Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
184001.0000Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. Animals have been identified as potential reservoirs and vectors of resistance genes, with studies showing that Gram-negative bacteria can acquire resistance through the horizontal transmission of resistance genes on plasmids. It is important to understand the distribution of antimicrobial-resistant bacteria and their drug-resistant genes in animals. Previous review articles mostly focused on a single bacterium or a single animal. Our objective is to compile all ESBL-producing bacteria isolated from various animals in recent years and provide a comprehensive viewpoint. Using a thorough PubMed literature search spanning from 1 January 2020 to 30 June 2022, studies exploring extended-spectrum beta-lactamase (ESBL) producing bacteria in animals were included. ESBL-producing bacteria are present in animals from various countries around the world. The most common sources of these bacteria were farm animals, and the most frequently isolated bacteria were Escherichia coli and Klebsiella pneumoniae. The most detected ESBL genes were bla(TEM), bla(SHV), and bla(CTX-M). The presence of ESBL-producing bacteria in animals highlights the importance of the One Health approach to address the issue of antibiotic resistance. Further research is needed to better understand the epidemiology and mechanisms of the spread of ESBL-producing bacteria in animal populations and their potential impact on human and animal health.202337107023
183810.9999An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Carbapenem resistance (CR) is a major global health concern. CR is a growing challenge in clinical settings due to its rapid dissemination and low treatment options. The characterization of its molecular mechanisms and epidemiology are highly studied. Nevertheless, little is known about the spread of CR in food-producing animals, seafood, aquaculture, wildlife, their environment, or the health risks associated with CR in humans. In this review, we discuss the detection of carbapenem-resistant organisms and their mechanisms of action in pigs, cattle, poultry, seafood products, companion animals, and wildlife. We also pointed out the One Health approach as a strategy to attempt the emergency and dispersion of carbapenem-resistance in this sector and to determine the role of carbapenem-producing bacteria in animals among human public health risk. A higher occurrence of carbapenem enzymes in poultry and swine has been previously reported. Studies related to poultry have highlighted P. mirabilis, E. coli, and K. pneumoniae as NDM-5- and NDM-1-producing bacteria, which lead to carbapenem resistance. OXA-181, IMP-27, and VIM-1 have also been detected in pigs. Carbapenem resistance is rare in cattle. However, OXA- and NDM-producing bacteria, mainly E. coli and A. baumannii, are cattle's leading causes of carbapenem resistance. A high prevalence of carbapenem enzymes has been reported in wildlife and companion animals, suggesting their role in the cross-species transmission of carbapenem-resistant genes. Antibiotic-resistant organisms in aquatic environments should be considered because they may act as reservoirs for carbapenem-resistant genes. It is urgent to implement the One Health approach worldwide to make an effort to contain the dissemination of carbapenem resistance.202337397005
184120.9999Plasmid-Determined Colistin Resistance in the North African Countries: A Systematic Review. We have conducted a systematic review to update available information on plasmid-mediated colistin resistance (mobilized colistin resistance [mcr]) genes in North African countries. We have searched the articles of PubMed, Scopus, and Web of Science databases reporting plasmid-mediated colistin resistance bacteria isolated in North African countries. After searching and selection, 30 studies that included 208 mcr-positive isolates were included. Different mcr-positive strains frequencies were recorded and ranged from 2% in clinical isolates to 12.3% in environmental samples. Escherichia coli was the predominant species recorded and these microorganisms showed high resistance to ciprofloxacin and cotrimoxazole. IncHI2 plasmids are probably the key vectors responsible for the dissemination of mcr genes in these countries. This review highlighted that the mcr-positive isolates are circulating in different ecological niches with different frequencies. Therefore, actions should be implemented to prevent the dissemination of the mcr genes within and outside of these countries, such as microbiological and molecular surveillance programs and restriction use of colistin in farming.202132522081
