# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1906 | 0 | 1.0000 | Spread of Antimicrobial Resistance by Salmonella enterica Serovar Choleraesuis between Close Domestic and Wild Environments. The Salmonellaenterica serovar Choleraesuis affects domestic pig and wild boar (WB), causing clinical salmonellosis. Iberian swine production is based on a free-range production system where WB and Iberian pig (IP) share ecosystems. This study focuses on the negative impact on the pork industry of infections due to this serotype, its role in the spread of antibiotic resistance, and its zoonotic potential. Antibiotic resistance (AR) and genetic relationships were analyzed among 20 strains of S. Choleraesuis isolated from diseased WB and IP sampled in the southwest region of the Iberian Peninsula. AR was studied using the Kirby-Bauer method with the exception of colistin resistance, which was measured using the broth microdilution reference method. Resistance and Class 1 integrase genes were measured using PCR, and the genetic relationship between isolates and plasmid content by pulsed field gel electrophoresis. The results show a higher incidence of AR in isolates from IP. Phylogenetic analysis revealed seven profiles with two groups containing isolates from IP and WB, which indicates circulation of the same clone between species. Most pulsotypes presented with one plasmid of the same size, indicating vertical transmission. AR determinants bla(TEM) and tetA were routinely found in IP and WB, respectively. One isolate from IP expressed colistin resistance and presented the mcr-1 gene carried by a plasmid. This study suggests that S. Choleraesuis circulates between WB and IP living in proximity, and also that the mobilization of AR genes by plasmids is low. Furthermore, the detection of plasmid-mediated colistin resistance in bacteria from IP is alarming and should be monitored. | 2020 | 33137987 |
| 2041 | 1 | 0.9995 | Carrier flies of multidrug-resistant Escherichia coli as potential dissemination agent in dairy farm environment. The life cycle of synanthropic flies and their behavior, allows them to serve as mechanical vectors of several pathogens. Given that flies can carry multidrug-resistant (MDR) bacteria, this study aimed to investigate the spread of genes of antimicrobial resistance in Escherichia coli isolated from flies collected in two dairy farms in Brazil. Besides antimicrobial resistance determinants, the presence of virulence genes related to bovine colibacillosis was also assessed. Of 94 flies collected, Musca domestica was the most frequently found in the two farms. We isolated 198 E. coli strains (farm A=135 and farm B=63), and >30% were MDR E. coli. We found an association between bla(TEM) and phenotypical resistance to ampicillin, or chloramphenicol, or tetracycline; and bla(CTX-M) and resistance to cefoperazone. A high frequency (86%) of phylogenetic group B1 among MDR strains and the lack of association between multidrug resistance and virulence factors suggest that antimicrobial resistance possibly is associated with the commensal bacteria. Clonal relatedness of MDR E. coli performed by Pulsed-Field Gel Electrophoresis showed wide genomic diversity. Different flies can carry clones, but with distinct antimicrobial resistance pattern. Sanger sequencing showed that the same class 1 integron arrangement is displayed by apparently unrelated strains, carried by different flies. Our conjugation results indicate class 1 integron transfer associated with tetracycline resistance. We report for the first time, in Brazil, that MDR E. coli is carried by flies in the milking environment. Therefore, flies can act as carriers for MDR strains and contribute to dissemination routes of antimicrobial resistance. | 2018 | 29758886 |
