Pathogen Detection and Resistome Analysis in Healthy Shelter Dogs Using Whole Metagenome Sequencing. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
181201.0000Pathogen Detection and Resistome Analysis in Healthy Shelter Dogs Using Whole Metagenome Sequencing. According to the Humane Society, 25 to 40 percent of pet dogs in the United States are adopted from animal shelters. Shelter dogs can harbor bacterial, viral, fungal, and protozoal pathogens, posing risks to canine and human health. These bacterial pathogens may also carry antibiotic resistance genes (ARGs), serving as a reservoir for antimicrobial resistance (AMR) transmission. This study aimed to utilize whole metagenome sequencing (WMS) to screen for microbial pathogens and assess the resistome in healthy shelter dogs. Fecal samples from 58 healthy shelter dogs across 10 shelters in Kentucky, Tennessee, and Virginia were analyzed using WMS. Genomic DNA was extracted, and bioinformatics analyses were performed to identify pathogens and ARGs. The WMS detected 53 potentially zoonotic or known pathogens including thirty-eight bacterial species, two protozoa, five yeast species, one nematode, four molds, and three viruses. A total of 4560 ARGs signatures representing 182 unique genes across 14 antibiotic classes were detected. Tetracycline resistance genes were most abundant (49%), while β-lactam resistance genes showed the highest diversity with 75 unique ARGs. ARGs were predominantly detected in commensal bacteria; however, nearly half (18/38, 47.4%) of known bacterial pathogens detected in this study carried ARGs for resistance to one or more antibiotic classes. This study provides evidence that healthy shelter dogs carry a diverse range of zoonotic and antibiotic-resistant pathogens, posing a transmission risk through fecal shedding. These findings highlight the value of WMS for pathogen detection and AMR surveillance, informing therapeutic and prophylactic strategies to mitigate the transmission of pathogens among shelter dog populations and the risk associated with zoonoses.202539860994
287710.9997Metagenomic insights into isolable bacterial communities and antimicrobial resistance in airborne dust from pig farms. This study aims to investigate bacterial communities and antimicrobial resistance (AMR) in airborne dust from pig farms. Airborne dust, pig feces and feed were collected from nine pig farms in Thailand. Airborne dust samples were collected from upwind and downwind (25 meters from pig house), and inside (in the middle of the pig house) of the selected pig house. Pig feces and feed samples were individually collected from the pen floor and feed trough from the same pig house where airborne dust was collected. A direct total bacteria count on each sampling plate was conducted and averaged. The ESKAPE pathogens together with Escherichia coli, Salmonella, and Streptococcus were examined. A total of 163 bacterial isolates were collected and tested for MICs. Pooled bacteria from the inside airborne dust samples were analyzed using Metagenomic Sequencing. The highest bacterial concentration (1.9-11.2 × 10(3) CFU/m(3)) was found inside pig houses. Staphylococcus (n = 37) and Enterococcus (n = 36) were most frequent bacterial species. Salmonella (n = 3) were exclusively isolated from feed and feces. Target bacteria showed a variety of resistance phenotypes, and the same bacterial species with the same resistance phenotype were found in airborne dust, feed and fecal from each farm. Metagenomic Sequencing analysis revealed 1,652 bacterial species across all pig farms, of which the predominant bacterial phylum was Bacillota. One hundred fifty-nine AMR genes of 12 different antibiotic classes were identified, with aminoglycoside resistance genes (24%) being the most prevalent. A total of 251 different plasmids were discovered, and the same plasmid was detected in multiple farms. In conclusion, the phenotypic and metagenomic results demonstrated that airborne dust from pig farms contained a diverse array of bacterial species and genes encoding resistance to a range of clinically important antimicrobial agents, indicating the significant role in the spread of AMR bacterial pathogens with potential hazards to human health. Policy measurements to address AMR in airborne dust from livestock farms are mandatory.202438872793