159430.9999Production of extended-spectrum beta-lactamases in Escherichia coli isolated from poultry in Rio de Janeiro, Brazil. The overuse of antimicrobials in poultry has led to the development and dissemination of multidrug-resistant bacteria in the poultry industry. One of the most effective mechanisms of resistance found in Escherichia coli is the production of extended-spectrum β-lactamases (ESBL); there are several ESBLs, including the TEM, SHV, and CTX-M families. This resistance mechanism and the risks associated with transmitting these resistant microorganisms between animals, the environment, and humans can occur through direct contact and consumption of infected animals. This study aimed to determine the prevalence of E. coli in samples isolated from three broiler farms in Rio de Janeiro, Brazil, and screen the isolates for ESBL genes. The findings of this study demonstrated the presence of ESBL-producing E. coli in all farms studied. The findings of this study highlight the urgency for a program to monitor the poultry industry value chains at the regional level to control the spread of antimicrobial resistance. Therefore, we recommend that the enzyme subtypes produced by bacterial isolates should be determined to effectively characterize the distribution of genes related to antimicrobial resistance.202236533205
253240.9999Prevalence of ESBL-Resistant Genes in Birds in Italy-A Comprehensive Review. Antimicrobial resistance (AMR) is a major global concern in both human and veterinary medicine. Among antimicrobial resistance (AMR) bacteria, Extended-Spectrum Beta-Lactamases (ESBLs) pose a serious health risk because infections can be difficult to treat. These Gram-negative bacteria can be frequently found in poultry and in Italy, where such protein production is established. ESBL-producing Escherichia coli, Salmonella and Klebsiella in chicken and turkey may pose a significant public health risk due to potential transmission between poultry and humans. This review aims to assess the prevalence of ESBL-producing E. coli, Salmonella and Klebsiella phenotypically and genotypically in Italian poultry, identifying the most common genes, detection methods and potential information gaps. An initial pool of 1462 studies found in scientific databases (Web of Sciences, PubMed, etc.) was screened and 29 were identified as eligible for our review. Of these studies, 79.3% investigated both phenotypic and genotypic ESBL expression while blaCTX-M, blaTEM and blaSHV were considered as targeted gene families. Large differences in prevalence were reported (0-100%). The blaCTX-M-1 and blaTEM-1 genes were the most prevalent in Italian territory. ESBL-producing E. coli, Salmonella and Klebsiella were frequently detected in farms and slaughterhouses, posing a potential threat to humans through contact (direct and indirect) with birds through handling, inhalation of infected dust, drinking contaminated water, ingestion of meat and meat products and the environment. Considering the frequent occurrence of ESBL-producing bacteria in Italian poultry, it is advisable to further improve biosecurity and to introduce more systematic surveillance. Additionally, the focus should be on the wild birds as they are ESBL carriers.202540509064
183950.9999Environmental mediation of colistin resistance in the African context. A systematic scoping review. OBJECTIVES: The prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria is a major global health concern. Resistance to last-resort antibiotics like colistin is particularly alarming. This study reviews how environmental factors have contributed to colistin resistance in the African context, where reports of colistin-resistant Gram-negative organisms are emerging. METHODS: A systematic review was conducted using multiple databases to identify articles on environmental mediation of colistin resistance in Africa. Search terms included "environment," "colistin," "mobile colistin resistance gene," and related keywords. Articles from 2015 to 2021 focusing on Africa were included. Data on country, genes detected, methods used, and bacterial species were extracted. RESULTS: Out of 847 articles identified, 26 were included in the final review. Studies were predominantly from Tunisia, Algeria, South Africa, Egypt, Nigeria, and Congo. The mobile colistin resistance (mcr-1) gene was the most common genetic variant detected. Escherichia coli (E. coli) was the predominant organism spreading mcr genes. Colistin-resistant genes were found in humans, animals, and environmental samples including manure, soil, water bodies, and wildlife. CONCLUSIONS: This review confirms the rapid spread of plasmid-mediated colistin-resistant genes in humans, animals, and the environment across Africa. The movement of resistant genes between these reservoirs is alarming. There is a need for more research into colistin resistance mechanisms and implementation of continent-wide antibiotic stewardship programs to address this emerging threat in Africa. © 2024 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy.202539681218