| 5555 | 2 | 0.9995 | New sequence types and multidrug resistance among pathogenic Escherichia coli isolates from coastal marine sediments. The spread of antibiotic-resistant microorganisms is widely recognized, but data about their sources, presence, and significance in marine environments are still limited. We examined 109 Escherichia coli strains from coastal marine sediments carrying virulence genes for antibiotic susceptibility, specific resistance genes, prevalence of class 1 and 2 integrons, and sequence type. Antibiotic resistance was found in 35% of strains, and multiple resistances were found in 14%; the resistances detected most frequently were against tetracycline (28%), ampicillin (16.5%), trimethoprim-sulfamethoxazole (13%), and streptomycin (7%). The highest prevalence of resistant strains was in phylogenetic group A, whereas phylogroup B2 exhibited a significantly lower frequency than all the other groups. Sixty percent of multiresistant strains harbored class 1 or 2 integrase genes, and about 50% carried resistance genes (particularly dfrA and aadA) linked to a class 1 integron. Multilocus sequence typing of 14 selected strains identified eight different types characteristic of extraintestinal pathogens and three new allelic combinations. Our data suggest that coastal marine sediment may be a suitable environment for the survival of pathogenic and antimicrobial-resistant E. coli strains capable of contributing to resistance spread via integrons among benthic bacteria, and they highlight a role for these strains in the emergence of new virulent genotypes. | 2012 | 22447595 |
| 1944 | 3 | 0.9994 | Genetic characterization of coliform bacterial isolates from environmental water in Thailand. INTRODUCTION: In contrast to the study in other part of the world, information about characteristics of plasmids carrying antimicrobial resistance genes (ARGs) in Enterobacteriaceae derived from environmental water in tropical Asian countries including Thailand is limited. This study, therefore, aimed to gain insight into genetic information of antimicrobial resistance in environmental water in Thailand. METHODS: Coliform bacteria were isolated from environmental water collected at 20 locations in Thailand and identified. Then, susceptibility profiles to ampicillin, cefazoline, cefotaxime, kanamycin, ciprofloxacin, sulfamethoxazole, tetracycline, and nalidixic acid were assessed. In addition, antimicrobial resistant genes integrons, and replicon types were analyzed. And furthermore, plasmids carrying bla(TEM) and tetM were identified by S1-PFGE analysis and confirmed transmissibility by transconjugation experiments. RESULTS: In 130 coliform bacteria isolated, 89 were resistant to cefazoline while 41 isolates were susceptible. Cefazoline-resistant coliform bacteria were found to be significantly resistant to cefotaxime and tetracycline as compared to susceptible isolates. Hence, bla(TEM) and tetM correlating with β-lactam antibiotics and tetracycline, respectively, were analyzed found to co-localize on the IncFrepB plasmids in isolates from pig farms' wastewater by S1-PFGE analysis. And furthermore, transmissibility of the plasmids was confirmed. CONCLUSIONS: Results obtained in this study suggested that ARGs in coliform bacteria may have been spreading on the farm via IncFrepB plasmids. Hence, appropriate use of antimicrobials and good hygiene management on the farm are required to prevent the emergence and spread of resistant bacteria. | 2021 | 33468426 |
| 2897 | 4 | 0.9994 | The Role of Flies in Disseminating Plasmids with Antimicrobial-Resistance Genes Between Farms. Dissemination of antimicrobial resistance is a major global public health concern. To clarify the role of flies in disseminating antimicrobial resistance between farms, we isolated and characterized tetracycline-resistant Escherichia coli strains isolated from flies and feces of livestock from four locations housing swine (abattoir, three farms) and three cattle farms. The percentages of isolates from flies resistant to tetracycline, dihydrostreptomycin, ampicillin, and chloramphenicol (80.8%, 61.5%, 53.8%, and 50.0%, respectively) and those from animal feces (80.5%, 78.0%, 41.5%, and 46.3%, respectively) in locations housing swine were significantly higher than those from cattle farms (p<0.05). The rates of resistance in E. coli derived from flies reflected those derived from livestock feces at the same locations, suggesting that antimicrobial resistance spreads between livestock and flies on the farms. The results of pulsed-field gel electrophoresis (PFGE) analysis showed that, with a few exceptions, all E. coli isolates differed. Two pairs of tetracycline-resistant strains harbored similar plasmids with the same tetracycline-resistance genes, although the origin (fly or feces), site of isolation, and PFGE patterns of these strains differed. Therefore, flies may disseminate the plasmids between farms. Our results suggest that flies may be involved not only in spreading clones of antimicrobial-resistant bacteria within a farm but also in the widespread dissemination of plasmids with antimicrobial resistance genes between farms. | 2015 | 26061440 |