181120.9996Abundance of clinically relevant antimicrobial resistance genes in the golden jackal (Canis aureus) gut. The spread of antimicrobial resistance (AMR) is a critical One Health issue. Wildlife could act as reservoirs or vehicles of AMR bacteria (ARBs) and AMR genes (ARGs) but are relatively understudied. We sought to investigate clinically relevant ARGs in golden jackals (Canis aureus) thriving near human settlements in Israel. Fecal samples were collected from 111 jackals across four regions over a 10-month period. Various animal and spatio-temporal metadata were collected. Samples were analyzed by quantitative PCR (qPCR) for beta-lactamases (blaTEM, blaCTX-M15, and blaSHV), qnrS and int1. A subset of samples was subject to shotgun metagenomic sequencing followed by resistome and microbiome analyses. qPCR detected a high prevalence of ARGs, including beta-lactamases (blaTEM-1, 96.4%; blaCTX-M-15, 51.4%, blaSHV, 15.3%), fluoroquinolone resistance (qnrS, 87.4%), and class 1 integrons (Int1, 94.6%). The blaTEM-1 gene was found to be more prevalent in adult jackals compared to younger ones. Metagenomic analysis of a subset of samples revealed a diverse gut microbiome harboring a rich resistome with tetracycline resistance genes being the most prevalent. Metagenome-assembled genome analysis further identified several ARGs associated with clinically relevant bacteria. These findings highlight the potential role of golden jackals as reservoirs for AMR and emphasize the need for ongoing surveillance to better understand AMR transmission dynamics at the wildlife-human interface. IMPORTANCE: The research highlights the potential role of the golden jackals as reservoirs for antimicrobial resistance (AMR). The high prevalence of clinically relevant AMR genes in these jackals emphasizes the need for ongoing surveillance and monitoring to better understand AMR transmission dynamics at the wildlife-human interface.202539945541
192830.9996Targeted Antimicrobial Resistance Gene Screening from Metagenomic DNA of Raw Milk Samples Identifies the Presence of Multiple Genes Including the mcr9. The current study has investigated the prevalence of antimicrobial resistance (AMR) genes in cow and goat raw milk samples. The misuse of antibiotics in the livestock sector has already been reported to be a major factor contributing to AMR risk. For the study, milk samples were collected from five different farms, and metagenomic DNA was extracted. Then, PCR amplification was carried out using primers specific to 15 different AMR genes. From the results obtained, the prevalence of β-lactam resistance genes, particularly blaTEM (24%), along with other genes like blaZ (12%) and blaSHV (8%), were observed in addition to the transmissible mcr9 gene (12%) conferring resistance to colistin. These findings underscore the urgent need for monitoring AMR genes and regulating antibiotic use in dairy farming to safeguard public health, as it poses a potential risk with the consumption of unpasteurized milk.202540488653
561340.9996Characterizing Antimicrobial Resistance in Clinically Relevant Bacteria Isolated at the Human/Animal/Environment Interface Using Whole-Genome Sequencing in Austria. Antimicrobial resistance (AMR) is a public health issue attributed to the misuse of antibiotics in human and veterinary medicine. Since AMR surveillance requires a One Health approach, we sampled nine interconnected compartments at a hydrological open-air lab (HOAL) in Austria to obtain six bacterial species included in the WHO priority list of antibiotic-resistant bacteria (ARB). Whole genome sequencing-based typing included core genome multilocus sequence typing (cgMLST). Genetic and phenotypic characterization of AMR was performed for all isolates. Eighty-nine clinically-relevant bacteria were obtained from eight compartments including 49 E. coli, 27 E. faecalis, 7 K. pneumoniae and 6 E. faecium. Clusters of isolates from the same species obtained in different sample collection dates were detected. Of the isolates, 29.2% were resistant to at least one antimicrobial. E. coli and E. faecalis isolates from different compartments had acquired antimicrobial resistance genes (ARGs) associated with veterinary drugs such as aminoglycosides and tetracyclines, some of which were carried in conjugative and mobilizable plasmids. Three multidrug resistant (MDR) E. coli isolates were found in samples from field drainage and wastewater. Early detection of ARGs and ARB in natural and farm-related environments can identify hotspots of AMR and help prevent its emergence and dissemination along the food/feed chain.202236232576
