# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1829 | 0 | 1.0000 | Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital. BACKGROUND: The burden of antibiotic resistant infection is mainly felt in low-to-middle income countries, where the rate of antimicrobial resistance is largely under-surveyed and under huge pressure from unregulated, disparate and often self-guided access to antimicrobials. Nosocomial infections from hospital environments have been shown to be a particularly prevalent source of multi-drug resistant strains, yet surveillance of hospital environmental contamination is often not investigated. METHODS: The study was prospective, observational and cross-sectional, sampling 231 high and low touch surfaces from 15th March to 13th April 2021, from five wards in the Cape Coast Teaching Hospital, Ghana. Microbial growth in the presence of vancomycin and either meropenem or cefotaxime was examined and bacterial species were identified by MALDI-TOF. The presence of common extended-spectrum β-lactamases (ESBL) and carbapenemase antimicrobial resistance genes (ARG) were identified through PCR screening, which were confirmed by phenotypic antimicrobial susceptibility determination. Isolates positive for carbapenem resistance genes were sequenced using a multi-platform approach. RESULTS: We recovered microbial growth from 99% of swabs (n = 229/231) plated on agar in the absence of antimicrobials. Multiple sites were found to be colonised with resistant bacteria throughout the hospital setting. Bacteria with multi-drug resistance and ARG of concern were isolated from high and low touch points with evidence of strain dissemination throughout the environment. A total of 21 differing species of bacteria carrying ARG were isolated. The high prevalence of Acinetobacter baumannii carrying bla(NDM-1) observed was further characterised by whole genome sequencing and phylogenetic analysis to determine the relationship between resistant strains found in different wards. CONCLUSION: Evidence of multiple clonal incursions of MDR bacteria of high sepsis risk were found in two separate wards for a regional hospital in Ghana. The prevalence of multiple bla(NDM) carrying species in combination with combinations of ESBLs was particularly concerning and unexpected in Africa. We also identify strains carrying tet(X3), bla(VIM-5) or bla(DIM-1) showing a high diversity of carbapenamases present as a reservoir in a hospital setting. Findings of multi-drug resistant bacteria from multiple environmental sites throughout the hospital will inform future IPC practices and aid research prioritisation for AMR in Ghana. | 2022 | 35296353 |
| 2254 | 1 | 0.9999 | Hospitalized Pets as a Source of Carbapenem-Resistance. The massive and irrational use of antibiotics in livestock productions has fostered the occurrence and spread of resistance to "old class antimicrobials." To cope with that phenomenon, some regulations have been already enforced in the member states of the European Union. However, a role of livestock animals in the relatively recent alerts on the rapid worldwide increase of resistance to last-choice antimicrobials as carbapenems is very unlikely. Conversely, these antimicrobials are increasingly administered in veterinary hospitals whose role in spreading bacteria or mobile genetic elements has not adequately been addressed so far. A cross-sectional study was carried out on 105 hospitalized and 100 non-hospitalized pets with the aim of measuring the prevalence of carbapenem-resistant Gram-negative bacteria (GNB) colonizing dogs and cats, either hospitalized or not hospitalized and estimating the relative odds. Stool samples were inoculated on MacConkey agar plates containing 1 mg/L imipenem which were then incubated aerobically at 37°C ± 1 for 48 h. Isolated bacteria were identified first by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and were confirmed by 16S rRNA sequencing. The genetic basis of resistance was investigated using PCR methods, gene or whole genome sequencing (WGS). The prevalence of pets harboring carbapenem-resistant bacteria was 11.4 and 1.0% in hospitalized and not-hospitalized animals, respectively, with an odds ratio of 12.8 (p < 0.01). One pet carried two diverse isolates. Overall, 14 gram-negative non-fermenting bacteria, specifically, one Acinetobacter radioresistens, five Acinetobacter baumannii, six Pseudomonas aeruginosa and two Stenotrophomonas maltophilia were isolated. The Acinetobacter species carried acquired carbapenemases genes encoded by bla (NDM-1) and bla (OXA-23). In contrast, Pseudomonas phenotypic resistance was associated with the presence of mutations in the oprD gene. Notably, inherent carbapenem-resistant isolates of S. maltophilia were also resistant to the first-line recommended chemotherapeutic trimethoprim/sulfamethoxazole. This study estimates the risk of colonization by carbapenem-resistant non-fermenting GNB in pets hospitalized in veterinary tertiary care centers and highlights their potential role in spreading resistance genes among the animal and human community. Public health authorities should consider extending surveillance systems and putting the release of critical antibiotics under more strict control in order to manage the infection/colonization of pets in veterinary settings. | 2018 | 30574124 |