| 2893 | 5 | 0.9994 | Antibiotic-resistant bacteria associated with retail aquaculture products from Guangzhou, China. This study examined the prevalence of antibiotic-resistant (ART) bacteria and representative antibiotic resistance (AR)-encoding genes associated with several aquaculture products from retail markets in Guangzhou, China. ART commensal bacteria were found in 100% of the products examined. Among 505 multidrug-resistant isolates examined, close to one-fourth contained intI and sul1 genes: 15% contained sul2 and 5% contained tet (E). Incidences of β-lactamase-encoding genes bla(TEM), bla(CMY) and erythromycin resistance determinants ermB and ermC were 4.5, 1.7, 1.3, and 0.3%, respectively. Most of the ART isolates identified from the rinse water were Aeromonas spp.; those from intestines belonged to the Enterobacteriaceae. Plasmid-associated intI and AR-encoding genes were identified in several ART isolates by Southern hybridization. Three multidrug resistance-encoding plasmids were transferred into Escherichia coli DH5 a by chemical transformation and led to acquired AR in the transformants. In addition, the AR traits in many isolates were quite stable, even in the absence of selective pressure. Further studies are needed to reveal risk factors associated with the aquaculture production chain for targeted AR mitigation. | 2013 | 23433377 |
| 5635 | 6 | 0.9994 | Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin. A yearlong study was performed to examine the effect of antibiotic administration on the bacterial gut flora. Gram-negative facultative anaerobic bacteria were recovered from the feces of healthy adult volunteers administered amoxicillin, minocycline or placebo, and changes determined in antimicrobial resistance (AMR) gene carriage. Seventy percent of the 1039 facultative anaerobic isolates recovered were identified by MALDI-TOF as Escherichia coli. A microarray used to determine virulence and resistance gene carriage demonstrated that AMR genes were widespread in all administration groups, with the most common resistance genes being bla TEM, dfr, strB, tet(A), and tet(B). Following amoxicillin administration, an increase in the proportion of amoxicillin resistant E. coli and a three-fold increase in the levels of bla TEM gene carriage was observed, an effect not observed in the other two treatment groups. Detection of virulence genes, including stx1A, indicated not all E. coli were innocuous commensals. Approximately 150 E. coli collected from 6 participants were selected for pulse field gel electrophoresis (PFGE), and a subset used for characterisation of plasmids and Phenotypic Microarrays (PM). PFGE indicated some E. coli clones had persisted in volunteers for up to 1 year, while others were transient. Although there were no unique characteristics associated with plasmids from persistent or transient isolates, PM assays showed transient isolates had greater adaptability to a range of antiseptic biocides and tetracycline; characteristics which were lost in some, but not all persistent isolates. This study indicates healthy individuals carry bacteria harboring resistance to a variety of antibiotics and biocides in their intestinal tract. Antibiotic administration can have a temporary effect of selecting bacteria, showing co-resistance to multiple antibiotics, some of which can persist within the gut for up to 1 year. | 2014 | 25566232 |
| 1600 | 7 | 0.9994 | Simultaneous Carriage of mcr-1 and Other Antimicrobial Resistance Determinants in Escherichia coli From Poultry. The use of antimicrobial growth promoters (AGPs) in sub-therapeutic doses for long periods promotes the selection of resistant microorganisms and the subsequent risk of spreading this resistance to the human population and the environment. Global concern about antimicrobial resistance development and transference of resistance genes from animal to human has been rising. The goal of our research was to evaluate the susceptibility pattern to different classes of antimicrobials of colistin-resistant Escherichia coli from poultry production systems that use AGPs, and characterize the resistance determinants associated to transferable platforms. E. coli strains (n = 41) were obtained