Extended-spectrum beta-lactamase-producing Escherichia coli in common vampire bats Desmodus rotundus and livestock in Peru. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
186101.0000Extended-spectrum beta-lactamase-producing Escherichia coli in common vampire bats Desmodus rotundus and livestock in Peru. Antibiotic resistance mediated by bacterial production of extended-spectrum beta-lactamase (ESBL) is a global threat to public health. ESBL resistance is most commonly hospital-acquired; however, infections acquired outside of hospital settings have raised concerns over the role of livestock and wildlife in the zoonotic spread of ESBL-producing bacteria. Only limited data are available on the circulation of ESBL-producing bacteria in animals. Here, we report ESBL-producing Escherichia coli in wild common vampire bats Desmodus rotundus and livestock near Lima, Peru. Molecular analyses revealed that most of this resistance resulted from the expression of bla(CTX-M-15) genes carried by plasmids, which are disseminating worldwide in hospital settings and have also been observed in healthy children of Peru. Multilocus sequence typing showed a diverse pool of E. coli strains carrying this resistance that were not always host species-specific, suggesting sharing of strains between species or infection from a common source. This study shows widespread ESBL resistance in wild and domestic animals, supporting animal communities as a potential source of resistance. Future work is needed to elucidate the role of bats in the dissemination of antibiotic-resistant strains of public health importance and to understand the origin of the observed resistance.201829575785
184010.9998Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. Animals have been identified as potential reservoirs and vectors of resistance genes, with studies showing that Gram-negative bacteria can acquire resistance through the horizontal transmission of resistance genes on plasmids. It is important to understand the distribution of antimicrobial-resistant bacteria and their drug-resistant genes in animals. Previous review articles mostly focused on a single bacterium or a single animal. Our objective is to compile all ESBL-producing bacteria isolated from various animals in recent years and provide a comprehensive viewpoint. Using a thorough PubMed literature search spanning from 1 January 2020 to 30 June 2022, studies exploring extended-spectrum beta-lactamase (ESBL) producing bacteria in animals were included. ESBL-producing bacteria are present in animals from various countries around the world. The most common sources of these bacteria were farm animals, and the most frequently isolated bacteria were Escherichia coli and Klebsiella pneumoniae. The most detected ESBL genes were bla(TEM), bla(SHV), and bla(CTX-M). The presence of ESBL-producing bacteria in animals highlights the importance of the One Health approach to address the issue of antibiotic resistance. Further research is needed to better understand the epidemiology and mechanisms of the spread of ESBL-producing bacteria in animal populations and their potential impact on human and animal health.202337107023
159620.9998Distribution of bla(CTX-M-)gene variants in E. coli from different origins in Ecuador. The increasing abundance of extended spectrum (β-lactamase (ESBL) genes in E. coli, and other commensal and pathogenic bacteria, endangers the utility of third or more recent generation cephalosporins, which are major tools for fighting deadly infections. The role of domestic animals in the transmission of ESBL carrying bacteria has been recognized, especially in low- and middle-income countries, however the horizontal gene transfer of these genes is difficult to assess. Here we investigate bla(CTX-M) gene diversity (and flanking nucleotide sequences) in E. coli from chicken and humans, in an Ecuadorian rural community and from chickens in another location in Ecuador. The bla(CTX-M) associated sequences in isolates from humans and chickens in the same remote community showed greater similarity than those found in E. coli in a chicken industrial operation 200 km away. Our study may provide evidence of bla(CTX-M) transfer between chickens and humans in the community.202338148908
190130.9998Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that bla(CTX-M) is the dominant ESBL gene type found in South Korea. The spread of bla(CTX-M) appears to have been facilitated by both clonal spread between different host species and conjugation. Most bla(CTX-M) genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of bla(CTX-M)-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes.202438554973