259350.9996Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Human populations worldwide are increasingly confronted with infectious diseases and antimicrobial resistance spreading faster and appearing more frequently. Knowledge regarding their occurrence and worldwide transmission is important to control outbreaks and prevent epidemics. Here, we performed shotgun sequencing of toilet waste from 18 international airplanes arriving in Copenhagen, Denmark, from nine cities in three world regions. An average of 18.6 Gb (14.8 to 25.7 Gb) of raw Illumina paired end sequence data was generated, cleaned, trimmed and mapped against reference sequence databases for bacteria and antimicrobial resistance genes. An average of 106,839 (0.06%) reads were assigned to resistance genes with genes encoding resistance to tetracycline, macrolide and beta-lactam resistance genes as the most abundant in all samples. We found significantly higher abundance and diversity of genes encoding antimicrobial resistance, including critical important resistance (e.g. blaCTX-M) carried on airplanes from South Asia compared to North America. Presence of Salmonella enterica and norovirus were also detected in higher amounts from South Asia, whereas Clostridium difficile was most abundant in samples from North America. Our study provides a first step towards a potential novel strategy for global surveillance enabling simultaneous detection of multiple human health threatening genetic elements, infectious agents and resistance genes.201526161690
561460.9996A metagenomic approach to One Health surveillance of antimicrobial resistance in a UK veterinary centre. There are currently no standardized guidelines for genomic surveillance of One Health antimicrobial resistance (AMR). This project aimed to utilize metagenomics to identify AMR genes present in a companion animal hospital and compare these with phenotypic results from bacterial isolates from clinical specimens from the same veterinary hospital. Samples were collected from sites within a primary care companion animal veterinary hospital in London, UK. Metagenomic DNA was sequenced using Oxford Nanopore Technologies MinION. The sequencing data were analysed for AMR genes, plasmids and clinically relevant pathogen species. These data were compared to phenotypic speciation and antibiotic susceptibility tests of bacterial isolates from patients. The most common resistance genes identified were aph (n=101 times genes were detected across 48 metagenomic samples), sul (84), bla (CARB) (63), tet (58) and bla (TEM) (46). In clinical isolates, a high proportion of isolates were phenotypically resistant to β-lactams. Rooms with the greatest mean number of resistance genes identified per swab site were the medical preparation room, dog ward and surgical preparation room. Twenty-four and four plasmids typically associated with Gram-positive and Enterobacteriaceae, respectively, were identified. Sequencing reads matched with 14 out of 22 (64%) of the phenotypically isolated bacterial species. Metagenomics identified AMR genes, plasmids and species of relevance to human and animal medicine. Communal animal-handling areas harboured more AMR genes than areas animals did not frequent. When considering infection prevention and control measures, adherence to, and frequency of, cleaning schedules, alongside potentially more comprehensive disinfection of animal-handling areas, may reduce the number of potentially harmful bacteria present.202540889140
571670.9996Genomic analysis of Salmonella isolated from canal water in Bangkok, Thailand. Antimicrobial resistance (AMR) poses an escalating global public health threat. Canals are essential in Thailand, including the capital city, Bangkok, as agricultural and daily water sources. However, the characteristic and antimicrobial-resistance properties of the bacteria in the urban canals have never been elucidated. This study employed whole genome sequencing to characterize 30 genomes of a causal pathogenic bacteria, Salmonella enterica, isolated from Bangkok canal water between 2016 and 2020. The dominant serotype was Salmonella Agona. In total, 35 AMR genes and 30 chromosomal-mediated gene mutations were identified, in which 21 strains carried both acquired genes and mutations associated with fluoroquinolone resistance. Virulence factors associated with invasion, adhesion, and survival during infection were detected in all study strains. 