159360.9999Epidemiological Description and Detection of Antimicrobial Resistance in Various Aquatic Sites in Marseille, France. Antibiotic resistance is a worldwide public health concern and has been associated with reports of elevated mortality. According to the One Health concept, antibiotic resistance genes are transferrable to organisms, and organisms are shared among humans, animals, and the environment. Consequently, aquatic environments are a possible reservoir of bacteria harboring antibiotic resistance genes. In our study, we screened water and wastewater samples for antibiotic resistance genes by culturing samples on different types of agar media. Then, we performed real-time PCR to detect the presence of genes conferring resistance to beta lactams and colistin, followed by standard PCR and gene sequencing for verification. We mainly isolated Enterobacteriaceae from all samples. In water samples, 36 Gram-negative bacterial strains were isolated and identified. We found three extended-spectrum β-lactamase (ESBL)-producing bacteria-Escherichia coli and Enterobacter cloacae strains-harboring the CTX-M and TEM groups. In wastewater samples, we isolated 114 Gram-negative bacterial strains, mainly E. coli, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis strains. Forty-two bacterial strains were ESBL-producing bacteria, and they harbored at least one gene belonging to the CTX-M, SHV, and TEM groups. We also detected carbapenem-resistant genes, including NDM, KPC, and OXA-48, in four isolates of E. coli. This short epidemiological study allowed us to identify new antibiotic resistance genes present in bacterial strains isolated from water in Marseille. This type of surveillance shows the importance of tracking bacterial resistance in aquatic environments. IMPORTANCE Antibiotic-resistant bacteria are involved in serious infections in humans. The dissemination of these bacteria in water, which is in close contact with human activities, is a serious problem, especially under the concept of One Health. This study was done to survey and localize the circulation of bacterial strains, along with their antibiotic resistance genes, in the aquatic environment in Marseille, France. The importance of this study is to monitor the frequency of these circulating bacteria by creating and surveying water treatments.202336976002
155470.9999Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. The emergence of extended-spectrum β-lactamase (ESBL)-producing bacteria, particularly Escherichia coli and Klebsiella pneumoniae, is now a critical concern for the development of therapies against bacterial infection. ESBLs consist of three major genetic groups: TEM, SHV, and CTX-M types. Nosocomial infections due to TEM and SHV-producing K. pneumoniae strains were frequently documented until the late 1990s. The number of reports on community-acquired infections caused by CTX-M-producing E. coli strains have dramatically increased over the last decade; however, K. pneumoniae strains, of either the TEM or SHV types, are persistent and important ESBL producers. The spread of ESBL genes is associated with various mobile genetic elements, such as transposons, insertion sequences, and integrons. The rapid dissemination of ESBL genes of the CTX-M type may be related to highly complicated genetic structures. These structures harboring ESBL genes and mobile elements are found in a variety of plasmids, which often carry many other antibiotic resistance genes. Multidrug-resistant CTX-M-15-producing E. coli strains disseminate worldwide. Efficient mobile elements and plasmids may have accelerated the genetic diversity and the rapid spread of ESBL genes, and their genetic evolution has caused an emerging threat to the bacteria for which few effective drugs have been identified.201121689785
184780.9999Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Non-typhoidal serovars of Salmonella enterica (NTS) are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical "last resort" antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli, and Enterobacter, which are major nosocomial pathogens affecting debilitated and immunocompromised patients), carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance-namely KPC (Klebsiella pneumoniae carbapenemase) (class A), IMP (imipenemase), NDM (New Delhi metallo-β-lactamase), VIM (Verona integron-encoded metallo-β-lactamase) (class B), and OXA-48 (oxacillinase, class D)-have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC β-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids), together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these "last resort" antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria.201829642473