from fecal samples collected from typical Argentine commercial broiler farms and susceptibility for 23 antimicrobials, relevant for human or veterinary medicine, was determined. Isolates were tested by PCR for the presence of mcr-1, extended spectrum β-lactamase encoding genes and plasmid-mediated quinolone resistance (PMQR) coding genes. Conjugation and susceptibility patterns of the transconjugant studies were performed. ERIC-PCR and REP-PCR analysis showed a high diversity of the isolates. Resistance to several antimicrobials was determined and all colistin-resistant isolates harbored the mcr-1 gene. CTX-M-2 cefotaximase was the main mechanism responsible for third generation cephalosporins resistance, and PMQR determinants were also identified. In addition, co-transference of the qnrB determinant on the mcr-1-positive transconjugants was corroborated, which suggests that these resistance genes are likely to be located in the same plasmid. In this work a wide range of antimicrobial resistance mechanisms were identified in E. coli strains isolated from the environment of healthy chickens highlighting the risk of antimicrobial abuse/misuse in animals under intensive production systems and its consequences for public health. | 2018 | 30090095 |
| 2881 | 8 | 0.9994 | Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile Aeromonas species isolates from Nile tilapia and domestic fowl. The nucleotide sequence analysis of the gyrB gene indicated that the fish Aeromonas spp. isolates could be identified as Aeromonas hydrophila and Aeromonas veronii biovar sobria, whereas chicken Aeromonas spp. isolates identified as Aeromonas caviae. PCR data revealed the presence of Lip, Ser, Aer, ACT and CAI genes in fish Aer. hydrophila isolates, ACT, CAI and Aer genes in fish Aer. veronii bv sobria isolates and Ser and CAI genes in chicken Aer. caviae isolates. All chicken isolates showed variable resistance against all 12 tested antibiotic discs except for cefotaxime, nitrofurantoin, chloramphenicol and ciprofloxacin, only one isolate showed resistance to chloramphenicol and ciprofloxacin. Fish Aeromonads were sensitive to all tested antibiotic discs except amoxicillin, ampicillin-sulbactam and streptomycin. SIGNIFICANCE AND IMPACT OF THE STUDY: Many integrated fish farms depend on the application of poultry droppings/litter which served as a direct feed for the fish and also acted as pond fertilizers. The application of untreated poultry manure exerts an additional pressure on the microbial world of the fish's environment. Aeromonas species are one of the common bacteria that infect both fish and chicken. The aim of this study was to compare the phenotypic traits and genetic relatedness of aeromonads isolated from two diverse hosts (terrestrial and aquatic), and to investigate if untreated manure possibly enhances Aeromonas dissemination among cohabitant fish with special reference to virulence genes and antibiotic resistant traits. | 2015 | 26280543 |
| 1780 | 9 | 0.9994 | A comparison of antibiotic resistance integrons in cattle from separate beef meat production systems at slaughter. AIMS: To compare antibiotic resistance integrons in cattle from three separate grass-fed, grain-fed and certified organic cattle production systems at slaughter. METHODS AND RESULTS: In this study 198 samples from three separate cattle production systems were tested by PCR for the presence of class 1 and class 2 integrons. Integron-containing bacteria were readily isolated from pen faeces and hide samples regardless of production system. Lower numbers of integron-containing bacteria were isolated from the remaining sample types. Ninety-one class 1 and 34 class 2 integron-containing bacteria were isolated. Characterization of the integrons demonstrated a high degree of similarity across the three production systems with aadA1 and aadA2 routinely present. Integrons harbouring the cassette array cmlA5-bla(OXA-10)-aadA1 and the putative insertion sequence IS1066 were isolated from organic and grass-fed cattle and have not been described previously. CONCLUSIONS: Integrons carrying antibiotic resistance genes were common in cattle from differing production systems at slaughter and the likelihood of presence appears unrelated to the production system. SIGNIFICANCE AND IMPACT OF THE STUDY: Similar integron arrays are present in different cattle production systems suggesting that their presence may be independent of production practices. This is the first report of two novel integron structures present in Aeromonas. | 2008 | 17927756 |