75.9% of the study stains were multidrug-resistant and all the strains harbored the necessary virulence factors associated with salmonellosis. One strain carried 20 resistance genes, including mcr-3.1, mutations in GyrA, ParC, and ParE, and typhoid toxin-associated genes. Fifteen plasmid replicon types were detected, with Col(pHAD28) being the most common type. Comparative analysis of nine S. Agona from Bangkok and 167 from public databases revealed that specific clonal lineages of S. Agona might have been circulating between canal water and food sources in Thailand and globally. These findings provide insight into potential pathogens in the aquatic ecosystem and support the inclusion of environmental samples into comprehensive AMR surveillance initiatives as part of a One Health approach. This approach aids in comprehending the rise and dissemination of AMR and devising sustainable intervention strategies.IMPORTANCEBangkok is the capital city of Thailand and home to a large canal network that serves the city in various ways. The presence of pathogenic and antimicrobial-resistant Salmonella is alarming and poses a significant public health risk. The present study is the first characterization of the genomic of Salmonella strains from Bangkok canal water. Twenty-two of 29 strains (75.9%) were multidrug-resistant Salmonella and all the strains carried essential virulence factors for pathogenesis. Various plasmid types were identified in these strains, potentially facilitating the horizontal transfer of AMR genes. Additional investigations indicated a potential circulation of S. Agona between canal water and food sources in Thailand. The current study underscores the role of environmental water in an urban city as a reservoir of pathogens and these data obtained can serve as a basis for public health risk assessment and help shape intervention strategies to combat AMR challenges in Thailand.202438563788
180980.9996Deciphering antibiotic resistance genes and plasmids in pathogenic bacteria from 166 hospital effluents in Shanghai, China. Although previous studies using phenotypic or metagenomic approaches have revealed the patterns of antibiotic resistance genes (ARGs) in hospital effluents in local regions, limited information is available regarding the antibiotic resistome and plasmidome in human pathogenic bacteria in hospital effluents of megacity in China. To address this knowledge gap, we analyzed effluent samples from 166 hospitals across 13 geographical districts in Shanghai, China, using both cultivation-based approaches and metagenomics. A total of 357 strains were isolated from these samples, with the predominant species being Escherichia coli (n = 61), Aeromonas hydrophila (n = 57), Klebsiella pneumoniae (n = 48), and Aeromonas caviae (n = 42). Those identified indicator bacteria were classified into biosafety level 1 (BSL-1, 60 %) and BSL-2 (40 %). We identified 1237 ARG subtypes across 22 types, predominantly including beta-lactam, tetracycline, multidrug, polymyxin, and aminoglycoside resistance genes, using culture-enriched phenotypic metagenomics. Mobile genetic elements such as plasmids, transposons (tnpA), integrons (intI1), and insertion sequences (IS91) were abundant. We recovered 135 plasmids classified into mobilizable (n = 94) and non-mobilizable (n = 41) types. Additionally, 80 metagenome-assembled genomes (MAGs) were reconstructed from the hospital effluents for the assessment of ARG transmission risks, including genes for last-line antibiotics such as bla(NDM), bla(KPC), bla(imiH), and mcr. This study is the first to comprehensively characterize and assess the risk of antimicrobial resistance levels and plasmidome in the hospital effluents of China's megacity, providing city-wide surveillance data and evidence to inform public health interventions.202539612873
330590.9996Assessing the risk of exposure to antimicrobial resistance at public beaches: Genome-based insights into the resistomes, mobilomes and virulomes of beta-lactams resistant Enterobacteriaceae from recreational beaches in Lagos, Nigeria. The role of recreational water use in the acquisition and transmission of antimicrobial resistance (AMR) is under-explored in low- and middle-income countries (LMICs). We used whole genome sequence analysis to provide insights into the resistomes, mobilomes and virulomes of 14 beta-lactams resistant Enterobacterales isolated from water and wet-sand at four recreational beaches in Lagos, Nigeria. Carriage of multiple beta-lactamase genes was detected in all isolates except two, including six isolates carrying bla(NDM-1). Most detected antibiotic resistance genes (ARGs) were located within a diverse landscape of plasmids, insertion sequences and transposons including the presence of ISKpn14 upstream of bla(NDM-1) in a first report in Africa. Virulence genes involved in adhesion and motility as well as secretion systems are particularly abundant in the genomes of the isolates. Our results confirmed the four beaches are contaminated with bacteria carrying clinically relevant ARGs associated with mobile genetic elements (MGE) which could promote the transmission of ARGs at the recreational water-human interface.202438492327