572490.9998Convergence of virulence and resistance in international clones of WHO critical priority enterobacterales isolated from Marine Bivalves. The global spread of critical-priority antimicrobial-resistant Enterobacterales by food is a public health problem. Wild-caught seafood are broadly consumed worldwide, but exposure to land-based pollution can favor their contamination by clinically relevant antimicrobial-resistant bacteria. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we performed genomic surveillance and cell culture-based virulence investigation of WHO critical priority Enterobacterales isolated from marine bivalves collected in the Atlantic Coast of South America. Broad-spectrum cephalosporin-resistant Klebsiella pneumoniae and Escherichia coli isolates were recovered from eight distinct geographical locations. These strains harbored bla(CTX-M)-type or bla(CMY)-type genes. Most of the surveyed genomes confirmed the convergence of wide virulome and resistome (i.e., antimicrobials, heavy metals, biocides, and pesticides resistance). We identified strains belonging to the international high-risk clones K. pneumoniae ST307 and E. coli ST131 carrying important virulence genes, whereas in vitro experiments confirmed the high virulence potential of these strains. Thermolabile and thermostable toxins were identified in some strains, and all of them were biofilm producers. These data point to an alarming presence of resistance and virulence genes in marine environments, which may favor horizontal gene transfer and the spread of these traits to other bacterial species.202235383231
1901100.9998Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that bla(CTX-M) is the dominant ESBL gene type found in South Korea. The spread of bla(CTX-M) appears to have been facilitated by both clonal spread between different host species and conjugation. Most bla(CTX-M) genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of bla(CTX-M)-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes.202438554973
1862110.9998Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin - A Systematic Review and Meta-Analysis. Third generation cephalosporins and carbapenems are considered critically important antimicrobials in human medicine. Food animals such as swine can act as reservoirs of antimicrobial resistance (AMR) genes/bacteria resistant to these antimicrobial classes, and potential dissemination of AMR genes or resistant bacteria from pigs to humans is an ongoing public health threat. The objectives of this systematic review and meta-analysis were to: (1) estimate global proportion and animal-level prevalence of swine E. coli phenotypically resistant to third generation cephalosporins (3GCs) and carbapenems at a country level; and (2) measure abundances and global distribution of the genetic mechanisms that confer resistance to these antimicrobial classes in these E. coli isolates. Articles from four databases (CAB Abstracts, PubMed/MEDLINE, PubAg, and Web of Science) were screened to extract relevant data. Overall, proportion of E. coli resistant to 3GCs was lower in Australia, Europe, and North America compared to Asian countries. Globally, <5% of all E. coli were carbapenem-resistant. Fecal carriage rates (animal-level prevalence) were consistently manifold higher as compared to pooled proportion of resistance in E. coli isolates. bla (CTX-M) were the most common 3GC resistance genes globally, with the exception of North America where bla (CMY) were the predominant 3GC resistance genes. There was not a single dominant bla (CTX-M) gene subtype globally and several bla (CTX-M) subtypes were dominant depending on the continent. A wide variety of carbapenem-resistance genes (bla (NDM-, VIM-, IMP-, OXA-48), (and) (KPC-)) were identified to be circulating in pig populations globally, albeit at very-low frequencies. However, great statistical heterogeneity and a critical lack of metadata hinders the true estimation of prevalence of phenotypic and genotypic resistance to these antimicrobials. Comparatively frequent occurrence of 3GC resistance and emergence of carbapenem resistance in certain countries underline the urgent need for improved AMR surveillance in swine production systems in these countries.202235620091