572540.9998Commonality of Multidrug-Resistant Klebsiella pneumoniae ST348 Isolates in Horses and Humans in Portugal. Multidrug-resistant (MDR) Klebsiella pneumoniae is considered a major global concern by the World Health Organization. Evidence is growing on the importance of circulation of MDR bacterial populations between animals and humans. Horses have been shown to carry commensal isolates of this bacterial species and can act as human MDR bacteria reservoirs. In this study, we characterized an extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae sequence type (ST) 348 isolate from a horse, an ST reported for the first time in an animal, using next-generation sequencing. We compared it with six other MDR K. pneumoniae ST348 human isolates previously identified in health-care facilities in Portugal using a core genome multi-locus sequence typing approach to evaluate a possible genetic link. The horse isolate was resistant to most of the antimicrobials tested, including 3rd generation cephalosporins, fluoroquinolones, and aminoglycosides, and presented several antimicrobial resistance genes, including bla (ESBL). Twenty-one allele differences were found between the horse isolate and the most similar human isolate, suggesting a recent common ancestor. Other similarities were observed regarding the content on antimicrobial resistance genes, plasmid incompatibility groups, and capsular and somatic antigens. This study illustrates the relevance of the dissemination of MDR strains, and enhances that identification of these types of bacterial strains in both human and veterinary settings is of significant relevance in order to understand and implement combined control strategies for MDR bacteria in animals and humans.201931379799
186050.9998Resistance to carbapenems and other antibiotics in Klebsiella pneumoniae found in seals indicates anthropogenic pollution. BACKGROUND: The beta-lactamase enzyme OXA-48 has spread widely in recent years in Enterobacteriaceae associated with man, disseminated primarily on incompatibility group L/M plasmids. OXA-48 confers resistance to carbapenems, important antimicrobials for treating highly resistant bacterial infections in humans. This enzyme has rarely been detected in bacteria from animals. Furthermore, the use of carbapenem compounds is not permitted in food-producing animals in Europe and to our knowledge has not been reported in food-producing animals globally. METHODS: Bacterial isolates from lesions in stranded, free-living, juvenile common seals (Phoca vitulina) were identified. Antimicrobial susceptibility testing and whole genome sequencing analysis were used to characterise antimicrobial resistance genes carried by the bacteria. RESULTS: Here, we report the detection of Klebsiella pneumoniae subspecies pneumoniae carrying the bla (OXA-48) gene on an incompatibility group L/M plasmid from an infection in a common seal. CONCLUSION: Evidence is accruing that marine mammals may be infected with bacteria originating from anthropogenic sources, such as human sewage, contaminating the environment.202032327551
155460.9997Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. The emergence of extended-spectrum β-lactamase (ESBL)-producing bacteria, particularly Escherichia coli and Klebsiella pneumoniae, is now a critical concern for the development of therapies against bacterial infection. ESBLs consist of three major genetic groups: TEM, SHV, and CTX-M types. Nosocomial infections due to TEM and SHV-producing K. pneumoniae strains were frequently documented until the late 1990s. The number of reports on community-acquired infections caused by CTX-M-producing E. coli strains have dramatically increased over the last decade; however, K. pneumoniae strains, of either the TEM or SHV types, are persistent and important ESBL producers. The spread of ESBL genes is associated with various mobile genetic elements, such as transposons, insertion sequences, and integrons. The rapid dissemination of ESBL genes of the CTX-M type may be related to highly complicated genetic structures. These structures harboring ESBL genes and mobile elements are found in a variety of plasmids, which often carry many other antibiotic resistance genes. Multidrug-resistant CTX-M-15-producing E. coli strains disseminate worldwide. Efficient mobile elements and plasmids may have accelerated the genetic diversity and the rapid spread of ESBL genes, and their genetic evolution has caused an emerging threat to the bacteria for which few effective drugs have been identified.201121689785
159470.9997Production of extended-spectrum beta-lactamases in Escherichia coli isolated from poultry in Rio de Janeiro, Brazil. The overuse of antimicrobials in poultry has led to the development and dissemination of multidrug-resistant bacteria in the poultry industry. One of the most effective mechanisms of resistance found in Escherichia coli is the production of extended-spectrum β-lactamases (ESBL); there are several ESBLs, including the TEM, SHV, and CTX-M families. This resistance mechanism and the risks associated with transmitting these resistant microorganisms between animals, the environment, and humans can occur through direct contact and consumption of infected animals. This study aimed to determine the prevalence of E. coli in samples isolated from three broiler farms in Rio de Janeiro, Brazil, and screen the isolates for ESBL genes. The findings of this study demonstrated the presence of ESBL-producing E. coli in all farms studied. The findings of this study highlight the urgency for a program to monitor the poultry industry value chains at the regional level to control the spread of antimicrobial resistance. Therefore, we recommend that the enzyme subtypes produced by bacterial isolates should be determined to effectively characterize the distribution of genes related to antimicrobial resistance.202236533205
