonia. Therefore, it will be riskier when these bacteria have a high rate of integrons and resistance genes because it impedes treatments during infection. Another importance of this study is that the study was carried out in Iraq. Iraq, like many low- and middle-income countries, faces challenges with unregulated antibiotic use, leading to high rates of AMR.202540928227
191080.9999Surveillance of Multidrug-Resistant Genes in Clinically Significant Gram-Negative Bacteria Isolated from Hospital Wastewater. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) has become a serious public health threat worldwide. Among the various surveillance domains, hospital wastewater (HWW) has been overlooked, and it is the major reason for the threats posed by AMR. Therefore, the HWW domain is of paramount importance for tackling the AMR. In this regard, the present study investigated the occurrence of Gram-negative bacteria from HWW and evaluated the isolates' multi-drug-resistant (MDR) pattern in the study environment. METHODS: This descriptive study involves HWW samples (n = 24) consecutively collected across 6 months. The samples were cultured for bacteria, identified, and subjected to antimicrobial susceptibility testing via Kirby-Bauer. PCR confirmed the presence of drug-resistance genes in Gram-negative bacterial isolates. RESULTS: High rates of Enterobacterales resistant to carbapenems and cephalosporins observed in isolates from final treated effluent. The molecular screening showed tetD, tetE, tetG, catA1, catA2, bla(NDM-1), quinolones, qnrA, qnrB, qnrS, and qepa. CONCLUSIONS: Overall, our results suggest that microbiological surveillance and identification of resistance genes of clinically important pathogens in HWW can be a general screening method for early determination of under-detected antimicrobial resistance profiles in hospitals and early warning of outbreaks and difficult-to-treat infections.202540558197
191390.9999Citrobacter spp. and Enterobacter spp. as reservoirs of carbapenemase bla(NDM) and bla(KPC) resistance genes in hospital wastewater. Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of β-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 β-lactamase genes; bla(TEM) in 33.1%, bla(CTX-M) in 25.4%, bla(KPC) in 25.4%, bla(NDM) 8.8%, bla(SHV) in 5.3%, and bla(OXA-48) in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase bla(KPC) was found in six Citrobacter spp. and E. coli, while bla(NDM) was detected in two distinct Enterobacter spp. and E. coli. Notably, bla(NDM-1) was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase bla(KPC) and bla(NDM). We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE: The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as bla(KPC) and bla(NDM) within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.202439012101
2571100.9999Multidrug-resistant Enterobacter spp. in wastewater and surface water: Molecular characterization of β-lactam resistance and metal tolerance genes. Among the ESKAPE group pathogens, Enterobacter spp. is an opportunistic Gram-negative bacillus, widely dispersed in the environment, that causes infections. In the present study, samples of hospital wastewater, raw and treated urban wastewater, as well as surface receiving water, were collected to assess the occurrence of multidrug-resistant (MDR) Enterobacter spp. A molecular characterization of β-lactam antibiotic resistance and metal tolerance genes was performed. According to identification by MALDI-TOF MS, 14 isolates were obtained: 7 E. bugandensis, 5 E. kobei, and 2 E. cloacae. The isolates showed resistance mainly to β-lactam antibiotics, including those used to treat infections caused by MDR bacteria. Multiple antibiotic resistance index was calculated for all isolates. It allowed verify whether sampling points showed a high risk due to antibiotic resistant Enterobacter spp., as well as to determine if the isolates have been in environments with a frequent antibiotic use. Twelve isolates showed β-lactam antibiotic resistance gene, being the bla(KPC) widely detected. Regarding metal tolerance, 13 isolates showed at least two genes that encode metal tolerance mechanisms. Overall, metal tolerance mechanisms to silver, copper, mercury, arsenic and tellurium were found. New data on metal tolerance mechanisms dispersion and antibiotic-resistance characterization of the E. bugandensis and E. kobei species were here provided. The occurrence of MDR Enterobacter spp. in analyzed samples draws attention to an urgent need to put control measures into practice. It also evidences waterborne spread of clinically important antibiotic-resistant bacteria recognized as critical priority pathogens.202337356524
