# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1827 | 0 | 1.0000 | Multinational comparison of the detection of extended-spectrum beta-lactamase genes in healthy resident feces. The spread of antimicrobial-resistant bacteria, especially in developing countries, is a critical healthcare issue. Among these, extended-spectrum beta-lactamase (ESBL)-producing bacteria are particularly concerning due to their resistance to third- and fourth-generation cephalosporins. Traditional methods for assessing bacterial resistance involve culturing bacteria on selective media from fecal samples, which may lead to selection bias. Alternatively, real-time PCR allows for detecting resistance genes directly from fecal DNA, providing a broader view of resistant bacteria. In this study, we evaluated the utility of a real-time PCR assay targeting ESBL-producing genes as a comprehensive detection method for ESBL-producing resistant bacteria in fecal samples. Additionally, we conducted a multinational comparative analysis of the colonization status of residents using this approach. The study analyzed ESBL genes in fecal samples from 161 residents in four countries: Ecuador, Ghana, Vietnam, and Japan. Samples from Ecuador, Ghana, and Vietnam, where ESBL carriage was notably high, revealed gene variations by country, with blaTEM genes being most common except in Ghana, where blaSHV genes predominated. These variations suggest that different bacterial hosts carry ESBL genes across countries. Quantitative PCR results further highlight that blaTEM is the most abundant ESBL gene. Although gene presence does not confirm antibiotic resistance, these findings underline significant ESBL carriage in low- and middle-income countries. The study emphasizes that gene detection in fecal samples is valuable for understanding resistant bacteria spread in communities.IMPORTANCEThe rise of antimicrobial-resistant bacteria, particularly extended-spectrum beta-lactamase (ESBL)-producing strains, poses a serious threat to healthcare in developing countries. This study utilized real-time PCR to detect ESBL genes directly from fecal DNA of 161 participants across four countries, offering a comprehensive analysis without the biases of traditional culture-based methods. High ESBL gene carriage rates were found in Ecuador, Ghana, and Vietnam, with regional differences in gene prevalence: blaTEM dominated in most countries, while blaSHV was most frequent in Ghana. These results highlight the widespread community-level dissemination of ESBL genes in low- and middle-income countries, underscoring the importance of using gene detection as a tool for assessing the spread of resistant bacteria. | 2025 | 40304472 |
| 1828 | 1 | 0.9999 | Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Carbapenemase-producing Enterobacterales (CPE) constitute a significant threat to healthcare systems. Continuous surveillance is important for the management and early warning of these bacteria. Sewage monitoring has been suggested as a possible resource-efficient complement to traditional clinical surveillance. It should not least be suitable for rare forms of resistance since a single sewage sample contains bacteria from a large number of individuals. Here, the value of sewage monitoring in early warning of CPE was assessed at the Sahlgrenska University Hospital in Gothenburg, Sweden, a setting with low prevalence of CPE. Twenty composite hospital sewage samples were collected during a two-year period. Carbapenemase genes in the complex samples were analyzed by quantitative PCR and the CPE loads were assessed through cultures on CPE-selective agar followed by species determination as well as phenotypic and genotypic tests targeting carbapenemases of presumed CPE. The findings were related to CPE detected in hospitalized patients. A subset of CPE isolates from sewage and patients were subjected to whole genome sequencing. For three of the investigated carbapenemase genes, bla(NDM), bla(OXA-48-like) and bla(KPC), there was concordance between gene levels and abundance of corresponding CPE in sewage. For the other two analyzed genes, bla(VIM) and bla(IMP), there was no such concordance, most likely due to the presence of those genes in non-Enterobacterales populating the sewage samples. In line with the detection of OXA-48-like- and NDM-producing CPE in sewage, these were also the most commonly detected CPE in patients. NDM-producing CPE were detected on a single occasion in sewage and isolated strains were shown to match strains detected in a patient. A marked peak in CPE producing OXA-48-like enzymes was observed in sewage during a few months. When levels started to increase there were no known cases of such CPE at the hospital but soon after a few cases were detected in samples from patients. The OXA-48-like-producing CPE from sewage and patients represented different strains, but they carried similar bla(OXA-48-like)-harbouring mobile genetic elements. In conclusion, sewage analyses show both promise and limitations as a complement to traditional clinical resistance surveillance for early warning of rare forms of resistance. Further evaluation and careful interpretation are needed to fully assess the value of such a sewage monitoring system. | 2021 | 34082263 |