1857100.9996Diverse Acinetobacter in retail meat: a hidden vector of novel species and antimicrobial resistance genes, including plasmid-borne bla(OXA-58), mcr-4.3 and tet(X3). Acinetobacter species, particularly Acinetobacter baumannii, are recognized pathogens in clinical settings, yet their presence in food systems, including fresh meat remains underexplored. This comprehensive study investigated the prevalence, diversity, concentration, and antimicrobial resistance of Acinetobacter spp. in 100 fresh meat samples from diverse animal sources across various packaging conditions. Acinetobacter isolates were initially characterized by MALDI-TOF MS, with comprehensive genomic characterization through whole-genome sequencing (WGS) of 116 representative isolates. Taxonomic refinement was performed using GTDB-Tk, core-genome, rpoB gene and Average Nucleotide Identity (ANI) phylogenomic approaches. Antimicrobial resistance genes (ARGs), and their plasmidic locations, were identified, and antimicrobial susceptibility profiles were determined for 33 A. baumannii isolates. Acinetobacter spp. were detected in 74 % of samples, with turkey meat showing the highest occurrence. The counts of this bacterium ranged from < 0.23 to 3.13 log(10) CFU/g. A total of 20 know species and 2 putative novel Acinetobacter species were identified by genomic analysis. Moreover, 16 novel A. baumannii sequence types (STs) were identified. ARG profiling revealed a complex resistome, including plasmid-located ARGs spanning multiple antibiotic classes. Critical findings include the presence of plasmid-borne bla(OXA-58), mcr-4.3, and tet(X3) genes. This study expands our understanding of Acinetobacter spp. diversity and reveals fresh meat as a significant vector for this genus, including species associated with human infections. Moreover, the detection of diverse resistance genes, including some associated with plasmids and conferring resistance to critically important antibiotics, underscores the potential public health implications of meat as a transmission pathway for these bacteria.202540513431
5612110.9996Epidemiological factors associated with the prevalence of mobile genetic elements, and antimicrobial resistance patterns in Klebsiella pneumoniae of farm environments in Bangladesh. Farm environments serve as reservoirs for antibiotic-resistant bacteria and mobile genetic elements (MGEs), spreading resistance genes. Klebsiella pneumoniae, a nosocomial opportunistic pathogen, often acquires resistance through MGEs. This study examined the prevalence, resistance patterns, and factors associated with MGEs in K. pneumoniae isolates, focusing on environmental and management practices. 48 pooled samples were collected from environmental niches in three major districts of Bangladesh including Dhaka, Barisal, and Sylhet and analyzed using standard microbiological techniques and PCR. Antibiotic susceptibility was assessed per CLSI (2020) guidelines, and multidrug-resistant (MDR) strains were identified. Genotypic resistance patterns and mobile genetic elements (MGEs), including class 1 integrons and plasmids, were detected via PCR. Fisher's exact test evaluated factors associated with MGEs. Overall, 66.66% tested positive for K. pneumoniae. Regarding resistance patterns, the highest resistance was observed to ertapenem (90.6%) and ampicillin (84%), while complete sensitivity was noted to several antibiotics, including amikacin and tigecycline. Among the tested isolates, 53.12% were identified as MDR. Genotypic analysis revealed that bla(CTX-M), bla(NDM-5,)bla(Oxa-1) and bla(Oxa-48) were the most prevalent. Additionally, the presence of MGEs including class 1 integron and IncQ type plasmid were significantly associated with factors such as poor sanitation, antibiotic misuse, and high cattle density, highlighting critical areas for intervention. This study revealed that MDR K. pneumoniae circulates in food animals' farm environments in Bangladesh, with environmental factors strongly linked to the presence of MGEs. Farm niches, particularly soil, act as key reservoirs of MGEs and resistance genes. Importantly, these also carry serious implications for human health, as resistance genes may transfer to clinical settings, exacerbating the burden of AMR. Strengthening environmental and agricultural policies through a One Health approach is essential to mitigate the public health threat posed by antimicrobial resistance.202540619416