| 1831 | 2 | 0.9999 | Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Early development of the microbiome has been shown to affect general health and physical development of the infant and, although some studies have been undertaken in high-income countries, there are few studies from low- and middle-income countries. As part of the BARNARDS study, we examined the rectal microbiota of 2,931 neonates (term used up to 60 d) with clinical signs of sepsis and of 15,217 mothers screening for bla(CTX-M-15), bla(NDM), bla(KPC) and bla(OXA-48)-like genes, which were detected in 56.1%, 18.5%, 0% and 4.1% of neonates' rectal swabs and 47.1%, 4.6%, 0% and 1.6% of mothers' rectal swabs, respectively. Carbapenemase-positive bacteria were identified by MALDI-TOF MS and showed a high diversity of bacterial species (57 distinct species/genera) which exhibited resistance to most of the antibiotics tested. Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae/E. cloacae complex, the most commonly found isolates, were subjected to whole-genome sequencing analysis and revealed close relationships between isolates from different samples, suggesting transmission of bacteria between neonates, and between neonates and mothers. Associations between the carriage of antimicrobial resistance genes (ARGs) and healthcare/environmental factors were identified, and the presence of ARGs was a predictor of neonatal sepsis and adverse birth outcomes. | 2022 | 35927336 |
| 1004 | 3 | 0.9999 | Hospital Wastes as Potential Sources for Multi-Drug-Resistant ESBL-Producing Bacteria at a Tertiary Hospital in Ethiopia. The hospital environment is increasingly becoming an important reservoir for multi-drug-resistant (MDR) Gram-negative bacteria, posing serious challenges to efforts to combat antimicrobial resistance (AMR). This study aimed to investigate the role of hospital waste as a potential source of MDR ESBL-producing bacteria. Samples were collected from multiple sources within a hospital and its vicinity, including surface swabs, houseflies, and sewage samples. The samples were subsequently processed in a microbiology laboratory to identify potential pathogenic bacteria and confirmed using MALDI-TOF MS. Bacteria were isolated from 87% of samples, with the predominant isolates being E. coli (30.5%), Klebsiella spp. (12.4%), Providencia spp. (12.4%), and Proteus spp. (11.9%). According to the double disc synergy test (DDST) analysis, nearly half (49.2%) of the bacteria were identified as ESBL producers. However, despite exhibiting complete resistance to beta-lactam antibiotics, 11.8% of them did not test positive for ESBL production. The characterization of E. coli revealed that 30.6% and 5.6% of them carried blaCTX-M group 1 type-15 and blaNDM genes, respectively. This finding emphasizes the importance of proper hospital sanitation and waste management practices to mitigate the spread of AMR within the healthcare setting and safeguard the health of both patients and the wider community. | 2024 | 38667050 |
| 1828 | 4 | 0.9999 | Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Carbapenemase-producing Enterobacterales (CPE) constitute a significant threat to healthcare systems. Continuous surveillance is important for the management and early warning of these bacteria. Sewage monitoring has been suggested as a possible resource-efficient complement to traditional clinical surveillance. It should not least be suitable for rare forms of resistance since a single sewage sample contains bacteria from a large number of individuals. Here, the value of sewage monitoring in early warning of CPE was assessed at the Sahlgrenska University Hospital in Gothenburg, Sweden, a setting with low prevalence of CPE. Twenty composite hospital sewage samples were collected during a two-year period. Carbapenemase genes in the complex samples were analyzed by quantitative PCR and the CPE loads were assessed through cultures on CPE-selective agar followed by species determination as well as phenotypic and genotypic tests targeting carbapenemases of presumed CPE. The findings were related to CPE detected in hospitalized patients. A subset of CPE isolates from sewage and patients were subjected to whole genome sequencing. For three of the investigated carbapenemase genes, bla(NDM), bla(OXA-48-like) and bla(KPC), there was concordance between gene levels and abundance of corresponding CPE in sewage. For the other two analyzed genes, bla(VIM) and