| 2532 | 2 | 0.9999 | Prevalence of ESBL-Resistant Genes in Birds in Italy-A Comprehensive Review. Antimicrobial resistance (AMR) is a major global concern in both human and veterinary medicine. Among antimicrobial resistance (AMR) bacteria, Extended-Spectrum Beta-Lactamases (ESBLs) pose a serious health risk because infections can be difficult to treat. These Gram-negative bacteria can be frequently found in poultry and in Italy, where such protein production is established. ESBL-producing Escherichia coli, Salmonella and Klebsiella in chicken and turkey may pose a significant public health risk due to potential transmission between poultry and humans. This review aims to assess the prevalence of ESBL-producing E. coli, Salmonella and Klebsiella phenotypically and genotypically in Italian poultry, identifying the most common genes, detection methods and potential information gaps. An initial pool of 1462 studies found in scientific databases (Web of Sciences, PubMed, etc.) was screened and 29 were identified as eligible for our review. Of these studies, 79.3% investigated both phenotypic and genotypic ESBL expression while blaCTX-M, blaTEM and blaSHV were considered as targeted gene families. Large differences in prevalence were reported (0-100%). The blaCTX-M-1 and blaTEM-1 genes were the most prevalent in Italian territory. ESBL-producing E. coli, Salmonella and Klebsiella were frequently detected in farms and slaughterhouses, posing a potential threat to humans through contact (direct and indirect) with birds through handling, inhalation of infected dust, drinking contaminated water, ingestion of meat and meat products and the environment. Considering the frequent occurrence of ESBL-producing bacteria in Italian poultry, it is advisable to further improve biosecurity and to introduce more systematic surveillance. Additionally, the focus should be on the wild birds as they are ESBL carriers. | 2025 | 40509064 |
| 1862 | 3 | 0.9999 | Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin - A Systematic Review and Meta-Analysis. Third generation cephalosporins and carbapenems are considered critically important antimicrobials in human medicine. Food animals such as swine can act as reservoirs of antimicrobial resistance (AMR) genes/bacteria resistant to these antimicrobial classes, and potential dissemination of AMR genes or resistant bacteria from pigs to humans is an ongoing public health threat. The objectives of this systematic review and meta-analysis were to: (1) estimate global proportion and animal-level prevalence of swine E. coli phenotypically resistant to third generation cephalosporins (3GCs) and carbapenems at a country level; and (2) measure abundances and global distribution of the genetic mechanisms that confer resistance to these antimicrobial classes in these E. coli isolates. Articles from four databases (CAB Abstracts, PubMed/MEDLINE, PubAg, and Web of Science) were screened to extract relevant data. Overall, proportion of E. coli resistant to 3GCs was lower in Australia, Europe, and North America compared to Asian countries. Globally, <5% of all E. coli were carbapenem-resistant. Fecal carriage rates (animal-level prevalence) were consistently manifold higher as compared to pooled proportion of resistance in E. coli isolates. bla (CTX-M) were the most common 3GC resistance genes globally, with the exception of North America where bla (CMY) were the predominant 3GC resistance genes. There was not a single dominant bla (CTX-M) gene subtype globally and several bla (CTX-M) subtypes were dominant depending on the continent. A wide variety of carbapenem-resistance genes (bla (NDM-, VIM-, IMP-, OXA-48), (and) (KPC-)) were identified to be circulating in pig populations globally, albeit at very-low frequencies. However, great statistical heterogeneity and a critical lack of metadata hinders the true estimation of prevalence of phenotypic and genotypic resistance to these antimicrobials. Comparatively frequent occurrence of 3GC resistance and emergence of carbapenem resistance in certain countries underline the urgent need for improved AMR surveillance in swine production systems in these countries. | 2022 | 35620091 |