2843120.9996High Throughput Screening of Antimicrobial Resistance Genes in Gram-Negative Seafood Bacteria. From a global view of antimicrobial resistance over different sectors, seafood and the marine environment are often considered as potential reservoirs of antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs); however, there are few studies and sparse results on this sector. This study aims to provide new data and insights regarding the content of resistance markers in various seafood samples and sources, and therefore the potential exposure to humans in a global One Health approach. An innovative high throughput qPCR screening was developed and validated in order to simultaneously investigate the presence of 41 ARGs and 33 MGEs including plasmid replicons, integrons, and insertion sequences in Gram-negative bacteria. Analysis of 268 seafood isolates from the bacterial microflora of cod (n = 24), shellfish (n = 66), flat fishes (n = 53), shrimp (n = 10), and horse mackerel (n = 115) show the occurrence of sul-1, ant(3″)-Ia, aph(3')-Ia, strA, strB, dfrA1, qnrA, and bla(CTX-M-9) genes in Pseudomonas spp., Providencia spp., Klebsiella spp., Proteus spp., and Shewanella spp. isolates and the presence of MGEs in all bacterial species investigated. We found that the occurrence of MGE may be associated with the seafood type and the environmental, farming, and harvest conditions. Moreover, even if MGE were detected in half of the seafood isolates investigated, association with ARG was only identified for twelve isolates. The results corroborate the hypothesis that the incidence of antimicrobial-resistant bacteria (ARB) and ARG decreases with increasing distance from potential sources of fecal contamination. This unique and original high throughput micro-array designed for the screening of ARG and MGE in Gram-negative bacteria could be easily implementable for monitoring antimicrobial resistance gene markers in diverse contexts.202235744743
2841130.9996Antimicrobial resistance reservoirs in salmon and broiler processing environments, sidestreams, and waste discharges. Mapping reservoirs of antimicrobial resistance (AMR) across food value chains and their environmental dissemination pathways is essential for limiting the spread and impact of AMR. The aim of this study was to investigate the prevalence of AMR genes and bacteria in sidestream materials, waste discharges, and processing environments of salmon and broiler. A targeted hybrid capture-based sequencing approach was used to characterize the resistome in samples collected from four processing plants, revealing a diverse range of AMR genes. Among these, we found several high-risk AMR genes, including the multidrug resistance genes TolC and mdtE, tetracycline genes tet(L) and tet(M), aminoglycoside genes APH(3')-IIIa and APH(6)-Id, and beta-lactam genes mecA and mecR1. Overall, the highest numbers of AMR genes were found in samples of process wastewater and sludge, ranging from 32 to 330 unique genes. More than 300 bacterial isolates, including Enterobacterales, Enterococcus and Pseudomonas spp. were also collected and identified, and a subset was tested for antibiotic susceptibility. Antibiotic resistance among Enterococcus and Pseudomonas spp. was low. Quinolone-resistant Escherichia coli (QREC) were detected in waste discharges from two broiler processing plants, while multidrug resistant (MDR) E. coli were found only in one plant. Whole genome sequencing of MDR isolates revealed multiple plasmids and AMR genes such as sul2, ant(3″)-Ia, qnrS1, and bla(CTX-M-1) . Our study highlights that wastewater from food industries can contribute to the release of AMR bacteria and genes to the environment. While the prevalence of AMR bacteria in sidestream materials was low among the isolates in our collection, numerous AMR genes were detected, which may be re-introduced to new production systems.202541035889
2844140.9996High throughput qPCR analyses suggest that Enterobacterales of French sheep and cow cheese rarely carry genes conferring resistances to critically important antibiotics for human medicine. Bacteria present in raw milk can carry acquired or intrinsic antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs). However, only a few studies have evaluated raw milk cheese as a potential reservoir of ARGs. This study thus aimed at providing new data regarding resistance markers present in raw milk cheese. Sheep (n = 360) and cow (n = 360) cheese samples produced in France were incubated in buffered peptone water supplemented with acriflavin or novobiocin; as corroborated by 16S metabarcoding, samples were enriched in Gram-negative bacteria since Escherichia coli and Hafnia alvei respectively accounted for 40 % and 20 % of the samples' microbiota. Screening of the samples for the presence of 30 ARGs and 16 MGEs by high throughput qPCR array showed that nine ARGs conferring resistances to 1st-generation beta-lactams, aminoglycosides, trimethoprim/sulfonamides and tetracyclines occurred in >75 % of both sheep and cow samples. This