Characterization of a Tigecycline-Resistant and bla(CTX-M)-Bearing Klebsiella pneumoniae Strain from a Peacock in a Chinese Zoo. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
179901.0000Characterization of a Tigecycline-Resistant and bla(CTX-M)-Bearing Klebsiella pneumoniae Strain from a Peacock in a Chinese Zoo. In Chinese zoos, there are usually specially designed bird parks, similar to petting zoos, that allow children and adults to interact with diverse birds. However, such behaviors present a risk for the transmission of zoonotic pathogens. Recently, we isolated eight strains of Klebsiella pneumoniae and identified two bla(CTX-M)-positive strains from 110 birds, including parrots, peacocks, and ostriches, using anal or nasal swabs in a bird park of a zoo in China. There, K. pneumoniae LYS105A was obtained from a diseased peacock with chronic respiratory diseases by a nasal swab, which harbored the bla(CTX-M-3) gene and exhibited resistance to amoxicillin, cefotaxime, gentamicin, oxytetracycline, doxycycline, tigecycline, florfenicol, and enrofloxacin. According to an analysis by whole-genome sequencing, K. pneumoniae LYS105A belongs to serotype ST859 (sequence type 859)-K19 (capsular serotype 19) and contains two plasmids, of which pLYS105A-2 can be transferred by electrotransformation and harbors numerous resistance genes such as bla(CTX-M-3), aac(6')-Ib-cr5, and qnrB91. The above-mentioned genes are located in a novel mobile composite transposon, Tn7131, which makes horizontal transfer more flexible. Although no known genes were identified in the chromosome, a significant increase in SoxS upregulated the expression levels of phoPQ, acrEF-tolC, and oqxAB, which contributed to strain LYS105A acquiring resistance to tigecycline (MIC = 4 mg/L) and intermediate resistance to colistin (MIC = 2 mg/L). Altogether, our findings show that bird parks in zoos may act as important vehicles for the spread of multidrug-resistant bacteria from birds to humans and vice versa. IMPORTANCE A multidrug-resistant ST859-K19 K. pneumoniae strain, LYS105A, was obtained from a diseased peacock in a Chinese zoo. In addition, multiple resistance genes such as bla(CTX-M-3), aac(6')-Ib-cr5, and qnrB91 were located in a novel composite transposon, Tn7131, of a mobile plasmid, implying that most of the resistance genes in strain LYS105A can be moved easily via horizontal gene transfer. Meanwhile, an increase in SoxS can further positively regulate the expression of phoPQ, acrEF-tolC, and oqxAB, which is the key factor for strain LYS105A to develop resistance to tigecycline and colistin. Taken together, these findings enrich our understanding of the horizontal cross-species spread of drug resistance genes, which will help us curb the development of bacterial resistance.202336809063
185810.9991Molecular Characteristics of Antimicrobial Resistance and Virulence in Klebsiella pneumoniae Strains Isolated from Goose Farms in Hainan, China. We retrospectively investigated 326 samples that were collected from goose farms in Hainan Province, China, in 2017. A total of 33 carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates were identified from 326 samples, and the 33 CRKP isolates were characterized based on whole-genome sequencing (WGS) data from the Illumina and Oxford Nanopore Technologies (ONT) platforms. All of these 33 CRKP isolates possessed bla(NDM-5), and a single isolate coharbored mcr-1 and bla(NDM-5), while 4 isolates carried multiple virulence and metal tolerance gene clusters. One CRKP strain (CMG-35-2) was selected for long sequence reading. A hybrid plasmid carrying the virulence, resistance, and metal resistance gene in the strain was found. It possessed 2 backbones [IncFIB(K)-IncFII(K)] within a single plasmid that were closely related to K. pneumoniae plasmids from a human-associated habitat in the United States and from a human isolate in Hong Kong. A mouse abdominal infection model indicated that that strain was of the moderate virulence phenotype. This study revealed that K. pneumoniae on goose farms is an important reservoir for bla(NDM-5) and these bacteria are represented by a diversity of sequence types. The heterozygous multiple drug resistance genes carried on plasmids highlighted the genetic complexity of CRKP and the urgent need for continued active surveillance. IMPORTANCE CRKP is one of the most important pathogens, which can cause infection not only in humans but also in waterfowl. The discovery of bla(NDM-5)-producing K. pneumoniae in waterfowl