1828110.9999Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Carbapenemase-producing Enterobacterales (CPE) constitute a significant threat to healthcare systems. Continuous surveillance is important for the management and early warning of these bacteria. Sewage monitoring has been suggested as a possible resource-efficient complement to traditional clinical surveillance. It should not least be suitable for rare forms of resistance since a single sewage sample contains bacteria from a large number of individuals. Here, the value of sewage monitoring in early warning of CPE was assessed at the Sahlgrenska University Hospital in Gothenburg, Sweden, a setting with low prevalence of CPE. Twenty composite hospital sewage samples were collected during a two-year period. Carbapenemase genes in the complex samples were analyzed by quantitative PCR and the CPE loads were assessed through cultures on CPE-selective agar followed by species determination as well as phenotypic and genotypic tests targeting carbapenemases of presumed CPE. The findings were related to CPE detected in hospitalized patients. A subset of CPE isolates from sewage and patients were subjected to whole genome sequencing. For three of the investigated carbapenemase genes, bla(NDM), bla(OXA-48-like) and bla(KPC), there was concordance between gene levels and abundance of corresponding CPE in sewage. For the other two analyzed genes, bla(VIM) and bla(IMP), there was no such concordance, most likely due to the presence of those genes in non-Enterobacterales populating the sewage samples. In line with the detection of OXA-48-like- and NDM-producing CPE in sewage, these were also the most commonly detected CPE in patients. NDM-producing CPE were detected on a single occasion in sewage and isolated strains were shown to match strains detected in a patient. A marked peak in CPE producing OXA-48-like enzymes was observed in sewage during a few months. When levels started to increase there were no known cases of such CPE at the hospital but soon after a few cases were detected in samples from patients. The OXA-48-like-producing CPE from sewage and patients represented different strains, but they carried similar bla(OXA-48-like)-harbouring mobile genetic elements. In conclusion, sewage analyses show both promise and limitations as a complement to traditional clinical resistance surveillance for early warning of rare forms of resistance. Further evaluation and careful interpretation are needed to fully assess the value of such a sewage monitoring system.202134082263
2744120.9999Bacteria isolated from hospital, municipal and slaughterhouse wastewaters show characteristic, different resistance profiles. Multidrug-resistant bacteria cause difficult-to-treat infections and pose a risk for modern medicine. Sources of multidrug-resistant bacteria include hospital, municipal and slaughterhouse wastewaters. In this study, bacteria with resistance to 3rd generation cephalosporins were isolated from all three wastewater biotopes, including a maximum care hospital, municipal wastewaters collected separately from a city and small rural towns and the wastewaters of two pig and two poultry slaughterhouses. The resistance profiles of all isolates against clinically relevant antibiotics (including β-lactams like carbapenems, the quinolone ciprofloxacin, colistin, and trimethoprim/sulfamethoxazole) were determined at the same laboratory. The bacteria were classified according to their risk to human health using clinical criteria, with an emphasis on producers of carbapenemases, since carbapenems are prescribed for hospitalized patients with infections with multi-drug resistant bacteria. The results showed that bacteria that pose the highest risk, i. e., bacteria resistant to all β-lactams including carbapenems and ciprofloxacin, were mainly disseminated by hospitals and were present only in low amounts in municipal wastewater. The isolates from hospital wastewater also showed the highest rates of resistance against antibiotics used for treatment of carbapenemase producers and some isolates were susceptible to only one antibiotic substance. In accordance with these results, qPCR of resistance genes showed that 90% of the daily load of carbapenemase genes entering the municipal wastewater treatment plant was supplied by the clinically influenced wastewater, which constituted approximately 6% of the wastewater at this sampling point. Likewise, the signature of the clinical wastewater was still visible in the resistance profiles of the bacteria isolated at the entry into the wastewater treatment plant. Carbapenemase producers were not detected in slaughterhouse wastewater, but strains harboring the colistin resistance gene mcr-1 could be isolated. Resistances against orally available antibiotics like ciprofloxacin and trimethoprim/sulfamethoxazole were widespread in strains from all three wastewaters.202032763594
1594130.9998Production of extended-spectrum beta-lactamases in Escherichia coli isolated from poultry in Rio de Janeiro, Brazil. The overuse of antimicrobials in poultry has led to the development and dissemination of multidrug-resistant bacteria in the poultry industry. One of the most effective mechanisms of resistance found in Escherichia coli is the production of extended-spectrum β-lactamases (ESBL); there are several ESBLs, including the TEM, SHV, and CTX-M families. This resistance mechanism and the risks associated with transmitting these resistant microorganisms between animals, the environment, and humans can occur through direct contact and consumption of infected animals. This study aimed to determine the prevalence of E. coli in samples isolated from three broiler farms in Rio de Janeiro, Brazil, and screen the isolates for ESBL genes. The findings of this study demonstrated the presence of ESBL-producing E. coli in all farms studied. The findings of this study highlight the urgency for a program to monitor the poultry industry value chains at the regional level to control the spread of antimicrobial resistance. Therefore, we recommend that the enzyme subtypes produced by bacterial isolates should be determined to effectively characterize the distribution of genes related to antimicrobial resistance.202236533205