| 5554 | 10 | 0.9994 | High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. BACKGROUND: Antimicrobials are used to directly control bacterial infections in pet (ornamental) fish and are routinely added to the water these fish are shipped in to suppress the growth of potential pathogens during transport. METHODOLOGY/PRINCIPAL FINDINGS: To assess the potential effects of this sustained selection pressure, 127 Aeromonas spp. isolated from warm and cold water ornamental fish species were screened for tolerance to 34 antimicrobials. Representative isolates were also examined for the presence of 54 resistance genes by a combination of miniaturized microarray and conventional PCR. Forty-seven of 94 Aeromonas spp. isolates recovered from tropical ornamental fish and their carriage water were tolerant to > or =15 antibiotics, representing seven or more different classes of antimicrobial. The quinolone and fluoroquinolone resistance gene, qnrS2, was detected at high frequency (37% tested recent isolates were positive by PCR). Class 1 integrons, IncA/C broad host range plasmids and a range of other antibiotic resistance genes, including floR, bla(TEM-1), tet(A), tet(D), tet(E), qacE2, sul1, and a number of different dihydrofolate reductase and aminoglycoside transferase coding genes were also detected in carriage water samples and bacterial isolates. CONCLUSIONS: These data suggest that ornamental fish and their carriage water act as a reservoir for both multi-resistant bacteria and resistance genes. | 2009 | 20027306 |
| 2892 | 11 | 0.9994 | Characterization and transferability of class 1 integrons in commensal bacteria isolated from farm and nonfarm environments. This study assessed the distribution of class 1 integrons in commensal bacteria isolated from agricultural and nonfarm environments, and the transferability of class 1 integrons to pathogenic bacteria. A total of 26 class 1 integron-positive isolates were detected in fecal samples from cattle operations and a city park, water samples from a beef ranch and city lakes, and soil, feed (unused), manure, and compost samples from a dairy farm. Antimicrobial susceptibility testing of class 1 integron-positive Enterobacteriaceae isolates from city locations displayed multi-resistance to 12-13 out of the 22 antibiotics tested, whereas class 1 integron-positive Enterobacteriaceae isolates from cattle operations only displayed tetracycline resistance. Most class 1 integrons had one gene cassette belonging to the aadA family that confers resistance to streptomycin and spectinomycin. One isolate from a dog fecal sample collected from a city dog park transferred its class 1 integron to a strain of Escherichia coli O157:H7 at a frequency of 10(-7) transconjugants/donor by in vitro filter mating experiments under the stated laboratory conditions. Due to the numerous factors that may affect the transferability testing, further investigation using different methodologies may be helpful to reveal the transferability of the integrons from other isolates. The presence of class 1 integrons among diverse commensal bacteria from agricultural and nonfarm environments strengthens the possible role of environmental commensals in serving as reservoirs of antibiotic resistance genes. | 2010 | 20704511 |
| 3557 | 12 | 0.9994 | Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water. Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacEΔ1 gene at the 3' conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans. | 2016 | 26991286 |
| 2930 | 13 | 0.9994 | Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. The use of a wide variety of antimicrobials in human and veterinary medicine, including aquaculture, has led to the emergence of antibiotic resistant pathogens. In the present study, bacteria from water, sediments, and fish were collected from fish farms in Pakistan and Tanzania with no recorded history of antibiotic use. The isolates were screened for the presence of resistance genes against various antimicrobials used in aquaculture and animal husbandry. Resistant isolates selected by disk diffusion and genotyped by Southern hybridization were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The prominent resistance genes identified encoded