| 1592 | 4 | 0.9998 | Identification of ESBL-Producing Enterobacterales From Vegetable Plants: Preliminary Findings From a Small Cross-Sectional Study in a Rural Area of Madagascar. Extended-spectrum beta-lactamases (ESBL)-producing enterobacterales are considered a key indicator for antimicrobial resistance (AMR) epidemiological surveillance in animal, human, and environment compartments. In this study, we aim to investigate the presence and genetic diversity of ESBL-producing enterobacterales on vegetable plants. We isolated beta-lactam resistant enterobacterales from several vegetable plants and sequenced their whole genome. Utilising standard genomic and phylogenetic methods, we sought to (i) characterise the resistance genes and plasmid content of the plant-isolated strains, (ii) investigate their genetic structure, and (iii) determine their relationships with strains from other reservoirs. Among the 22 strains collected from vegetable plants, 6 showed resistance to beta-lactam antibiotics, with 5 of them identified as ESBL producers. Our results indicated the presence of multidrug-resistant (MDR) strains containing multiple antibiotic resistance genes (ARGs). Importantly, no host-specific lineages were identified among the plant-isolated ESBL-producing E. coli (ESBL-Ec). Instead, these strains exhibited genetic and epidemiological connections with strains isolated from animals, humans, and the environment, suggesting transfer of ESBL-Ec between plants and other sources in rural Madagascar. These preliminary findings suggest that vegetable plants are contaminated as a result of human activities, posing a potential risk of human and animal exposure to antibiotic-resistant bacteria and genes. | 2025 | 40528688 |
| 1594 | 5 | 0.9998 | Production of extended-spectrum beta-lactamases in Escherichia coli isolated from poultry in Rio de Janeiro, Brazil. The overuse of antimicrobials in poultry has led to the development and dissemination of multidrug-resistant bacteria in the poultry industry. One of the most effective mechanisms of resistance found in Escherichia coli is the production of extended-spectrum β-lactamases (ESBL); there are several ESBLs, including the TEM, SHV, and CTX-M families. This resistance mechanism and the risks associated with transmitting these resistant microorganisms between animals, the environment, and humans can occur through direct contact and consumption of infected animals. This study aimed to determine the prevalence of E. coli in samples isolated from three broiler farms in Rio de Janeiro, Brazil, and screen the isolates for ESBL genes. The findings of this study demonstrated the presence of ESBL-producing E. coli in all farms studied. The findings of this study highlight the urgency for a program to monitor the poultry industry value chains at the regional level to control the spread of antimicrobial resistance. Therefore, we recommend that the enzyme subtypes produced by bacterial isolates should be determined to effectively characterize the distribution of genes related to antimicrobial resistance. | 2022 | 36533205 |
| 5614 | 6 | 0.9998 | A metagenomic approach to One Health surveillance of antimicrobial resistance in a UK veterinary centre. There are currently no standardized guidelines for genomic surveillance of One Health antimicrobial resistance (AMR). This project aimed to utilize metagenomics to identify AMR genes present in a companion animal hospital and compare these with phenotypic results from bacterial isolates from clinical specimens from the same veterinary hospital. Samples were collected from sites within a primary care companion animal veterinary hospital in London, UK. Metagenomic DNA was sequenced using Oxford Nanopore Technologies MinION. The sequencing data were analysed for AMR genes, plasmids and clinically relevant pathogen species. These data were compared to phenotypic speciation and antibiotic susceptibility tests of bacterial isolates from patients. The most common resistance genes identified were aph (n=101 times genes were detected across 48 metagenomic samples), sul (84), bla (CARB) (63), tet (58) and bla (TEM) (46). In clinical isolates, a high proportion of isolates were phenotypically resistant to β-lactams. Rooms with the greatest mean number of resistance genes identified per swab site were the medical preparation room, dog ward and surgical preparation room. Twenty-four and four plasmids typically associated with Gram-positive and Enterobacteriaceae, respectively, were identified. Sequencing reads matched with 14 out of 22 (64%) of the phenotypically isolated bacterial species. Metagenomics identified AMR genes, plasmids and species of relevance to human and animal medicine. Communal animal-handling areas harboured more AMR genes than areas animals did not frequent. When considering infection prevention and control measures, adherence to, and frequency of, cleaning schedules, alongside potentially more comprehensive disinfection of animal-handling areas, may reduce the number of potentially harmful bacteria present. | 2025 | 40889140 |