bla(IMP), there was no such concordance, most likely due to the presence of those genes in non-Enterobacterales populating the sewage samples. In line with the detection of OXA-48-like- and NDM-producing CPE in sewage, these were also the most commonly detected CPE in patients. NDM-producing CPE were detected on a single occasion in sewage and isolated strains were shown to match strains detected in a patient. A marked peak in CPE producing OXA-48-like enzymes was observed in sewage during a few months. When levels started to increase there were no known cases of such CPE at the hospital but soon after a few cases were detected in samples from patients. The OXA-48-like-producing CPE from sewage and patients represented different strains, but they carried similar bla(OXA-48-like)-harbouring mobile genetic elements. In conclusion, sewage analyses show both promise and limitations as a complement to traditional clinical resistance surveillance for early warning of rare forms of resistance. Further evaluation and careful interpretation are needed to fully assess the value of such a sewage monitoring system. | 2021 | 34082263 |
| 1830 | 5 | 0.9998 | Shifts in bla genes and Class 1 integron prevalence in beta-lactamase-producing bacteria before and after the COVID-19 pandemic in Mendoza, Argentina. This study analyzes the molecular epidemiology of bla genes and Class 1 integron in broad-spectrum beta-lactamase (BSBL) and extended-spectrum beta-lactamase (ESBL) producing strains of bacteria isolated from clinical samples of hospitalized and ambulatory patients before and after the COVID-19 pandemic. Isolates obtained in two periods were compared: the first corresponding to the years November 2019-March 2020, and the second to the years November 2021-April 2022. We evaluate changes in resistance patterns of antibiotics associated with pressures on the healthcare system and social lockdowns. A total of 156 isolates were analyzed: 78 from the first period (61 hospitalized, 17 ambulatory) and 78 from the second period (47 hospitalized, 31 ambulatory). Escherichia coli and Klebsiella pneumoniae were the predominant bacterial species, representing 85% of the isolates in both periods. The frequency of ambulatory ESBL-producing isolates increased significantly, from 22% (17/78) to 40% (31/78; P < 0.01) in the second period. The prevalence of bla(SHV) increased from 24% (19/78) to 72% (56/78; P < 0.01) in the second period, while the bla(CTX-M-2) group, absent in the first period, was detected in 43% (34/78) of isolates from the second period. Strains from the second period exhibited greater genetic complexity, with an increased prevalence of combinations involving three or more bla genes, including isolates carrying up to five of such genes. Class 1 integron showed a strong correlation with resistance to ciprofloxacin and trimethoprim-sulfamethoxazole. The gene bla(OXA-1), previously associated with resistance to beta-lactamase inhibitors, did not show a clear pattern in the second period.IMPORTANCEAntimicrobial resistance associated with the production of extended-spectrum beta-lactamase (ESBL) represents a critical global health challenge, particularly due to the limited development of new antibiotics. This is the first report from Argentina's central-west region examining the prevalence of beta-lactamase-encoding genes, providing a framework for future research. Our findings reveal a significant increase in bacteria with the ESBL phenotype, particularly among ambulatory populations post-pandemic, suggesting a concerning spread of multidrug-resistant bacteria outside hospital environments. This could compromise empirical antibiotic treatments for ambulatory patients, increasing the risk of severe complications. Our results highlight the urgent need for ongoing surveillance to detect virulent strains before clonal spread or horizontal gene transfer occurs in the community. They also emphasize the importance of strategies to ensure the prudent use of antimicrobials and mitigate the increasing prevalence of resistance genes, which threatens the effectiveness of current therapeutic options. | 2025 | 40662585 |