5009120.9998Types and prevalence of extended-spectrum beta-lactamase producing Enterobacteriaceae in poultry. For several billion years, bacteria have developed mechanisms to resist antibacterial substances. In modern time, antibiotics are frequently used in veterinary and human medicine for prevention and treatment of diseases, globally still also for their growth promoting effects as feed additives. This complex situation has evolved in accelerating development and prevalence of multi-drug resistant bacteria in livestock and people. Extended-spectrum beta-lactamase (ESBL) producing bacteria are resistant to a wide range of ß-lactam antibiotics. They are currently considered as one of the main threats for the treatment of infections in humans and animals. In livestock and animal products, poultry and poultry products show the highest prevalence of ESBL-producers with CTX-M-1, TEM-52 and SHV-12 being the most common ESBL-types in poultry. Escherichia coli and Salmonella spp. are the bacteria in poultry, which carry ESBL-genes most frequently. ESBL-producing bacteria are present at every level of the poultry production pyramid and can be detected even in the meconium of newly hatched chicks. The environment close to poultry barns shows high prevalence rates of these bacteria and contributes to an ongoing infection pressure with further ESBL-types. Probiotics have been shown to successfully reduce ESBL-producers in chicken, as well as ESBL-gene transfer. Other feed additives, such as zinc and copper, increase the prevalence of ESBL-producing bacteria when fed to animals. To our best knowledge, this is the first publication presenting a comparative overview of the prevalence of ESBL-types using data from different countries. To reduce the hazard for public health from poultry carrying high numbers of ESBL-producers, preventive measurements must include the surrounding environment and avoidance of antibiotic usage at all levels of the production pyramid. The first results, of the research on the impact of feed additives on the spread of ESBL-genes, indicate the diet as a further, possible magnitude of influence.201728641596
1553130.9998Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. The worldwide spread of extended-spectrum β-lactamase (ESBL)-producing bacteria, particularly Escherichia coli and Klebsiella pneumoniae, is a critical concern for the development of therapies against multidrug-resistant bacteria. Since the 2000s, detection rates of CTX-M types ESBL-producing E. coli in the community have been high, possibly contributing to their nosocomial detection. Various factors, such as environmental sources, food animals, and international travel, accelerate the global ESBL spread in the community. The dramatic dissemination of ESBLs in the community is associated with the relatively recent emergence of CTX-M-15-producing ST131 E. coli clones, which often carry many other antibiotic resistance genes (including quinolone). The usefulness of β-lactam/β-lactamase inhibitor, particularly, piperacillin/tazobactam, has been considered as a carbapenem-sparing regimen for ESBL infections, although the global trend of AmpC β-lactamase-producing bacteria should be monitored carefully. Careful therapeutic selection and continued surveillance for the detection of multidrug-resistant bacteria are required.201829626676
1551140.9998Mechanisms of Resistance in Gram-Negative Urinary Pathogens: From Country-Specific Molecular Insights to Global Clinical Relevance. Urinary tract infections (UTIs) are the most frequent hospital infections and among the most commonly observed community acquired infections. Alongside their clinical importance, they are notorious because the pathogens that cause them are prone to acquiring various resistance determinants, including extended-spectrum beta-lactamases (ESBL); plasmid-encoded AmpC β-lactamases (p-AmpC); carbapenemases belonging to class A, B, and D; qnr genes encoding reduced susceptibility to fluoroquinolones; as well as genes encoding enzymes that hydrolyse aminoglycosides. In Escherichia coli and Klebsiella pneumoniae, the dominant resistance mechanisms are ESBLs belonging to the CTX-M, TEM, and SHV families; p-AmpC; and (more recently) carbapenemases belonging to classes A, B, and D. Urinary Pseudomonas aeruginosa isolates harbour metallo-beta-lactamases (MBLs) and ESBLs belonging to PER and GES families, while carbapenemases of class D are found in urinary Acinetobacter baumannii isolates. The identification of resistance mechanisms in routine diagnostic practice is primarily based on phenotypic tests for the detection of beta-lactamases, such as the double-disk synergy