tetracycline [tetA(A) and tetA(G)], trimethoprim [dfrA1, dfrA5, dfrA7, dfrA12, and dfrA15], amoxicillin [bla(TEM)], streptomycin [strA-strB], chloramphenicol [cat-1], and erythromycin resistance [mefA]. The int1 gene was found in more than 30% of the bacterial isolates in association with gene cassettes. MAR indices ranged from 0.2 to 1. The bla(NDM-1) gene was not identified in ertapenem resistant isolates. It is hypothesized that integrated fish farming practices utilizing domestic farm and poultry waste along with antibiotic residues from animal husbandry may have contributed to a pool of resistance genes in the aquaculture systems studied. | 2012 | 22823142 |
| 6001 | 14 | 0.9994 | Assessment of horizontal gene transfer in Lactic acid bacteria--a comparison of mating techniques with a view to optimising conjugation conditions. Plate, filter and broth mating techniques were assessed over a range of pHs using three Lactococcus lactis donor strains (one with an erythromycin resistance marker and two with tetracycline resistance markers, all located on transferable genetic elements) and one L. lactis recipient strain. Transconjugants were confirmed using antibiotic selection, E-tests to determine MICs, PCR assays to detect the corresponding marker genes, DNA fingerprinting by pulsed-field gel electrophoresis (PFGE), and Southern blotting. Horizontal gene transfer (HGT) rates varied (ranging from 1.6 x 10(-1) to 2.3 x 10(-8)). The general trend observed was plate > filter > broth, independent of pH. Our data suggests that standardisation of methodologies to be used to assess HGT, is warranted and would provide a meaningful assessment of the ability of commensal and other bacteria in different environments to transfer relevant markers. | 2009 | 19135099 |
| 2804 | 15 | 0.9994 | Multiple antimicrobial resistance of gram-negative bacteria from natural oligotrophic lakes under distinct anthropogenic influence in a tropical region. The aim of this study was to evaluate the resistance to ten antimicrobial agents and the presence of bla ( TEM1 ) gene of Gram-negative bacteria isolated from three natural oligotrophic lakes with varying degrees of anthropogenic influence. A total of 272 indigenous bacteria were recovered on eosin methylene blue medium; they were characterized for antimicrobial resistance and identified taxonomically by homology search and phylogenetic comparisons. Based on 16S ribosomal RNA sequences analysis, 97% of the isolates were found to be Gram-negative bacteria; they belonged to 11 different genera. Members of the genera Acinetobacter, Enterobacter, and Pseudomonas predominated. Most of the bacteria were resistant to at least one antimicrobial. The incidence of resistance to beta-lactams, chloramphenicol, and mercury was high, whereas resistance to tetracycline, aminoglycosides, and nalidixic acid was low. There was a great frequency of multiple resistances among the isolates from the three lakes, although no significant differences were found among the disturbed and reference lakes. The ampicillin resistance mechanism of 71% of the isolates was due to the gene bla ( TEM1 ). Our study suggests that multiresistant Gram-negative bacteria and the bla ( TEM1 ) gene are common in freshwater oligotrophic lakes, which are subject to different levels of anthropogenic inputs. | 2009 | 19504148 |
| 1935 | 16 | 0.9994 | Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related. | 2021 | 34356729 |
| 5927 | 17 | 0.9994 | The prevalence of, associations between and conjugal transfer of antibiotic resistance genes in Escherichia coli isolated from Norwegian meat and meat products. OBJECTIVES: To investigate the distribution of, associations between and the transferability of antimicrobial resistance genes in resistant Escherichia coli strains isolated from Norwegian meat and meat products. METHODS: The 241 strains investigated were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET) during the years 2000-2003. PCR was carried out for detection of resistance genes. Conjugation experiments were carried out with the resistant isolates from meat as donor strains and E. coli DH5alpha as the recipient strain. Statistical analyses were performed with the SAS-PC-System version 9.1 for Windows. RESULTS: Resistance genes common in pathogenic E. coli were frequently found among the isolates investigated. Strains harbouring several genes