| 2750 | 7 | 0.9998 | Extended-spectrum β-lactamases genes in Gram-negative isolates from an urban river in Nicaragua. Limited resources and inadequate surveillance systems in developing countries have hindered research on antibiotic resistance gene transfer in aquatic environments. In this context, our study aimed to identify extended-spectrum beta-lactamase gene variants in Gram-negative isolates from the Tipitapa River-a significant Central America ecosystem. Samples were collected and assessed for key water parameters: dissolved oxygen, electrical conductivity, pH, and temperature. We employed a mix of microbiological, biochemical and molecular techniques, including multiplex PCR and sequencing, to characterize bacteria and determine the bla gene variants. Water quality parameters indicated areas impacted by human activities with high mineralization and eutrophication conditions. Among the bacteria analyzed, 48% belonged to the Enterobacteriaceae family, and a significant 88% displayed extended-spectrum beta-lactamases. Sequencing revealed four distinct bla gene variants in 84% of the isolates: bla-SHV-24, bla-SHV-13, bla-TEM-1, and bla-TEM-116, with bla-SHV-24 being the most common (47.62%). This is the first report of bla gene variants in the Tipitapa River, revealing their presence in globally concerning bacteria. The robust methodology enhances surveillance, enables geographic profiling of bla gene variants, and improves our understanding of biochemical patterns and gene transmission dynamics, providing essential insights into the global distribution of antibiotic resistance genes in Central America's natural waters. | 2025 | 39907335 |
| 1910 | 8 | 0.9998 | Surveillance of Multidrug-Resistant Genes in Clinically Significant Gram-Negative Bacteria Isolated from Hospital Wastewater. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) has become a serious public health threat worldwide. Among the various surveillance domains, hospital wastewater (HWW) has been overlooked, and it is the major reason for the threats posed by AMR. Therefore, the HWW domain is of paramount importance for tackling the AMR. In this regard, the present study investigated the occurrence of Gram-negative bacteria from HWW and evaluated the isolates' multi-drug-resistant (MDR) pattern in the study environment. METHODS: This descriptive study involves HWW samples (n = 24) consecutively collected across 6 months. The samples were cultured for bacteria, identified, and subjected to antimicrobial susceptibility testing via Kirby-Bauer. PCR confirmed the presence of drug-resistance genes in Gram-negative bacterial isolates. RESULTS: High rates of Enterobacterales resistant to carbapenems and cephalosporins observed in isolates from final treated effluent. The molecular screening showed tetD, tetE, tetG, catA1, catA2, bla(NDM-1), quinolones, qnrA, qnrB, qnrS, and qepa. CONCLUSIONS: Overall, our results suggest that microbiological surveillance and identification of resistance genes of clinically important pathogens in HWW can be a general screening method for early determination of under-detected antimicrobial resistance profiles in hospitals and early warning of outbreaks and difficult-to-treat infections. | 2025 | 40558197 |
| 1593 | 9 | 0.9998 | Epidemiological Description and Detection of Antimicrobial Resistance in Various Aquatic Sites in Marseille, France. Antibiotic resistance is a worldwide public health concern and has been associated with reports of elevated mortality. According to the One Health concept, antibiotic resistance genes are transferrable to organisms, and organisms are shared among humans, animals, and the environment. Consequently, aquatic environments are a possible reservoir of bacteria harboring antibiotic resistance genes. In our study, we screened water and wastewater samples for antibiotic resistance genes by culturing samples on different types of agar media. Then, we performed real-time PCR to detect the presence of genes conferring resistance to beta lactams and colistin, followed by standard PCR and gene sequencing for verification. We mainly isolated Enterobacteriaceae from all samples. In water samples, 36 Gram-negative bacterial strains were isolated and identified. We found three extended-spectrum β-lactamase (ESBL)-producing bacteria-Escherichia coli and Enterobacter cloacae strains-harboring the CTX-M and TEM groups. In wastewater samples, we isolated 114 Gram-negative bacterial strains, mainly E. coli, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis strains. Forty-two bacterial strains were ESBL-producing bacteria, and they harbored at least one gene belonging to the CTX-M, SHV, and TEM groups. We also detected carbapenem-resistant genes, including NDM, KPC, and OXA-48, in four isolates of E. coli. This short epidemiological study allowed us to identify new antibiotic resistance genes present in bacterial strains isolated from water in Marseille. This type of surveillance shows the importance of tracking bacterial resistance in aquatic environments. IMPORTANCE Antibiotic-resistant bacteria are involved in serious infections in humans. The dissemination of these bacteria in water, which is in close contact with human activities, is a serious problem, especially under the concept of One Health. This study was done to survey and localize the circulation of bacterial strains, along with their antibiotic resistance genes, in the aquatic environment in Marseille, France. The importance of this study is to monitor the frequency of these circulating bacteria by creating and surveying water treatments. | 2023 | 36976002 |