test or Hodge test, while polymerase chain reaction (PCR) for the detection of resistance genes is mostly pursued in reference laboratories for research purposes. As the emergence of drug-resistant bacterial strains poses serious challenges in the management of UTIs, this review aimed to appraise mechanisms of resistance in relevant Gram-negative urinary pathogens, to provide a detailed map of resistance determinants in Croatia and the world, and to discuss the implications of these resistance traits on diagnostic approaches. We summarized a sundry of different resistance mechanisms among urinary isolates and showed how their prevalence highly depends on the local epidemiological context, highlighting the need for tailored interventions in the field of antimicrobial stewardship.202133925181
5015150.9998beta-Lactam resistance and beta-lactamases in bacteria of animal origin. beta-Lactams are among the most clinically important antimicrobials in both human and veterinary medicine. Bacterial resistance to beta-lactams has been increasingly observed in bacteria, including those of animal origin. The mechanisms of beta-lactam resistance include inaccessibility of the drugs to their target, target alterations and/or inactivation of the drugs by beta-lactamases. The latter contributes predominantly to beta-lactam resistance in Gram-negative bacteria. A variety of beta-lactamases have been identified in bacteria derived from food-producing and companion animals and may further serve as a reservoir for beta-lactamase-producing bacteria in humans. While this review mainly describes beta-lactamases from animal-derived Escherichia coli and Salmonella spp., beta-lactamases from animal-derived Campylobacter spp., Enterococcus spp., Staphylococcus spp. and other pathogens are also discussed. Of particular concern are the increasingly-isolated plasmid-encoded AmpC-type CMY and extended-spectrum CTX-M beta-lactamases, which mediate acquired resistance to extended-spectrum beta-lactams. The genes encoding these enzymes often coexist with other antimicrobial resistance determinants and can also be associated with transposons/integrons, increasing the potential enrichment of multidrug resistant bacteria by multiple antimicrobial agents as well as dissemination of the resistance determinants among bacterial species. Characterization of beta-lactam-resistant animal-derived bacteria warrants further investigation of the type and distribution of beta-lactamases in bacteria of animal origin and their potential impact on human medicine.200717306475
1596160.9998Distribution of bla(CTX-M-)gene variants in E. coli from different origins in Ecuador. The increasing abundance of extended spectrum (β-lactamase (ESBL) genes in E. coli, and other commensal and pathogenic bacteria, endangers the utility of third or more recent generation cephalosporins, which are major tools for fighting deadly infections. The role of domestic animals in the transmission of ESBL carrying bacteria has been recognized, especially in low- and middle-income countries, however the horizontal gene transfer of these genes is difficult to assess. Here we investigate bla(CTX-M) gene diversity (and flanking nucleotide sequences) in E. coli from chicken and humans, in an Ecuadorian rural community and from chickens in another location in Ecuador. The bla(CTX-M) associated sequences in isolates from humans and chickens in the same remote community showed greater similarity than those found in E. coli in a chicken industrial operation 200 km away. Our study may provide evidence of bla(CTX-M) transfer between chickens and humans in the community.202338148908
1599170.9998Colistin Resistance Genes in Broiler Chickens in Tunisia. Colistin is a polymyxin antibiotic that has been used in veterinary medicine for decades, as a treatment for enterobacterial digestive infections as well as a prophylactic treatment and growth promoter in livestock animals, leading to the emergence and spread of colistin-resistant Gram-negative bacteria and to a great public health concern, considering that colistin is one of the last-resort antibiotics against multidrug-resistant deadly infections in clinical practice. Previous studies performed on livestock animals in Tunisia using culture-dependent methods highlighted the presence of colistin-resistant Gram-negative bacteria. In the present survey, DNA extracted from cloacal swabs from 195 broiler chickens from six farms in Tunisia was tested via molecular methods for the ten mobilized colistin resistance (mcr) genes known so far. Of the 195 animals tested, 81 (41.5%) were mcr-1 positive. All the farms tested were positive, with a prevalence ranging from 13% to 93%. These results confirm the spread of colistin resistance in livestock animals in Tunisia and suggest that the investigation of antibiotic resistance genes by culture-independent methods could be a useful means of conducting epidemiological studies on the spread of antimicrobial resistance.202337106971