| 1683 | 6 | 0.9998 | Colonization of a hand washing sink in a veterinary hospital by an Enterobacter hormaechei strain carrying multiple resistances to high importance antimicrobials. BACKGROUND: Hospital intensive care units (ICUs) are known reservoirs of multidrug resistant nosocomial bacteria. Targeted environmental monitoring of these organisms in health care facilities can strengthen infection control procedures. A routine surveillance of extended spectrum beta-lactamase (ESBL) producers in a large Australian veterinary teaching hospital detected the opportunistic pathogen Enterobacter hormaechei in a hand washing sink of the ICU. The organism persisted for several weeks, despite two disinfection attempts. Four isolates were characterized in this study. METHODS: Brilliance-ESBL selective plates were inoculated from environmental swabs collected throughout the hospital. Presumptive identification was done by conventional biochemistry. Genomes of multidrug resistant Enterobacter were entirely sequenced with Illumina and Nanopore platforms. Phylogenetic markers, mobile genetic elements and antimicrobial resistance genes were identified in silico. Antibiograms of isolates and transconjugants were established with Sensititre microdilution plates. RESULTS: The isolates possessed a chromosomal Tn7-associated silver/copper resistance locus and a large IncH12 conjugative plasmid encoding resistance against tellurium, arsenic, mercury and nine classes of antimicrobials. Clusters of antimicrobial resistance genes were associated with class 1 integrons and IS26, IS903 and ISCR transposable elements. The blaSHV-12, qnrB2 and mcr-9.1 genes, respectively conferring resistance to cephalosporins, quinolones and colistin, were present in a locus flanked by two IS903 copies. ESBL production and enrofloxacin resistance were confirmed phenotypically. The isolates appeared susceptible to colistin, possibly reflecting the inducible nature of mcr-9.1. CONCLUSIONS: The persistence of this strain in the veterinary hospital represented a risk of further accumulation and dissemination of antimicrobial resistance, prompting a thorough disinfection of the ICU. The organism was not recovered from subsequent environmental swabs, and nosocomial Enterobacter infections were not observed in the hospital during that period. This study shows that targeted routine environmental surveillance programs to track organisms with major resistance phenotypes, coupled with disinfection procedures and follow-up microbiological cultures are useful to control these risks in sensitive areas of large veterinary hospitals. | 2020 | 33087168 |
| 1680 | 7 | 0.9998 | Emergence of carbapenem resistant gram-negative pathogens with high rate of colistin resistance in Egypt: A cross sectional study to assess resistance trends during the COVID-19 pandemic. The current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi-drug resistant and carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem-resistant isolates, bla(NDM) and bla(OXA-48)-like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co-produced these two carbapenemase genes. The plasmid-mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last-resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing-based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR. | 2024 | 38494251 |
| 1827 | 8 | 0.9998 | Multinational comparison of the detection of extended-spectrum beta-lactamase genes in healthy resident feces. The spread of antimicrobial-resistant bacteria, especially in developing countries, is a critical healthcare issue. Among these, extended-spectrum beta-lactamase (ESBL)-producing bacteria are particularly concerning due to their resistance to third- and fourth-generation cephalosporins. Traditional methods for assessing bacterial resistance involve culturing bacteria on selective media from fecal samples, which may lead to selection bias. Alternatively, real-time PCR allows for detecting resistance genes directly from fecal DNA, providing a broader view of resistant bacteria. In this study, we evaluated the utility of a real-time PCR assay targeting ESBL-producing genes as a comprehensive detection method for ESBL-producing resistant bacteria in fecal samples. Additionally, we conducted a multinational comparative analysis of the colonization status of residents using this approach. The study analyzed ESBL genes in fecal samples from 161 residents in four countries: Ecuador, Ghana, Vietnam, and Japan. Samples from Ecuador, Ghana, and Vietnam, where ESBL carriage was notably high, revealed gene variations by country, with blaTEM genes being most common except in Ghana, where blaSHV genes predominated. These variations suggest that different bacterial hosts carry ESBL genes across countries. Quantitative PCR results further highlight that blaTEM is the most abundant ESBL gene. Although gene presence does not confirm antibiotic resistance, these findings underline significant ESBL carriage in low- and middle-income countries. The study emphasizes that gene detection in fecal samples is valuable for understanding resistant bacteria spread in communities.IMPORTANCEThe rise of antimicrobial-resistant bacteria, particularly extended-spectrum beta-lactamase (ESBL)-producing strains, poses a serious threat to healthcare in developing countries. This study utilized real-time PCR to detect ESBL genes directly from fecal DNA of 161 participants across four countries, offering a comprehensive analysis without the biases of traditional culture-based methods. High ESBL gene carriage rates were found in Ecuador, Ghana, and Vietnam, with regional differences in gene prevalence: blaTEM dominated in most countries, while blaSHV was most frequent in Ghana. These results highlight the widespread community-level dissemination of ESBL genes in low- and middle-income countries, underscoring the importance of using gene detection as a tool for assessing the spread of resistant bacteria. | 2025 | 40304472 |