is neither surprising nor alarming since these resistance genes are widely spread across the One Health human, animal and environmental sectors. Conversely, genes conferring resistances to last-generations cephalosporins were rarely identified, while those conferring resistances to carbapenems or amikacin, which are restricted to human use, were never detected. Multiple MGEs were detected, the most frequent ones being IncF plasmids, confirming the potential transmission of ARGs. Our results are in line with the few studies of the resistome of milk or milk cheese showing that genes conferring resistances to 1st-generation beta-lactams, aminoglycosides and tetracyclines families are widespread, while those conferring resistances to critically important antibiotics are rare or absent.202337384974
5611150.9996Antibiotic-Resistant Bacteria Dissemination in the Wildlife, Livestock, and Water of Maiella National Park, Italy. Antimicrobial resistance (AMR) is a global health concern that has been linked to humans, animals, and the environment. The One Health approach highlights the connection between humans, animals, and the environment and suggests that a multidisciplinary approached be used in studies investigating AMR. The present study was carried out to identify and characterize the antimicrobial resistance profiles of bacteria isolated from wildlife and livestock feces as well as from surface water samples in Maiella National Park, Italy. Ecological and georeferenced data were used to select two sampling locations, one where wildlife was caught within livestock grazing areas (sympatric group) and one where wildlife was caught outside of livestock grazing areas (non-sympatric group). Ninety-nine bacterial isolates from 132 feces samples and seven isolates from five water samples were collected between October and December 2019. The specimens were examined for species identification, antibiotic susceptibility and molecular detection of antibiotic resistance. Forty isolates were identified as Escherichia coli, forty-eight as Enterococcus spp., eight as Streptococcus spp. and ten as other gram-negative bacteria. Phenotypic antibiotic resistance to at least one antimicrobial agent, including some antibiotics that play a critical role in human medicine, was detected in 36/106 (33.9%, 95% CI: 25-43) isolates and multidrug resistance was detected in 9/106 isolates (8.49%, 95% CI: 3.9-15.5). In addition, genes associated with antibiotic resistance were identified in 61/106 (57.55%, 95% CI: 47.5-67) isolates. The samples from sympatric areas were 2.11 (95% CI: 1.2-3.5) times more likely to contain resistant bacterial isolates than the samples from non-sympatric areas. These data suggest that drug resistant bacteria may be transmitted in areas where wildlife and livestock cohabitate. This emphasizes the need for further investigations focusing on the interactions between humans, wildlife, and the environment, the results of which can aid in the early detection of emerging AMR profiles and possible transmission routes.202336766321
2835160.9996Wastewater used for urban agriculture in West Africa as a reservoir for antibacterial resistance dissemination. State of art metagenomics were used to investigate the microbial population, antibiotic resistance genes and plasmids of medical interest in wastewater used for urban agriculture in Ouagadougou (Burkina Faso). Wastewater samples were collected from three canals near agricultural fields in three neighbourhoods. Assessment of microbial population diversity revealed different microbial patterns among the different samples. Sequencing reads from the wastewaters revealed different functional specializations of microbial communities, with the predominance of carbohydrates and proteins metabolism functions. Eleven pathogen-specific and 56 orthologous virulence factor genes were detected in the wastewater samples. These virulence factors are usually found in human pathogens that cause gastroenteritis and/or diarrhoea. A wide range of antibiotic resistance genes was identified; 81 are transmissible by mobile genetic elements. These included seven different extended spectrum β-lactamase genes encoding synthesis of four enzyme families, including two metallo-β-lactamases (bla(AIM-1) and bla(GES-21)). Ten different incompatibility groups of Enterobacteriaceae plasmid replicons (ColE, FIB, FIC, FII, P, Q, R, U, Y, and A/C), and 30 plasmid replicon types from Gram-positive bacteria. All are implicated in the wide distribution of antibiotic resistance genes. We conclude that wastewater used for urban agriculture in the city represents a high risk for spreading bacteria and antimicrobial resistance among humans and animals.201930253312