5725180.9998Commonality of Multidrug-Resistant Klebsiella pneumoniae ST348 Isolates in Horses and Humans in Portugal. Multidrug-resistant (MDR) Klebsiella pneumoniae is considered a major global concern by the World Health Organization. Evidence is growing on the importance of circulation of MDR bacterial populations between animals and humans. Horses have been shown to carry commensal isolates of this bacterial species and can act as human MDR bacteria reservoirs. In this study, we characterized an extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae sequence type (ST) 348 isolate from a horse, an ST reported for the first time in an animal, using next-generation sequencing. We compared it with six other MDR K. pneumoniae ST348 human isolates previously identified in health-care facilities in Portugal using a core genome multi-locus sequence typing approach to evaluate a possible genetic link. The horse isolate was resistant to most of the antimicrobials tested, including 3rd generation cephalosporins, fluoroquinolones, and aminoglycosides, and presented several antimicrobial resistance genes, including bla (ESBL). Twenty-one allele differences were found between the horse isolate and the most similar human isolate, suggesting a recent common ancestor. Other similarities were observed regarding the content on antimicrobial resistance genes, plasmid incompatibility groups, and capsular and somatic antigens. This study illustrates the relevance of the dissemination of MDR strains, and enhances that identification of these types of bacterial strains in both human and veterinary settings is of significant relevance in order to understand and implement combined control strategies for MDR bacteria in animals and humans.201931379799
1827190.9998Multinational comparison of the detection of extended-spectrum beta-lactamase genes in healthy resident feces. The spread of antimicrobial-resistant bacteria, especially in developing countries, is a critical healthcare issue. Among these, extended-spectrum beta-lactamase (ESBL)-producing bacteria are particularly concerning due to their resistance to third- and fourth-generation cephalosporins. Traditional methods for assessing bacterial resistance involve culturing bacteria on selective media from fecal samples, which may lead to selection bias. Alternatively, real-time PCR allows for detecting resistance genes directly from fecal DNA, providing a broader view of resistant bacteria. In this study, we evaluated the utility of a real-time PCR assay targeting ESBL-producing genes as a comprehensive detection method for ESBL-producing resistant bacteria in fecal samples. Additionally, we conducted a multinational comparative analysis of the colonization status of residents using this approach. The study analyzed ESBL genes in fecal samples from 161 residents in four countries: Ecuador, Ghana, Vietnam, and Japan. Samples from Ecuador, Ghana, and Vietnam, where ESBL carriage was notably high, revealed gene variations by country, with blaTEM genes being most common except in Ghana, where blaSHV genes predominated. These variations suggest that different bacterial hosts carry ESBL genes across countries. Quantitative PCR results further highlight that blaTEM is the most abundant ESBL gene. Although gene presence does not confirm antibiotic resistance, these findings underline significant ESBL carriage in low- and middle-income countries. The study emphasizes that gene detection in fecal samples is valuable for understanding resistant bacteria spread in communities.IMPORTANCEThe rise of antimicrobial-resistant bacteria, particularly extended-spectrum beta-lactamase (ESBL)-producing strains, poses a serious threat to healthcare in developing countries. This study utilized real-time PCR to detect ESBL genes directly from fecal DNA of 161 participants across four countries, offering a comprehensive analysis without the biases of traditional culture-based methods. High ESBL gene carriage rates were found in Ecuador, Ghana, and Vietnam, with regional differences in gene prevalence: blaTEM dominated in most countries, while blaSHV was most frequent in Ghana. These results highlight the widespread community-level dissemination of ESBL genes in low- and middle-income countries, underscoring the importance of using gene detection as a tool for assessing the spread of resistant bacteria.202540304472