| 1829 | 10 | 0.9998 | Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital. BACKGROUND: The burden of antibiotic resistant infection is mainly felt in low-to-middle income countries, where the rate of antimicrobial resistance is largely under-surveyed and under huge pressure from unregulated, disparate and often self-guided access to antimicrobials. Nosocomial infections from hospital environments have been shown to be a particularly prevalent source of multi-drug resistant strains, yet surveillance of hospital environmental contamination is often not investigated. METHODS: The study was prospective, observational and cross-sectional, sampling 231 high and low touch surfaces from 15th March to 13th April 2021, from five wards in the Cape Coast Teaching Hospital, Ghana. Microbial growth in the presence of vancomycin and either meropenem or cefotaxime was examined and bacterial species were identified by MALDI-TOF. The presence of common extended-spectrum β-lactamases (ESBL) and carbapenemase antimicrobial resistance genes (ARG) were identified through PCR screening, which were confirmed by phenotypic antimicrobial susceptibility determination. Isolates positive for carbapenem resistance genes were sequenced using a multi-platform approach. RESULTS: We recovered microbial growth from 99% of swabs (n = 229/231) plated on agar in the absence of antimicrobials. Multiple sites were found to be colonised with resistant bacteria throughout the hospital setting. Bacteria with multi-drug resistance and ARG of concern were isolated from high and low touch points with evidence of strain dissemination throughout the environment. A total of 21 differing species of bacteria carrying ARG were isolated. The high prevalence of Acinetobacter baumannii carrying bla(NDM-1) observed was further characterised by whole genome sequencing and phylogenetic analysis to determine the relationship between resistant strains found in different wards. CONCLUSION: Evidence of multiple clonal incursions of MDR bacteria of high sepsis risk were found in two separate wards for a regional hospital in Ghana. The prevalence of multiple bla(NDM) carrying species in combination with combinations of ESBLs was particularly concerning and unexpected in Africa. We also identify strains carrying tet(X3), bla(VIM-5) or bla(DIM-1) showing a high diversity of carbapenamases present as a reservoir in a hospital setting. Findings of multi-drug resistant bacteria from multiple environmental sites throughout the hospital will inform future IPC practices and aid research prioritisation for AMR in Ghana. | 2022 | 35296353 |
| 1830 | 11 | 0.9998 | Shifts in bla genes and Class 1 integron prevalence in beta-lactamase-producing bacteria before and after the COVID-19 pandemic in Mendoza, Argentina. This study analyzes the molecular epidemiology of bla genes and Class 1 integron in broad-spectrum beta-lactamase (BSBL) and extended-spectrum beta-lactamase (ESBL) producing strains of bacteria isolated from clinical samples of hospitalized and ambulatory patients before and after the COVID-19 pandemic. Isolates obtained in two periods were compared: the first corresponding to the years November 2019-March 2020, and the second to the years November 2021-April 2022. We evaluate changes in resistance patterns of antibiotics associated with pressures on the healthcare system and social lockdowns. A total of 156 isolates were analyzed: 78 from the first period (61 hospitalized, 17 ambulatory) and 78 from the second period (47 hospitalized, 31 ambulatory). Escherichia coli and Klebsiella pneumoniae were the predominant bacterial species, representing 85% of the isolates in both periods. The frequency of ambulatory ESBL-producing isolates increased significantly, from 22% (17/78) to 40% (31/78; P < 0.01) in the second period. The prevalence of bla(SHV) increased from 24% (19/78) to 72% (56/78; P < 0.01) in the second period, while the bla(CTX-M-2) group, absent in the first period, was detected in 43% (34/78) of isolates from the second period. Strains from the second period exhibited greater genetic complexity, with an increased prevalence of combinations involving three or more bla genes, including isolates carrying up to five of such genes. Class 1 integron showed a strong correlation with resistance to ciprofloxacin and trimethoprim-sulfamethoxazole. The gene bla(OXA-1), previously associated with resistance to beta-lactamase inhibitors, did not show a clear pattern in the second period.IMPORTANCEAntimicrobial resistance associated with the production of extended-spectrum beta-lactamase (ESBL) represents a critical global health challenge, particularly due to the limited development of new antibiotics. This is the first report from Argentina's central-west region examining the prevalence of beta-lactamase-encoding genes, providing a framework for future research. Our findings reveal a significant increase in bacteria with the ESBL phenotype, particularly among ambulatory populations post-pandemic, suggesting a concerning spread of multidrug-resistant bacteria outside hospital environments. This could compromise empirical antibiotic treatments for ambulatory patients, increasing the risk of severe complications. Our results highlight the urgent need for ongoing surveillance to detect virulent strains before clonal spread or horizontal gene transfer occurs in the community. They also emphasize the importance of strategies to ensure the prudent use of antimicrobials and mitigate the increasing prevalence of resistance genes, which threatens the effectiveness of current therapeutic options. | 2025 | 40662585 |