572480.9997Convergence of virulence and resistance in international clones of WHO critical priority enterobacterales isolated from Marine Bivalves. The global spread of critical-priority antimicrobial-resistant Enterobacterales by food is a public health problem. Wild-caught seafood are broadly consumed worldwide, but exposure to land-based pollution can favor their contamination by clinically relevant antimicrobial-resistant bacteria. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we performed genomic surveillance and cell culture-based virulence investigation of WHO critical priority Enterobacterales isolated from marine bivalves collected in the Atlantic Coast of South America. Broad-spectrum cephalosporin-resistant Klebsiella pneumoniae and Escherichia coli isolates were recovered from eight distinct geographical locations. These strains harbored bla(CTX-M)-type or bla(CMY)-type genes. Most of the surveyed genomes confirmed the convergence of wide virulome and resistome (i.e., antimicrobials, heavy metals, biocides, and pesticides resistance). We identified strains belonging to the international high-risk clones K. pneumoniae ST307 and E. coli ST131 carrying important virulence genes, whereas in vitro experiments confirmed the high virulence potential of these strains. Thermolabile and thermostable toxins were identified in some strains, and all of them were biofilm producers. These data point to an alarming presence of resistance and virulence genes in marine environments, which may favor horizontal gene transfer and the spread of these traits to other bacterial species.202235383231
159090.9997Molecular characterization of highly prevalent Escherichia coli and Escherichia marmotae resistant to extended-spectrum cephalosporins in European starlings (Sturnus vulgaris) in Tunisia. European starlings are widespread migratory birds that have already been described as carrying bacteria resistant to extended-spectrum cephalosporins (ESC-R). These birds are well known in Tunisia because they spend the wintertime in this country and are hunted for human consumption. The goal of our study was to estimate the proportion of ESC-R in these birds and to characterize the collected isolates using whole-genome sequencing. Results showed that 21.5% (42/200) of the birds carried either an extended-spectrum beta-lactamase (ESBL) or an acquired AmpC gene. Diverse bla (CTX-M) genes were responsible for the ESBL phenotype, bla (CTX-M-14) being the most prevalent, while only bla (CMY-2) and one bla (CMY-62) were found in AmpC-positive isolates. Likewise, different genetic determinants carried these resistance genes, including IncHI2, and IncF plasmids for bla (CTX-M) genes and IncI1 plasmids for bla (CMY-2) genes. Three chromosomally encoded bla (CTX-M-15) genes were also identified. Surprisingly, species identification revealed a large proportion (32.7%) of Escherichia marmotae isolates. This species is phenotypically indistinguishable from Escherichia coli and has obviously the same capacity to acquire ESC-R genes. Our data also strongly suggest that at least the IncHI2/pST3 plasmid can spread equally between E. coli and E. marmotae. Given the potential transmission routes between humans and animals, either by direct contact with dejections or through meat preparation, it is important to closely monitor antimicrobial resistance in European starlings in Tunisia and to set up further studies to identify the sources of contamination of these birds. IMPORTANCE The One Health concept highlighted knowledge gaps in the understanding of the transmission routes of resistant bacteria. A major interest was shown in wild migratory birds since they might spread resistant bacteria over long distances. Our study brings further evidence that wild birds, even though they are not directly submitted to antibiotic treatments, can be heavily contaminated by resistant bacteria. Our results identified numerous combinations of resistance genes, genetic supports, and bacterial clones that can spread vertically or horizontally and maintain a high level of resistance in the bird population. Some of these determinants are widespread in humans or animals (IncHI2/pST3 plasmids and pandemic clones), while some others are less frequent (atypical IncI1 plasmid and minor clones). Consequently, it is essential to be aware of the risks of transmission and to take all necessary measures to prevent the proportions of resistant isolates from increasing uncontrollably.202337772831