2572140.9998Multidrug-Resistant Bacteria Isolated from Different Aquatic Environments in the North of Spain and South of France. Due to the global progress of antimicrobial resistance, the World Health Organization (WHO) published the list of the antibiotic-resistant "priority pathogens" in order to promote research and development of new antibiotics to the families of bacteria that cause severe and often deadly infections. In the framework of the One Health approach, the surveillance of these pathogens in different environments should be implemented in order to analyze their spread and the potential risk of transmission of antibiotic resistances by food and water. Therefore, the objective of this work was to determine the presence of high and critical priority pathogens included in the aforementioned list in different aquatic environments in the POCTEFA area (North Spain-South France). In addition to these pathogens, detection of colistin-resistant Enterobacteriaceae was included due its relevance as being the antibiotic of choice to treat infections caused by multidrug resistant bacteria (MDR). From the total of 80 analyzed samples, 100% of the wastewater treatment plants (WWTPs) and collectors (from hospitals and slaughterhouses) and 96.4% of the rivers, carried antibiotic resistant bacteria (ARB) against the tested antibiotics. Fifty-five (17.7%) of the isolates were identified as target microorganisms (high and critical priority pathogens of WHO list) and 58.2% (n = 32) of them came from WWTPs and collectors. Phenotypic and genotypic characterization showed that 96.4% were MDR and resistance to penicillins/cephalosporins was the most widespread. The presence of bla genes, KPC-type carbapenemases, mcr-1 and vanB genes has been confirmed. In summary, the presence of clinically relevant MDR bacteria in the studied aquatic environments demonstrates the need to improve surveillance and treatments of wastewaters from slaughterhouses, hospitals and WWTPs, in order to minimize the dispersion of resistance through the effluents of these areas.202032947947
2747150.9998Gram-negative bacteria carrying β-lactamase encoding genes in hospital and urban wastewater in Brazil. Multidrug resistance mediated by β-lactamase in Gram-negative bacilli is a serious public health problem. Sewers are considered reservoirs of multiresistant bacteria due to presence of antibiotics that select them and favor their dissemination. The present study evaluated the antibiotic resistance profile and β-lactamases production in Gram-negative bacilli isolates from hospital sewage and urban wastewater treatment plants (UWWTP) in Brazil. Bacteria were isolated and identified with biochemical tests. Antibiotic susceptibility testing was performed by the disk-diffusion method and detection of extended-spectrum β-lactamase and carbapenemases by enzymatic inhibitor and conventional PCR. Differences in resistance to amoxicillin clavulanic, aztreonam, cefepime, and cefotaxime were observed in hospital sewage compared with urban sewage (p < 0.05). The multidrug-resistant phenotype was observed in 33.3% of hospital sewage isolates (p = 0.0025). β-lactamases genes were found in 35.6% of isolates, with the most frequent being bla(KPC) and bla(TEM) (17.8%), and bla(SHV) and bla(CTX-M) (13.3% and 8.9%, respectively). The data obtained are relevant, since the bacteria detected are on the priority pathogens list from the World Health Organization and hospital sewage could be released untreated into the municipal collection system, which may favor the spread of resistance. Changes in hospital sewage discharge practices, as well as additional technologies regarding effluent disinfection in the UWWTP, can prevent the spread of these bacteria into the environment and negative impact on water resources.202032417981
1960160.9998Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, bla(PER), ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge.202438787042
3313170.9998The Prevalence and Characterization of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Bacteria from Hospital Sewage, Treated Effluents and Receiving Rivers. Hospital sewage plays a key role in the dissemination of antibiotic-resistant genes (ARGs) by serving as an environmental antimicrobial resistance reservoir. In this study, we aimed to characterize the cephalosporin- and carbapenem-resistant isolates from hospital sewage and receiving rivers. The results showed that ESBL (bla(CTX-M)) and carbapenemase genes (bla(NDM) and bla(KPC)) were widely detected in a number of different bacterial species. These resistance genes were mainly harbored in Enterobacteriaceae, followed by Acinetobacter and Aeromonas isolates. More attention should be given to these bacteria as important vectors of ARGs in the environment. Furthermore, we showed that the multidrug resistance phenotype was highly prevalent, which was found in 85.5% Enterobacteriaceae and 75% Acinetobacter strains. Notably, the presence of carbapenemase genes in isolates from treated effluents and receiving rivers indicates that the discharges of wastewater treatment plants could be an important source for high-risk resistance genes propagation to the environment. In conclusion, this study shows a high prevalence of ESBL- and carbapenemase-producing bacteria in hospital sewage and receiving rivers in China. These findings have serious implications for human health, and also suggest the need for more efforts to control the dissemination of resistant bacteria from hospital sewage into the environment.202032069792