farms in recent years suggests that waterfowl are an important reservoir for bla(NDM-5)-producing Enterobacteriaceae. However, there are few studies on the spread of bla(NDM-5)-producing bacteria in waterfowl farms. Our study showed that the IncX3 plasmid carrying bla(NDM-5) in goose farms is widely present in K. pneumoniae isolates and a large number of resistance genes are accumulated in it. We found a transferable IncFIB-FII hybrid plasmid that combines virulence, resistance, and metal resistance genes, which allow transfer of these traits between bacteria in different regions. The results of this study contribute to a better understanding of the prevalence and transmission of carbapenem-resistant K. pneumoniae in goose farms.202235389252
189420.9991Phenotypic and Genotypic Characterization of Multidrug-Resistant Enterobacter hormaechei Carrying qnrS Gene Isolated from Chicken Feed in China. Multidrug resistance (MDR) in Enterobacteriaceae including resistance to quinolones is rising worldwide. The plasmid-mediated quinolone resistance (PMQR) gene qnrS is prevalent in Enterobacteriaceae. However, the qnrS gene is rarely found in Enterobacter hormaechei (E. hormaechei). Here, we reported one multidrug resistant E. hormaechei strain M1 carrying the qnrS1 and bla(TEM-1) genes. This study was to analyze the characteristics of MDR E. hormaechei strain M1. The E. hormaechei strain M1 was identified as Enterobacter cloacae complex by biochemical assay and 16S rRNA sequencing. The whole genome was sequenced by the Oxford Nanopore method. Taxonomy of the E. hormaechei was based on multilocus sequence typing (MLST). The qnrS with the other antibiotic resistance genes were coexisted on IncF plasmid (pM1). Besides, the virulence factors associated with pathogenicity were also located on pM1. The qnrS1 gene was located between insertion element IS2A (upstream) and transposition element ISKra4 (downstream). The comparison result of IncF plasmids revealed that they had a common plasmid backbone. Susceptibility experiment revealed that the E. hormaechei M1 showed extensive resistance to the clinical antimicrobials. The conjugation transfer was performed by filter membrane incubation method. The competition and plasmid stability assays suggested the host bacteria carrying qnrS had an energy burden. As far as we know, this is the first report that E. hormaechei carrying qnrS was isolated from chicken feed. The chicken feed and poultry products could serve as a vehicle for these MDR bacteria, which could transfer between animals and humans through the food chain. We need to pay close attention to the epidemiology of E. hormaechei and prevent their further dissemination. IMPORTANCE Enterobacter hormaechei is an opportunistic pathogen. It can cause infections in humans and animals. Plasmid-mediated quinolone resistance (PMQR) gene qnrS can be transferred intergenus, which is leading to increase the quinolone resistance levels in Enterobacteriaceae. Chicken feed could serve as a vehicle for the MDR E. hormaechei. Therefore, antibiotic-resistance genes (ARGs) might be transferred to the intestinal flora after entering the gastrointestinal tract with the feed. Furthermore, antibiotic-resistant bacteria (ARB) were also excreted into environment with feces, posing a huge threat to public health. This requires us to monitor the ARB and antibiotic-resistant plasmids in the feed. Here, we demonstrated the characteristics of one MDR E. hormaechei isolate from chicken feed. The plasmid carrying the qnrS gene is a conjugative plasmid with transferability. The presence of plasmid carrying antibiotic-resistance genes requires the maintenance of antibiotic pressure. In addition, the E. hormaechei M1 belonged to new sequence type (ST). These data show the MDR E. hormaechei M1 is a novel strain that requires our further research.202235467399