5015100.9997beta-Lactam resistance and beta-lactamases in bacteria of animal origin. beta-Lactams are among the most clinically important antimicrobials in both human and veterinary medicine. Bacterial resistance to beta-lactams has been increasingly observed in bacteria, including those of animal origin. The mechanisms of beta-lactam resistance include inaccessibility of the drugs to their target, target alterations and/or inactivation of the drugs by beta-lactamases. The latter contributes predominantly to beta-lactam resistance in Gram-negative bacteria. A variety of beta-lactamases have been identified in bacteria derived from food-producing and companion animals and may further serve as a reservoir for beta-lactamase-producing bacteria in humans. While this review mainly describes beta-lactamases from animal-derived Escherichia coli and Salmonella spp., beta-lactamases from animal-derived Campylobacter spp., Enterococcus spp., Staphylococcus spp. and other pathogens are also discussed. Of particular concern are the increasingly-isolated plasmid-encoded AmpC-type CMY and extended-spectrum CTX-M beta-lactamases, which mediate acquired resistance to extended-spectrum beta-lactams. The genes encoding these enzymes often coexist with other antimicrobial resistance determinants and can also be associated with transposons/integrons, increasing the potential enrichment of multidrug resistant bacteria by multiple antimicrobial agents as well as dissemination of the resistance determinants among bacterial species. Characterization of beta-lactam-resistant animal-derived bacteria warrants further investigation of the type and distribution of beta-lactamases in bacteria of animal origin and their potential impact on human medicine.200717306475
1863110.9997Genomic surveillance of extended-spectrum cephalosporin-resistant Escherichia coli isolated from poultry in the UK from 2016 to 2020. INTRODUCTION: Surveillance is vital for monitoring the increasing risk of antimicrobial resistance (AMR) in bacteria leading to failures in humans and animals to treat infections. In a One Health context, AMR bacteria from livestock and food can transfer through the food chain to humans, and vice versa, which can be characterized in detail through genomics. We investigated the critical aspects of AMR and the dynamics of AMR in poultry in the UK. METHODS: In this study, we performed whole genome sequencing for genomic characterization of 761 extended-spectrum cephalosporinases (ESCs) harboring Escherichia coli isolated from poultry caeca and meat through EU harmonized monitoring of AMR in zoonotic and commensal bacteria from 2016 and 2018 and UK national monitoring in 2020. RESULTS: The most common ESC in 2016 and 2018 was blaCTX-M-1; however, 2020 had a greater diversity of ESCs with blaCTX-M-55 dominant in chickens and blaCTX-M-15 more prevalent in turkeys. Co-resistance to sulphonamides, tetracycline, and trimethoprim was widespread, and there were several positive correlations between the sequence types (STs) and ESC genes. We identified certain AMR genotypes and STs that were frequent each year but not as successful in subsequent years, e.g., ST350 harboring blaCTX-M-1, sul2, and tetA-v4.Phylogenetic comparison of isolates prevalent in our panel with global ones from the same STs available in public databases showed that isolates from the UK generally clustered together, suggesting greater within-country than between-country transmission. DISCUSSION: We conclude that future genomic surveillance of indicator organisms will be invaluable as it will enable detailed comparisons of AMR between and within neighboring countries, potentially identifying the most successful sequence types, plasmids, or emerging threats.202338352060
1902120.9997Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. INTRODUCTION: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. METHODS: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. RESULTS: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the bla(KPC-2), bla(NDM-5), bla(OXA-1), bla(OXA-48), and bla(OXA-181) β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. DISCUSSION: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance.202337323902
1847130.9997Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Non-typhoidal serovars of Salmonella enterica (NTS) are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical "last resort" antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli, and Enterobacter, which are major nosocomial pathogens affecting debilitated and immunocompromised patients), carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance-namely KPC (Klebsiella pneumoniae carbapenemase) (class A), IMP (imipenemase), NDM (New Delhi metallo-β-lactamase), VIM (Verona integron-encoded metallo-β-lactamase) (class B), and OXA-48 (oxacillinase, class D)-have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC β-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids), together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these "last resort" antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria.201829642473