| 1901 | 12 | 0.9998 | Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that bla(CTX-M) is the dominant ESBL gene type found in South Korea. The spread of bla(CTX-M) appears to have been facilitated by both clonal spread between different host species and conjugation. Most bla(CTX-M) genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of bla(CTX-M)-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes. | 2024 | 38554973 |
| 5610 | 13 | 0.9998 | Characterization of antimicrobial resistance profiles in Escherichia coli isolated from captive mammals in Ecuador. BACKGROUND: This study focuses on the AMR profiles in E. coli isolated from captive mammals at EcoZoo San Martín, Baños de Agua Santa, Ecuador, highlighting the role of wildlife as reservoirs of resistant bacteria. AIMS: The aim of this research is to investigate the antimicrobial resistance profiles of E. coli strains isolated from various species of captive mammals, emphasizing the potential zoonotic risks and the necessity for integrated AMR management strategies. MATERIALS & METHODS: A total of 189 fecal samples were collected from 70 mammals across 27 species. These samples were screened for E. coli, resulting in 90 identified strains. The resistance profiles of these strains to 16 antibiotics, including 10 β-lactams and 6 non-β-lactams, were determined using the disk diffusion method. Additionally, the presence of Extended-Spectrum Beta-Lactamase (ESBL) genes and other resistance genes was analyzed using PCR. RESULTS: Significant resistance was observed, with 52.22% of isolates resistant to ampicillin, 42.22% to ceftriaxone and cefuroxime, and 27.78% identified as ESBL-producing E. coli. Multiresistance (resistance to more than three antibiotic groups) was found in 35.56% of isolates. Carnivorous and omnivorous animals, particularly those with prior antibiotic treatments, were more likely to harbor resistant strains. DISCUSSION: These findings underscore the role of captive mammals as indicators of environmental AMR. The high prevalence of resistant E. coli in these animals suggests that zoos could be significant reservoirs for the spread of antibiotic-resistant bacteria. The results align with other studies showing that diet and antibiotic treatment history influence resistance profiles. CONCLUSION: The study highlights the need for an integrated approach involving veterinary care, habitat management, and public awareness to prevent captive wildlife from becoming reservoirs of antibiotic-resistant bacteria. Improved waste management practices and responsible antibiotic use are crucial to mitigate the risks of AMR in zoo environments and reduce zoonotic threats. | 2024 | 39016692 |
| 1840 | 14 | 0.9998 | Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. Animals have been identified as potential reservoirs and vectors of resistance genes, with studies showing that Gram-negative bacteria can acquire resistance through the horizontal transmission of resistance genes on plasmids. It is important to understand the distribution of antimicrobial-resistant bacteria and their drug-resistant genes in animals. Previous review articles mostly focused on a single bacterium or a single animal. Our objective is to compile all ESBL-producing bacteria isolated from various animals in recent years and provide a comprehensive viewpoint. Using a thorough PubMed literature search spanning from 1 January 2020 to 30 June 2022, studies exploring extended-spectrum beta-lactamase (ESBL) producing bacteria in animals were included. ESBL-producing bacteria are present in animals from various countries around the world. The most common sources of these bacteria were farm animals, and the most frequently isolated bacteria were Escherichia coli and Klebsiella pneumoniae. The most detected ESBL genes were bla(TEM), bla(SHV), and bla(CTX-M). The presence of ESBL-producing bacteria in animals highlights the importance of the One Health approach to address the issue of antibiotic resistance. Further research is needed to better understand the epidemiology and mechanisms of the spread of ESBL-producing bacteria in animal populations and their potential impact on human and animal health. | 2023 | 37107023 |