| 2253 | 9 | 0.9998 | Biofilm Formation and Antibiotic Resistance Profiles in Carbapenemase-Producing Gram-Negative Rods-A Comparative Analysis between Screening and Pathological Isolates. (1) Background: Carbapenem-resistant (CR) bacteria pose a significant global public health challenge due to their ability to evade treatment with beta-lactam antibiotics, including carbapenems. This study investigates the biofilm-forming capabilities of CR clinical bacterial isolates and examines the impact of serum on biofilm formation. Additionally, the study evaluates the resistance profiles and genetic markers for carbapenemase production. (2) Methods: Bacterial isolates were collected from the microbiology laboratory of Mures County Clinical Hospital between October 2022 and September 2023. Pharyngeal and rectal swabs were screened for carbapenem-resistant bacteria using selective media. Lower respiratory tract samples were also analyzed for CR Gram-negative bacteria. The isolates were tested for their ability to form biofilms in the presence and absence of fetal bovine serum at 24 and 48 h. Carbapenemase production was detected phenotypically and confirmed via PCR for relevant genes. (3) Results: Out of 846 screened samples, 4.25% from pharyngeal swabs and 6.38% from rectal swabs tested positive for CR bacteria. Acinetobacter baumannii and Klebsiella pneumoniae were the most common species isolated. Biofilm formation varied significantly between clinical isolates and standard strains, with clinical isolates generally showing higher biofilm production. The presence of serum had no significant effect on biofilm formation in Klebsiella spp., but stimulated biofilm formation for Acinetobacter spp. Carbapenemase genes bla(KPC), bla(OXA-48-like), and bla(NDM) were detected in various isolates, predominantly in Klebsiella spp., but were not the main determinants of carbapenem resistance, at least in screening isolates. (4) Conclusions: This study highlights the variability in biofilm formation among CR clinical isolates and underscores the differences between the bacteria found as carriage versus infection. Both bacterial species and environmental factors variably influence biofilm formation. These insights are crucial for the development of effective treatment and infection control strategies in clinical settings. | 2024 | 39199988 |
| 1003 | 10 | 0.9998 | Molecular Surveillance and Dissemination of Klebsiella pneumoniae on Frequently Encountered Surfaces in South African Public Hospitals. Bacteria that cause life-threatening illnesses in humans are also capable of contaminating hospital surfaces, thus pose as a potential source of infection. This study aimed to investigate the prevalence, genetic diversity, virulence, and antibiotic resistance profile of Klebsiella pneumoniae in South Africa. In a nonoutbreak setting involving four public hospitals, 777 samples were collected in three different wards from 11 different sites. Phenotypic and genotypic methods were used for isolation and identification. The Kirby-Bauer disk-diffusion method was used to examine antibiotic resistance followed by the combination disk method to characterize extended-spectrum β-lactamases (ESBLs). Antibiotic resistance and virulence genes were screened using PCR and clonality was investigated using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Seventy-five (10%) K. pneumoniae isolates were recovered. These isolates were obtained from all four hospitals and all three wards involved. However, only six frequently touched surfaces were contaminated. Thirty (40%) isolates were characterized as ESBLs showing high resistance to antibiotics and mostly harboring the bla(CTX-M) group one gene. Virulence genes were highly prevalent among all the isolates. ERIC-PCR showed that the isolates recovered from different sites within the same hospital were genetically similar. The study highlighted that K. pneumoniae can contaminate various surfaces and this persistence allows for the dissemination of bacteria within the hospital environment. The information from this study can assist hospitals to evaluate and improve current infection prevention and control interventions in place. | 2022 | 34170205 |