1572140.9997Phenotypic and Genomic Characterization of AmpC-Producing Klebsiella pneumoniae From Korea. The prevalence of multidrug-resistant gram-negative bacteria has continuously increased over the past few years; bacterial strains producing AmpC β-lactamases and/or extended-spectrum β-lactamases (ESBLs) are of particular concern. We combined high-resolution whole genome sequencing and phenotypic data to elucidate the mechanisms of resistance to cephamycin and β-lactamase in Korean Klebsiella pneumoniae strains, in which no AmpC-encoding genes were detected by PCR. We identified several genes that alone or in combination can potentially explain the resistance phenotype. We showed that different mechanisms could explain the resistance phenotype, emphasizing the limitations of the PCR and the importance of distinguishing closely-related gene variants.201829611388
1838150.9997An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Carbapenem resistance (CR) is a major global health concern. CR is a growing challenge in clinical settings due to its rapid dissemination and low treatment options. The characterization of its molecular mechanisms and epidemiology are highly studied. Nevertheless, little is known about the spread of CR in food-producing animals, seafood, aquaculture, wildlife, their environment, or the health risks associated with CR in humans. In this review, we discuss the detection of carbapenem-resistant organisms and their mechanisms of action in pigs, cattle, poultry, seafood products, companion animals, and wildlife. We also pointed out the One Health approach as a strategy to attempt the emergency and dispersion of carbapenem-resistance in this sector and to determine the role of carbapenem-producing bacteria in animals among human public health risk. A higher occurrence of carbapenem enzymes in poultry and swine has been previously reported. Studies related to poultry have highlighted P. mirabilis, E. coli, and K. pneumoniae as NDM-5- and NDM-1-producing bacteria, which lead to carbapenem resistance. OXA-181, IMP-27, and VIM-1 have also been detected in pigs. Carbapenem resistance is rare in cattle. However, OXA- and NDM-producing bacteria, mainly E. coli and A. baumannii, are cattle's leading causes of carbapenem resistance. A high prevalence of carbapenem enzymes has been reported in wildlife and companion animals, suggesting their role in the cross-species transmission of carbapenem-resistant genes. Antibiotic-resistant organisms in aquatic environments should be considered because they may act as reservoirs for carbapenem-resistant genes. It is urgent to implement the One Health approach worldwide to make an effort to contain the dissemination of carbapenem resistance.202337397005
1593160.9997Epidemiological Description and Detection of Antimicrobial Resistance in Various Aquatic Sites in Marseille, France. Antibiotic resistance is a worldwide public health concern and has been associated with reports of elevated mortality. According to the One Health concept, antibiotic resistance genes are transferrable to organisms, and organisms are shared among humans, animals, and the environment. Consequently, aquatic environments are a possible reservoir of bacteria harboring antibiotic resistance genes. In our study, we screened water and wastewater samples for antibiotic resistance genes by culturing samples on different types of agar media. Then, we performed real-time PCR to detect the presence of genes conferring resistance to beta lactams and colistin, followed by standard PCR and gene sequencing for verification. We mainly isolated Enterobacteriaceae from all samples. In water samples, 36 Gram-negative bacterial strains were isolated and identified. We found three extended-spectrum β-lactamase (ESBL)-producing bacteria-Escherichia coli and Enterobacter cloacae strains-harboring the CTX-M and TEM groups. In wastewater samples, we isolated 114 Gram-negative bacterial strains, mainly E. coli, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis strains. Forty-two bacterial strains were ESBL-producing bacteria, and they harbored at least one gene belonging to the CTX-M, SHV, and TEM groups. We also detected carbapenem-resistant genes, including NDM, KPC, and OXA-48, in four isolates of E. coli. This short epidemiological study allowed us to identify new antibiotic resistance genes present in bacterial strains isolated from water in Marseille. This type of surveillance shows the importance of tracking bacterial resistance in aquatic environments. IMPORTANCE Antibiotic-resistant bacteria are involved in serious infections in humans. The dissemination of these bacteria in water, which is in close contact with human activities, is a serious problem, especially under the concept of One Health. This study was done to survey and localize the circulation of bacterial strains, along with their antibiotic resistance genes, in the aquatic environment in Marseille, France. The importance of this study is to monitor the frequency of these circulating bacteria by creating and surveying water treatments.202336976002