2752170.9996Antibiotic Resistance in Enterobacteriaceae from Surface Waters in Urban Brazil Highlights the Risks of Poor Sanitation. Surface waters are an unappreciated reservoir of antimicrobial resistance (AMR). Poor sanitation brings different species of environmental bacteria into contact, facilitating horizontal gene transfer. To investigate the role of surface waters as potential reservoirs of AMR, we studied the point prevalence of fecal contamination, AMR genes, and Enterobacteriaceae in an urban lake and rural river system in Northeast Brazil in comparison with a lake and sewer system in Northeast Ohio in the United States. Surface water samples were examined for evidence of human fecal contamination using microbial source tracking and screened for plasmid-mediated fluoroquinolone resistance and carbapenemase genes. Enterobacteriaceae were detected using selective agar followed by antimicrobial susceptibility testing and detection of AMR genes by microarray, and classified by repetitive sequence-based polymerase chain reaction and multilocus sequence typing. Concentrations of human fecal bacteria in the Brazilian urban lake and sewage in Northeast Ohio were similarly high. Filtered water samples from the Brazilian urban lake, however, showed the presence of bla (OXA-48), bla (KPC), bla (VIM-2), qnrS, and aac(6')-lb-cr, whereas only bla (VIM-2) was identified in raw sewage from Northeast Ohio. From the Brazilian urban lake, 85% of the Enterobacteriaceae (n = 40) cultured were resistant to at least one clinically important antibiotic, including ST131 Escherichia coli harboring the extended-spectrum beta-lactamase CTX-M. Although two isolates demonstrated polymyxin resistance, mcr-1/2 was not detected. Our findings indicate that surface waters in an urban Brazilian site can serve as an environmental reservoir of AMR and that improving wastewater treatment and sanitation generally may ameliorate AMR dissemination.201930994094
2594180.9996Longitudinal changes in the nasopharyngeal resistome of South African infants using shotgun metagenomic sequencing. INTRODUCTION: Nasopharyngeal (NP) colonization with antimicrobial-resistant bacteria is a global public health concern. Antimicrobial-resistance (AMR) genes carried by the resident NP microbiota may serve as a reservoir for transfer of resistance elements to opportunistic pathogens. Little is known about the NP antibiotic resistome. This study longitudinally investigated the composition of the NP antibiotic resistome in Streptococcus-enriched samples in a South African birth cohort. METHODS: As a proof of concept study, 196 longitudinal NP samples were retrieved from a subset of 23 infants enrolled as part of broader birth cohort study. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of streptococcal and non-streptococcal bacterial reads. Contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. RESULTS: AMR genes were detected in 64% (125/196) of the samples. A total of 329 AMR genes were detected, including 36 non-redundant genes, ranging from 1 to 14 genes per sample. The predominant AMR genes detected encoded resistance mechanisms to beta-lactam (52%, 172/329), macrolide-lincosamide-streptogramin (17%, 56/329), and tetracycline antibiotics (12%, 38/329). MsrD, ermB, and mefA genes were only detected from streptococcal reads. The predominant genes detected from non- streptococcal reads included blaOXA-60, blaOXA-22, and blaBRO-1. Different patterns of carriage of AMR genes were observed, with only one infant having a stable carriage of mefA, msrD and tetM over a long period. CONCLUSION: This study demonstrates that WMGS can provide a broad snapshot of the NP resistome and has the potential to provide a comprehensive assessment of resistance elements present in this niche.202032320455
2840190.9996Resistome analysis of Escherichia coli isolates from layers in Hungary. The authors aimed to investigate eight strains of Escherichia coli (E. coli) strains from Hungarian layer flocks for antimicrobial resistance genes (ARG), using metagenomic methods. The strains were isolated from cloacal swabs of healthy adult layers. This study employed shotgun sequencing-based genetic and bioinformatic analysis along with determining phenotypic minimum inhibitory concentrations. A total of 59 ARGs were identified in the eight E. coli isolates, carrying ARGs against 15 groups of antibiotics. Among these, 28 ARGs were identified as transferable. Specifically, four ARGs were plasmid-derived, 18 ARGs were phage-derived and an additional six ARGs were predicted to be mobile, contributing to their mobility and potential spread between bacteria.202438578711