1939180.9998Detection of microbial aerosols in hospital wards and molecular identification and dissemination of drug resistance of Escherichia coli. Antibiotic-resistant bacteria (ARB) present a global public health problem. Microorganisms are the main cause of hospital-acquired infections, and the biological contamination of hospital environments can cause the outbreak of a series of infectious diseases. Therefore, it is very important to understand the spread of antibiotic-resistant bacteria in hospital environments. This study examines the concentrations of aerobic bacteria and E. coli in ward environments and the airborne transmission of bacterial drug resistance. The results show that the three wards examined have an average aerobic bacterial concentration of 132 CFU∙m(-3) and an average inhalable aerobic bacterial concentration of 73 CFU∙m(-3), with no significant difference (P > 0.05) among the three wards. All isolated E. coli showed multi-drug resistance to not only third-generation cephalosporin antibiotics, but also quinolones, aminoglycosides, and sulfonamides. Furthermore, 51 airborne E. coli strains isolated from the air in the three wards and the corridor were screened for ESBLs, and 12 (23.53%) were ESBL-positive. The drug-resistance gene of the 12 ESBL-positive strains was mainly TEM gene, and the detection rate was 66.67% (8/12). According to a homology analysis with PFGE, 100% homologous E. coli from the ward at 5 m and 10 m outside the ward in the corridor shared the same drug-resistance spectrum, which further proves that airborne E. coli carrying a drug-resistance gene spreads out of the ward through gas exchange. This leads to biological pollution inside, outside, and around the ward, which poses a direct threat to the health of patients, healthcare workers, and surrounding residents. It is also the main reason for the antibiotic resistance in the hospital environment. More attention should be paid to comprehensive hygiene management in the surrounding environment of hospitals.202032070803
2741190.9998ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. The wastewater of livestock slaughterhouses is considered a source of antimicrobial-resistant bacteria with clinical relevance and may thus be important for their dissemination into the environment. To get an overview of their occurrence and characteristics, we investigated process water (n = 50) from delivery and unclean areas as well as wastewater (n = 32) from the in-house wastewater treatment plants (WWTPs) of two German poultry slaughterhouses (slaughterhouses S1 and S2). The samples were screened for ESKAPE bacteria (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Escherichia coli Their antimicrobial resistance phenotypes and the presence of extended-spectrum-β-lactamase (ESBL), carbapenemase, and mobilizable colistin resistance genes were determined. Selected ESKAPE bacteria were epidemiologically classified using different molecular typing techniques. At least one of the target species was detected in 87.5% (n = 28/32) of the wastewater samples and 86.0% (n = 43/50) of the process water samples. The vast majority of the recovered isolates (94.9%, n = 448/472) was represented by E. coli (39.4%), the A. calcoaceticus-A. baumannii (ACB) complex (32.4%), S. aureus (12.3%), and K. pneumoniae (10.8%), which were widely distributed in the delivery and unclean areas of the individual slaughterhouses, including their wastewater effluents. Enterobacter spp., Enterococcus spp., and P. aeruginosa were less abundant and made up 5.1% of the isolates. Phenotypic and genotypic analyses revealed that the recovered isolates exhibited diverse resistance phenotypes and β-lactamase genes. In conclusion, wastewater effluents from the investigated poultry slaughterhouses exhibited clinically relevant bacteria (E. coli, methicillin-resistant S. aureus, K. pneumoniae, and species of the ACB and Enterobacter cloacae complexes) that contribute to the dissemination of clinically relevant resistances (i.e., bla(CTX-M) or bla(SHV) and mcr-1) in the environment.IMPORTANCE Bacteria from livestock may be opportunistic pathogens and carriers of clinically relevant resistance genes, as many antimicrobials are used in both veterinary and human medicine. They may be released into the environment from wastewater treatment plants (WWTPs), which are influenced by wastewater from slaughterhouses, thereby endangering public health. Moreover, process water that accumulates during the slaughtering of poultry is an important reservoir for livestock-associated multidrug-resistant bacteria and may serve as a vector of transmission to occupationally exposed slaughterhouse employees. Mitigation solutions aimed at the reduction of the bacterial discharge into the production water circuit as well as interventions against their further transmission and dissemination need to be elaborated. Furthermore, the efficacy of in-house WWTPs needs to be questioned. Reliable data on the occurrence and diversity of clinically relevant bacteria within the slaughtering production chain and in the WWTP effluents in Germany will help to assess their impact on public and environmental health.202032033950