encoding resistance to the same antimicrobial agent were significantly (P < 0.0001) more frequently multiresistant than others. Strong positive associations were found between the tet(A) determinant and the genetic elements sul1, dfrA1 and aadA1. Negative associations were found between resistance genes encoding resistance to the same antimicrobial agent: tet(A)/tet(B), sul1/sul2 and strA-strB/aadA1. The resistance genes were successfully transferred from 38% of the isolates. The transfer was more frequent from resistant isolates harbouring class 1 integrons (P < 0.001). CONCLUSIONS: Acquired resistance played a major role in conferring resistance among the isolates investigated. The possibility of transferring resistance increases both by increased multiresistance and by the presence of class 1 integrons. The conjugation experiments suggest that tet(A) and class 1 integrons are often located on the same conjugative plasmid. | 2006 | 16931539 |
| 5926 | 18 | 0.9994 | Prevalence and Characterization of Gentamicin Resistance Genes in Escherichia coli Isolates from Beef Cattle Feces in Japan. Gentamicin is an important antibiotic for the treatment of opportunistic infections in the clinical field. Gentamicin-resistant bacteria have been detected in livestock animals and can be transmitted to humans through the food supply or direct contact. We have previously revealed that gentamicin-resistant Escherichia coli are distributed at a comparatively high rate from beef cattle in Japan, but few studies have focused on the molecular epidemiology of gentamicin-resistant bacteria. To understand these bacteria, this study examined the prevalence of various gentamicin resistance genes in gentamicin-resistant E. coli isolates from beef cattle feces. Of the 239 gentamicin-resistant E. coli isolates, the presence of the aacC2, aadB, or aac(3)-VIa genes was confirmed in 147, 84, and 8 isolates, respectively. All aac(3)-VIa-harboring isolates had an MIC value of 64 μg/mL for gentamicin and exhibited resistance to 11 antibiotic agents. An analysis of the representative aac(3)-VIa-harboring E. coli strain GC1-3-GR-4 revealed that the aac(3)-VIa gene was present on the IncA/C plasmid together with the aadA and bla(CMY) genes. Furthermore, the upstream region of the aac(3)-VIa gene contained the aadA gene and the class 1 integron-integrase gene (intI1). The aac(3)-VIa gene was detected for the first time in Japan and is expected to be able to transfer between bacteria via the IncA/C plasmid and integron. These results reveal the expansion of the distribution or diversity of gentamicin resistance genes in Japan. | 2022 | 35704076 |
| 3560 | 19 | 0.9994 | Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. In a previous study, we detected unexpectedly high levels of acquired antibiotic resistance in commensal Escherichia coli isolates from a remote Guaraní Indian (Bolivia) community with very low levels of antibiotic exposure and limited exchanges with the exterior. Here we analyzed the structure of the resistant E. coli population from that community and the resistance mechanisms. The E. coli population (113 isolates from 72 inhabitants) showed a high degree of genetic heterogeneity, as evidenced by phylogenetic grouping (77% group A, 10% group B1, 8% group D, 5% group B2) and genotyping by randomly amplified polymorphic DNA (RAPD) analysis (44 different RAPD types). The acquired resistance genes were always of the same types as those found in antibiotic-exposed settings [blaTEM, blaPSE-1, catI, cmlA6, tet(A), tet(B), dfrA1, dfrA7, dfrA8, dfrA17, sul1, sul2, aphA1, aadA1, aadA2, aadA5, aadB, and sat-1]. Class 1 and class 2 integrons were found in 12% and 4% of the isolates, respectively, and harbored arrays of gene cassettes similar to those already described. The cotransferability of multiple-resistance traits was observed from selected isolates and was found to be associated with resistance conjugative plasmids of the F, P, and N types. Overall, these data suggest that the resistance observed in this remote community is likely the consequence of the dissemination of resistant bacteria and resistance genes from antibiotic-exposed settings (rather than of an independent in situ selection) which involved both the clonal expansion of resistant strains and the horizontal transfer/recombination of mobile genetic elements harboring resistance genes. | 2007 | 17220407 |