| 5570 | 15 | 0.9998 | Monitoring the Spread of Multidrug-Resistant Escherichia coli Throughout the Broiler Production Cycle. The extensive use of antimicrobials in broiler production is changing the bird microbiota, fostering drug-resistant bacteria, and complicating therapeutic interventions, making the problem of multidrug resistance global. The monitoring of antimicrobial virulence and resistance genes are tools that have come to assist the breeding of these animals, directing possible treatments as already used in human medicine and collecting data to demonstrate possible dissemination of multidrug-resistant strains that may cause damage to industry and public health. This work aimed to monitor broiler farms in southern Brazil, isolating samples of E. coli and classifying them according to the profile of resistance to antimicrobials of interest to human and animal health. We also monitored the profile of virulence genes and conducted an epidemiological survey of possible risk factors that contribute to this selection of multidrug-resistant isolates. Monitoring was carried out on farms in the three southern states of the country, collecting samples of poultry litter, cloacal swabs, and beetles of the species Alphitobius diaperinus, isolating E. coli from each of these samples. These were evaluated by testing their susceptibility to antimicrobials of animal and human interest; detecting whether the samples were extended-spectrum β-lactamase enzyme (ESBL) producers; and when positive, selected for genotypic tests to identify resistant genes (CTX-M, TEM, and SHV) and virulence. Among the antimicrobials tested, enrofloxacin and ciprofloxacin demonstrated some of the highest frequencies of resistance in the isolated strains, with significant statistical results. The use of these antimicrobials increased the likelihood of resistance by over three times and was associated with a 1.5-fold higher probability of multidrug resistance. Of all isolates, 95% were multidrug-resistant, raising concerns for production and public health. Among 231 ESBL-positive samples, the CTX-M1 group predominated. | 2025 | 39858355 |
| 1831 | 16 | 0.9998 | Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Early development of the microbiome has been shown to affect general health and physical development of the infant and, although some studies have been undertaken in high-income countries, there are few studies from low- and middle-income countries. As part of the BARNARDS study, we examined the rectal microbiota of 2,931 neonates (term used up to 60 d) with clinical signs of sepsis and of 15,217 mothers screening for bla(CTX-M-15), bla(NDM), bla(KPC) and bla(OXA-48)-like genes, which were detected in 56.1%, 18.5%, 0% and 4.1% of neonates' rectal swabs and 47.1%, 4.6%, 0% and 1.6% of mothers' rectal swabs, respectively. Carbapenemase-positive bacteria were identified by MALDI-TOF MS and showed a high diversity of bacterial species (57 distinct species/genera) which exhibited resistance to most of the antibiotics tested. Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae/E. cloacae complex, the most commonly found isolates, were subjected to whole-genome sequencing analysis and revealed close relationships between isolates from different samples, suggesting transmission of bacteria between neonates, and between neonates and mothers. Associations between the carriage of antimicrobial resistance genes (ARGs) and healthcare/environmental factors were identified, and the presence of ARGs was a predictor of neonatal sepsis and adverse birth outcomes. | 2022 | 35927336 |
| 1863 | 17 | 0.9998 | Genomic surveillance of extended-spectrum cephalosporin-resistant Escherichia coli isolated from poultry in the UK from 2016 to 2020. INTRODUCTION: Surveillance is vital for monitoring the increasing risk of antimicrobial resistance (AMR) in bacteria leading to failures in humans and animals to treat infections. In a One Health context, AMR bacteria from livestock and food can transfer through the food chain to humans, and vice versa, which can be characterized in detail through genomics. We investigated the critical aspects of AMR and the dynamics of AMR in poultry in the UK. METHODS: In this study, we performed whole genome sequencing for genomic characterization of 761 extended-spectrum cephalosporinases (ESCs) harboring Escherichia coli isolated from poultry caeca and meat through EU harmonized monitoring of AMR in zoonotic and commensal bacteria from 2016 and 2018 and UK national monitoring in 2020. RESULTS: The most common ESC in 2016 and 2018 was blaCTX-M-1; however, 2020 had a greater diversity of ESCs with blaCTX-M-55 dominant in chickens and blaCTX-M-15 more prevalent in turkeys. Co-resistance to sulphonamides, tetracycline, and trimethoprim was widespread, and there were several positive correlations between the sequence types (STs) and ESC genes. We identified certain AMR genotypes and STs that were frequent each year but not as successful in subsequent years, e.g., ST350 harboring blaCTX-M-1, sul2, and tetA-v4.Phylogenetic comparison of isolates prevalent in our panel with global ones from the same STs available in public databases showed that isolates from the UK generally clustered together, suggesting greater within-country than between-country transmission. DISCUSSION: We conclude that future genomic surveillance of indicator organisms will be invaluable as it will enable detailed comparisons of AMR between and within neighboring countries, potentially identifying the most successful sequence types, plasmids, or emerging threats. | 2023 | 38352060 |