| 904 | 11 | 0.9998 | High prevalence of contamination of sink drains with carbapenemase-producing Enterobacteriaceae in 4 intensive care units apart from any epidemic context. We report a high prevalence (28%) of sink drains contaminated with carbapenemase-producing Enterobacteriaceae (CPE) in 4 intensive care units with a history of CPE carriage in hospitalized patients within the previous 5 years, but apart from any current epidemic context. Carbapenemase genes, particularly bla(VIM) and bla(NDM), were identified by polymerase chain reaction in sink drains in which no CPE was detected, but very few data are available in the literature concerning their presence in sink drains. | 2020 | 31495643 |
| 1682 | 12 | 0.9998 | Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla (VIM-) (1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context. | 2019 | 31849911 |
| 2251 | 13 | 0.9998 | Direct-PCR from rectal swabs and environmental reservoirs: A fast and efficient alternative to detect bla(OXA-48) carbapenemase genes in an Enterobacter cloacae outbreak setting. Carbapenemase-producing bacteria are a risk factor in clinical settings worldwide. The aim of the study was to accelerate the time to results during an outbreak situation with bla(OXA-48)-positive Enterobacter cloacae by using a real-time multiplex quantitative PCR (qPCR) directly on rectal swab specimens and on wastewater samples to detect carbapenemase-producing bacteria. Thus, we analyzed 681 rectal swabs and 947 environmental samples during a five-month period by qPCR and compared the results to culture screening. The qPCR showed a sensitivity of 100% by testing directly from rectal swabs and was in ten cases more sensitive than the culture-based methods. Environmental screening for bla(OXA-48)-carbapenemase genes by qPCR revealed reservoirs of different carbapenemase genes that are potential sources of transmission and might lead to new outbreaks. The rapid identification of patients colonized with those isolates and screening of the hospital environment is essential for earlier patient treatment and eliminating potential sources of nosocomial infections. | 2022 | 34343553 |
| 879 | 14 | 0.9998 | Detection of New Delhi metallo-beta-lactamase enzyme gene bla (NDM-1) associated with the Int-1 gene in Gram-negative bacteria collected from the effluent treatment plant of a tuberculosis care hospital in Delhi, India. BACKGROUND: Organisms possessing the bla (NDM-1) gene (responsible for carbapenem resistance) with a class-1 integron can acquire many other antibiotic resistance genes from the community sewage pool and become multidrug-resistant superbugs. In this regard, hospital sewage, which contains a large quantity of residual antibiotics, metals and disinfectants, is being recognized as a significant cause of antimicrobial resistance (AMR) origination and spread across the major centres of the world and is thus routinely investigated as a marker for tracing the origin of drug resistance. Therefore, in this study, an attempt has been made to identify and characterize the carbapenem-resistant microbes associated with integron genes amongst the organisms isolated from the effluent treatment plant (ETP) installed in a tertiary respiratory care hospital in Delhi, India. METHODS: One hundred and thirty-eight organisms belonging to Escherichia , Klebsiella , Pseudomonas and Acinetobacter spp. were collected from the incoming and outgoing sewage lines of the ETP. Carbapenem sensitivity and characterization was performed by the imipenem and imipenem-EDTA disc diffusion method. Later DNA extraction and PCR steps were performed for the Int-1 and bla (NDM-1) genes. RESULTS: Of the 138 organisms, 86 (62.3 %) were imipenem-resistant (P<0.05). One hundred and twenty-four (89.9 %) organisms had one or both of the genes. Overall, the bla (NDM-1) gene (genotypic resistance) was present in 71 % (98/138) of organisms. 53.6 % (74/138) organisms were double gene-positive (bla (NDM-1) + Int-1), of which 40 were producing the metallo-beta-lactamase enzyme, making up almost 28.9 % (40/138) of the collected organisms. CONCLUSION: The current study strengthens the hypothesis that Carbapenem resistant organisms are in a high-circulation burden through the human gut and hospital ETPs are providing an environment for resistance origination and amplification. | 2020 | 32974589 |
| 1610 | 15 | 0.9998 | Antimicrobial resistance and metallo-beta-lactamase producing among commensal Escherichia coli isolates from healthy children of Khuzestan and Fars provinces; Iran. BACKGROUND: The emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; therefore, early detection of these isolates, particularly their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. A total of 412 fecal E. coli isolates were collected from October 2017 to December 2018. The study population included healthy infants and children aged < 3 years who did not exhibit symptoms of any diseases, especially gastrointestinal diseases. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum β-lactamase (ESBL) and MBL by phenotypic methods. Carbapenem-resistant isolates were investigated for the presence of MBL and carbapenemase genes, plasmid profiling, and the ability of conjugation. RESULTS: In sum, AMR, multi-drug resistance (MDR) and ESBL production were observed in more than 54.9, 36.2 and 11.7% of commensal E. coli isolates, respectively. Out of six isolates resistant to imipenem and meropenem, four isolates were phenotypically detected as MBL producers. Two and one E. coli strains carried the bla(NDM-1) and bla(VIM-2) genes, respectively and were able to transmit imipenem resistance through conjugation. CONCLUSION: Our findings showed that children not exposed to antibiotics can be colonized by E. coli isolates resistant to the commonly used antimicrobial compounds and can be a good indicator for the occurrence and prevalence of AMR in the community. These bacteria can act as a potential reservoir of AMR genes including MBL genes of pathogenic bacteria and lead to the dissemination of resistance mechanisms to other bacteria. | 2020 | 33256594 |
| 1675 | 16 | 0.9998 | Phenotypic and genetic extended spectrum beta lactamase profiles of bacterial isolates from ICU in tertiary level hospital in Kenya. BACKGROUND: Bacterial infections in the Intensive Care Units are a threat to the lives of critically ill patients. Their vulnerable immunity predisposes them to developing bacteria-associated sepsis, deteriorating their already fragile health. In the face of increasing antibiotics resistance, the problem of bacterial infection in ICU is worsening. Surveillance of bacterial infections in ICUs and drug resistance will help to understand the magnitude of the problem it poses and inform response strategies. We assessed bacterial infections in ICU setting by identifying prevalent Gram-negative bacterial species and characterized their antibiotic susceptibility patterns. METHODS: Cross-sectional samples collected from Kenyatta National Hospital ICU between January and June 2021 were cultured and phenotypic identification of culture-positive samples performed using VITEK 2. Antibiotic susceptibility patterns were determined based on Antimicrobial Susceptibility Testing (AST) results. Cephalosporin-resistant Gram-negative bacteria were assessed by PCR to detect the presence of ESBL genes including ( (bla) CTX-M, (bla) SHV, (bla) TEM, (bla) OXA). RESULTS AND DISCUSSION: Out of the 168 Gram-negative isolates, Acinetobacter baumanii was the most abundant (35%). Other isolates that were present at frequencies more than 15% are Klebsiella pneumoniae and Escherichia. coli. A. baumaniii is known to be a notorious bacterium in ICU due to its multidrug resistance nature. Indeed, A. baumanii isolates from Kenyatta National Hospital showed significantly high level of phenotypic resistance. Concordant with the high level of phenotypic resistance, we found high carriage of the ESBL genes among the isolates analysed in this study. Moreover, majority of isolates harboured all the four ESBL genes. CONCLUSION: A high rate of phenotypic and genetic resistance was detected among the tested isolates. Resistance to cephalosporins was primarily driven by acquisition of the ESBL genes. The high prevalence rate of ESBL genes in ICU bacterial isolates shown in this study has a important implication for ICU patient management and general antibiotics use. | 2023 | 39850338 |
| 878 | 17 | 0.9998 | Environmental Spread of New Delhi Metallo-β-Lactamase-1-Producing Multidrug-Resistant Bacteria in Dhaka, Bangladesh. Resistance to carbapenem antibiotics through the production of New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an emerging challenge in the treatment of bacterial infections. To monitor the possible source of the spread of these organisms in Dhaka, Bangladesh, we conducted a comparative analysis of wastewater samples from hospital-adjacent areas (HAR) and from community areas (COM), as well as public tap water samples, for the occurrence and characteristics of NDM-1-producing bacteria. Of 72 HAR samples tested, 51 (71%) samples were positive for NDM-1-producing bacteria, as evidenced by phenotypic tests and the presence of the bla(NDM-1) gene, compared to 5 of 41 (12.1%) samples from COM samples (P < 0.001). All tap water samples were negative for NDM-1-producing bacteria. Klebsiella pneumoniae (44%) was the predominant bacterial species among bla(NDM-1)-positive isolates, followed by Escherichia coli (29%), Acinetobacter spp. (15%), and Enterobacter spp. (9%). These bacteria were also positive for one or more other antibiotic resistance genes, including bla(CTX-M-1) (80%), bla(CTX-M-15) (63%), bla(TEM) (76%), bla(SHV) (33%), bla(CMY-2) (16%), bla(OXA-48-like) (2%), bla(OXA-1) (53%), and bla(OXA-47-like) (60%) genes. Around 40% of the isolates contained a qnr gene, while 50% had 16S rRNA methylase genes. The majority of isolates hosted multiple plasmids, and plasmids of 30 to 50 MDa carrying bla(NDM-1) were self-transmissible. Our results highlight a number of issues related