1592170.9997Identification of ESBL-Producing Enterobacterales From Vegetable Plants: Preliminary Findings From a Small Cross-Sectional Study in a Rural Area of Madagascar. Extended-spectrum beta-lactamases (ESBL)-producing enterobacterales are considered a key indicator for antimicrobial resistance (AMR) epidemiological surveillance in animal, human, and environment compartments. In this study, we aim to investigate the presence and genetic diversity of ESBL-producing enterobacterales on vegetable plants. We isolated beta-lactam resistant enterobacterales from several vegetable plants and sequenced their whole genome. Utilising standard genomic and phylogenetic methods, we sought to (i) characterise the resistance genes and plasmid content of the plant-isolated strains, (ii) investigate their genetic structure, and (iii) determine their relationships with strains from other reservoirs. Among the 22 strains collected from vegetable plants, 6 showed resistance to beta-lactam antibiotics, with 5 of them identified as ESBL producers. Our results indicated the presence of multidrug-resistant (MDR) strains containing multiple antibiotic resistance genes (ARGs). Importantly, no host-specific lineages were identified among the plant-isolated ESBL-producing E. coli (ESBL-Ec). Instead, these strains exhibited genetic and epidemiological connections with strains isolated from animals, humans, and the environment, suggesting transfer of ESBL-Ec between plants and other sources in rural Madagascar. These preliminary findings suggest that vegetable plants are contaminated as a result of human activities, posing a potential risk of human and animal exposure to antibiotic-resistant bacteria and genes.202540528688
1862180.9997Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin - A Systematic Review and Meta-Analysis. Third generation cephalosporins and carbapenems are considered critically important antimicrobials in human medicine. Food animals such as swine can act as reservoirs of antimicrobial resistance (AMR) genes/bacteria resistant to these antimicrobial classes, and potential dissemination of AMR genes or resistant bacteria from pigs to humans is an ongoing public health threat. The objectives of this systematic review and meta-analysis were to: (1) estimate global proportion and animal-level prevalence of swine E. coli phenotypically resistant to third generation cephalosporins (3GCs) and carbapenems at a country level; and (2) measure abundances and global distribution of the genetic mechanisms that confer resistance to these antimicrobial classes in these E. coli isolates. Articles from four databases (CAB Abstracts, PubMed/MEDLINE, PubAg, and Web of Science) were screened to extract relevant data. Overall, proportion of E. coli resistant to 3GCs was lower in Australia, Europe, and North America compared to Asian countries. Globally, <5% of all E. coli were carbapenem-resistant. Fecal carriage rates (animal-level prevalence) were consistently manifold higher as compared to pooled proportion of resistance in E. coli isolates. bla (CTX-M) were the most common 3GC resistance genes globally, with the exception of North America where bla (CMY) were the predominant 3GC resistance genes. There was not a single dominant bla (CTX-M) gene subtype globally and several bla (CTX-M) subtypes were dominant depending on the continent. A wide variety of carbapenem-resistance genes (bla (NDM-, VIM-, IMP-, OXA-48), (and) (KPC-)) were identified to be circulating in pig populations globally, albeit at very-low frequencies. However, great statistical heterogeneity and a critical lack of metadata hinders the true estimation of prevalence of phenotypic and genotypic resistance to these antimicrobials. Comparatively frequent occurrence of 3GC resistance and emergence of carbapenem resistance in certain countries underline the urgent need for improved AMR surveillance in swine production systems in these countries.202235620091
1588190.9997Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France. Extended Spectrum beta-Lactamase (ESBL) producing Enterobacteriaceae started to appear in the 1980s, and have since emerged as some of the most significant hospital-acquired infections with Escherichia coli and Klebsiella being main players. More than 100 different ESBL types have been described, the most widespread being the CTX-M beta-lactamase enzymes (bla(CTX-M) genes). This study focuses on the zoonotic dissemination of ESBL bacteria, mainly CTX-M type, in the southern coastal region of France. We found that the level of general antibiotic resistance in single randomly selected E. coli isolates from wild Yellow-legged Gulls in France was high. Nearly half the isolates (47.1%) carried resistance to one or more antibiotics (in a panel of six antibiotics), and resistance to tetracycline, ampicillin and streptomycin was most widespread. In an ESBL selective screen, 9.4% of the gulls carried ESBL producing bacteria and notably, 6% of the gulls carried bacteria harboring CTX-M-1 group of ESBL enzymes, a recently introduced and yet the most common clinical CTX-M group in France. Multi locus sequence type and phylogenetic group designations were established for the ESBL isolates, revealing that birds and humans share E. coli populations. Several ESBL producing E. coli isolated from birds were identical to or clustered with isolates with human origin. Hence, wild birds pick up E. coli of human origin, and with human resistance traits, and may accordingly also act as an environmental reservoir and melting pot of bacterial resistance with a potential to re-infect human populations.200919536298