| 1000 | 18 | 0.9998 | Development and evaluation of a sensitive approach for detection and recovery of third-generation cephalosporin- and carbapenem-resistant Enterobacterales from ready-to-eat frozen stone fruit. Antimicrobial resistance (AMR) is a global public health threat, but the role of foods in its dissemination is poorly understood. We examined the incidence of foodborne bacteria carrying AMR genes considered high-priority research targets by the World Health Organization. Frozen, ready-to-eat, avocado, coconut, mango, and peach (n = 161) were tested for bacteria encoding extended-spectrum β-lactamases (ESBLs) and carbapenemases. Over 600 presumptive-positive isolates were recovered and analyzed with a pooled sequencing (Pool-seq) strategy. Coconut samples exhibited the highest bacterial loads and prevalence/diversity of AMR genes. Isolates harbouring the β-lactamase genes bla(ctx-m), bla(tem), and bla(shv), identified in 14 coconut and 2 mango samples, were further characterized by whole-genome sequencing and antimicrobial susceptibility testing. The most common gene was bla(ctx-m-15), detected in 20 unique strains. Two carbapenemase-producing strains were isolated from coconut: Enterobacter roggenkampii encoding bla(ndm-1) and Escherichia coli encoding bla(ndm-5). Subsequent quantitative PCR (qPCR) analysis of enrichments for bla(ctx-m)/bla(ndm) indicated a potentially higher prevalence of these genes than observed by colony screening. This study presents a practical method for recovering ESBL- and carbapenemase-producing bacteria from foods. Mapping their distribution in food products is crucial to assessing the role of foods in the global spread of AMR and developing effective public health interventions. | 2025 | 39999428 |
| 1907 | 19 | 0.9998 | Nationwide surveillance of carbapenem-resistant Gram-negative pathogens in the Lebanese environment. Gram-negative ESKAPE pathogens with carbapenem resistance pose a significant health threat. Despite extensive research on the spread of these pathogens within Lebanese hospital settings, their emergence in environmental settings remains understudied. This study aimed to explore the environmental spread of carbapenem resistance among Gram-negative bacteria isolated from environmental samples in nine districts across Lebanon. A total of 250 samples were collected from wild animals, sewage, water, and soil between June 2022 and September 2023. Samples were streaked on MacConkey agar plates supplemented with 2 mg/L meropenem. Bacterial species were identified primarily using API20E. Antimicrobial susceptibility profiles were determined by the disk diffusion method and the Vitek 2 compact system. Meropenem-resistant Gram-negative bacteria were further characterized by whole-genome sequencing, and each of the bacterial species, sequence types, resistance genes, and plasmids was detected by sequence data analysis. We successfully isolated 130 carbapenem-resistant isolates from various samples, 67 of which belonged to the ESKAPE pathogens list and showed a multidrug-resistant (MDR) profile. The distribution of the latter was as follows: Escherichia coli (65.67%), Acinetobacter baumannii (16.42%), Pseudomonas aeruginosa (11.94%), and Klebsiella pneumoniae (5.97%). Several carbapenem resistance genes were detected, with a prevalence of blaNDM-5 in Escherichia coli and Klebsiella pneumoniae, blaIMP-1 and mexAB-OprM efflux pumps in Pseudomonas aeruginosa, and blaOXA-23 in Acinetobacter baumannii. Our findings revealed a widespread distribution of carbapenem-resistant ESKAPE bacteria in Lebanon, underscoring the significant public health risk posed by these pathogens. This highlights the urgent need to address the dissemination of antibiotic resistance in Lebanese environmental settings. IMPORTANCE: The emergence of antimicrobial resistance (AMR) extremely burdens public health and increases morbid and mortal threats in Lebanon. While the majority of the studies in our country target antimicrobial resistance in clinical settings, fewer studies focus on antimicrobial resistance dissemination in the environment. The significance of our research is that it sheds light on the environment as a less explored yet equally crucial sector in the spread of AMR. Here, we isolated carbapenemase-producing bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) that were categorized as multidrug resistant (MDR) from diverse environmental sources in multiple provinces across Lebanon. The finding of carbapenem-resistant bacteria carrying plasmids represents a potential risk due to the possible spread of resistance genes via horizontal gene transfer across the environment and hospital settings. This highly recommends the implementation of regular surveillance to monitor the spread of antimicrobial resistance among environmental bacteria, which consequently leads to its spread within communities and thus poses a great threat to human health. | 2025 | 40492734 |