to the characteristics and source of spread of multidrug-resistant bacteria as a potential public health threat. In view of the existing practice of discharging untreated liquid waste into the environment, hospitals in Dhaka city contribute to the potential dissemination of NDM-1-producing bacteria into the community.IMPORTANCE Infections caused by carbapenemase-producing Enterobacteriaceae are extremely difficult to manage due to their marked resistance to a wide range of antibiotics. NDM-1 is the most recently described carbapenemase, and the bla(NDM-1) gene, which encodes NDM-1, is located on self-transmissible plasmids that also carry a considerable number of other antibiotic resistance genes. The present study shows a high prevalence of NDM-1-producing organisms in the wastewater samples from hospital-adjacent areas as a potential source for the spread of these organisms to community areas in Dhaka, Bangladesh. The study also examines the characteristics of the isolates and their potential to horizontally transmit the resistance determinants. The significance of our research is in identifying the mode of spread of multiple-antibiotic-resistant organisms, which will allow the development of containment measures, leading to broader impacts in reducing their spread to the community. | 2017 | 28526792 |
| 1910 | 18 | 0.9998 | Surveillance of Multidrug-Resistant Genes in Clinically Significant Gram-Negative Bacteria Isolated from Hospital Wastewater. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) has become a serious public health threat worldwide. Among the various surveillance domains, hospital wastewater (HWW) has been overlooked, and it is the major reason for the threats posed by AMR. Therefore, the HWW domain is of paramount importance for tackling the AMR. In this regard, the present study investigated the occurrence of Gram-negative bacteria from HWW and evaluated the isolates' multi-drug-resistant (MDR) pattern in the study environment. METHODS: This descriptive study involves HWW samples (n = 24) consecutively collected across 6 months. The samples were cultured for bacteria, identified, and subjected to antimicrobial susceptibility testing via Kirby-Bauer. PCR confirmed the presence of drug-resistance genes in Gram-negative bacterial isolates. RESULTS: High rates of Enterobacterales resistant to carbapenems and cephalosporins observed in isolates from final treated effluent. The molecular screening showed tetD, tetE, tetG, catA1, catA2, bla(NDM-1), quinolones, qnrA, qnrB, qnrS, and qepa. CONCLUSIONS: Overall, our results suggest that microbiological surveillance and identification of resistance genes of clinically important pathogens in HWW can be a general screening method for early determination of under-detected antimicrobial resistance profiles in hospitals and early warning of outbreaks and difficult-to-treat infections. | 2025 | 40558197 |
| 5614 | 19 | 0.9998 | A metagenomic approach to One Health surveillance of antimicrobial resistance in a UK veterinary centre. There are currently no standardized guidelines for genomic surveillance of One Health antimicrobial resistance (AMR). This project aimed to utilize metagenomics to identify AMR genes present in a companion animal hospital and compare these with phenotypic results from bacterial isolates from clinical specimens from the same veterinary hospital. Samples were collected from sites within a primary care companion animal veterinary hospital in London, UK. Metagenomic DNA was sequenced using Oxford Nanopore Technologies MinION. The sequencing data were analysed for AMR genes, plasmids and clinically relevant pathogen species. These data were compared to phenotypic speciation and antibiotic susceptibility tests of bacterial isolates from patients. The most common resistance genes identified were aph (n=101 times genes were detected across 48 metagenomic samples), sul (84), bla (CARB) (63), tet (58) and bla (TEM) (46). In clinical isolates, a high proportion of isolates were phenotypically resistant to β-lactams. Rooms with the greatest mean number of resistance genes identified per swab site were the medical preparation room, dog ward and surgical preparation room. Twenty-four and four plasmids typically associated with Gram-positive and Enterobacteriaceae, respectively, were identified. Sequencing reads matched with 14 out of 22 (64%) of the phenotypically isolated bacterial species. Metagenomics identified AMR genes, plasmids and species of relevance to human and animal medicine. Communal animal-handling areas harboured more AMR genes than areas animals did not frequent. When considering infection prevention and control measures, adherence to, and frequency of, cleaning schedules, alongside potentially more comprehensive disinfection of animal-handling areas, may reduce the number of potentially harmful bacteria present. | 2025 | 40889140 |