84630.9991Pan-Resistome Characterization of Uropathogenic Escherichia coli and Klebsiella pneumoniae Strains Circulating in Uganda and Kenya, Isolated from 2017-2018. Urinary tract infection (UTI) develops after a pathogen adheres to the inner lining of the urinary tract. Cases of UTIs are predominantly caused by several Gram-negative bacteria and account for high morbidity in the clinical and community settings. Of greater concern are the strains carrying antimicrobial resistance (AMR)-conferring genes. The gravity of a UTI is also determined by a spectrum of other virulence factors. This study represents a pilot project to investigate the burden of AMR among uropathogens in East Africa. We examined bacterial samples isolated in 2017-2018 from in- and out-patients in Kenya (KY) and Uganda (UG) that presented with clinical symptoms of UTI. We reconstructed the evolutionary history of the strains, investigated their population structure, and performed comparative analysis their pangenome contents. We found 55 Escherichia coli and 19 Klebsiella pneumoniae strains confirmed uropathogenic following screening for the prevalence of UTI virulence genes including fimH, iutA, feoA/B/C, mrkD, and foc. We identified 18 different sequence types in E. coli population while all K. pneumoniae strains belong to ST11. The most prevalent E. coli sequence types were ST131 (26%), ST335/1193 (10%), and ST10 (6%). Diverse plasmid types were observed in both collections such as Incompatibility (IncF/IncH/IncQ1/IncX4) and Col groups. Pangenome analysis of each set revealed a total of 2862 and 3464 genes comprised the core genome of E. coli and K. pneumoniae population, respectively. Among these are acquired AMR determinants including fluoroquinolone resistance-conferring genes aac(3)-Ib-cr and other significant genes: aad, tet, sul1, sul2, and cat, which are associated with aminoglycoside, tetracycline, sulfonamide, and chloramphenicol resistance, respectively. Accessory genomes of both species collections were detected several β-lactamase genes, bla(CTX-M), bla(TEM) and bla(OXA,) or bla(NDM). Overall, 93% are multi-drug resistant in the E. coli collection while 100% of the K. pneumoniae strains contained genes that are associated with resistance to three or more antibiotic classes. Our findings illustrate the abundant acquired resistome and virulome repertoire in uropathogenic E. coli and K. pneumoniae, which are mainly disseminated via clonal and horizontal transfer, circulating in the East African region. We further demonstrate here that routine genomic surveillance is necessary for high-resolution bacterial epidemiology of these important AMR pathogens.202134943759
186840.9990Genomic Characterization of Carbapenem-Resistant Klebsiella pneumoniae ST1440 and Serratia marcescens Isolates from a COVID-19 ICU Outbreak in Ecuador. The global rise of antimicrobial resistance (AMR), exacerbated by the COVID-19 pandemic, has led to a surge in infections caused by multidrug-resistant (MDR) bacteria. A key driver of this phenomenon is co-selection, where exposure to one antimicrobial promotes resistance to others via horizontal gene transfer (HGT) mediated by mobile genetic elements (MGEs). Carbapenem-resistant Enterobacteriaceae, known for their genomic plasticity, are particularly worrisome; yet genomic data from Latin America-especially Ecuador-remain scarce. This study investigated four carbapenem-resistant clinical isolates (two Klebsiella pneumoniae ST1440 and two Serratia marcescens) from tracheal aspirates of three ICU patients during a COVID-19 outbreak at Hospital IESS Quito Sur, Ecuador. Phenotypic profiling and whole-genome sequencing were performed, followed by bioinformatic reconstruction of plasmid content. Nineteen plasmids were identified, carrying 70 resistance-related genes, including antimicrobial resistance genes (ARGs), metal resistance genes (MRGs), integrons, transposons, and insertion sequences. Hierarchical clustering revealed six distinct gene clusters, with several co-localizing ARGs and genes for resistance to disinfectants and heavy metals-suggesting strong co-selective pressure. Conjugative plasmids harboring high-risk elements such as blaKPC-2, qacE, and Tn4401 were found in multiple isolates, indicating potential interspecies dissemination. These findings emphasize the importance of plasmid-mediated resistance during the pandemic and highlight the urgent need to enhance genomic surveillance and infection control, particularly in resource-limited healthcare settings.202541156746
188150.9990Genomic Characterisation of Multidrug-Resistant Pathogenic Enteric Bacteria from healthy children in Osun State, Nigeria. Antimicrobial resistance (AMR) has been established to be a significant driver for the persistence and spread of bacterial infections. It is, therefore, essential to conduct epidemiological surveillance of AMR in healthy individuals to understand the actual dynamics of AMR in Nigeria. Multi-drug resistant Klebsiella quasivariicola (n=1), Enterobacter hormaechei (n=1), and Escherichia coli (n=3) from stool samples of healthy children were subjected to whole genome sequencing using Illumina Nextseq1000/2000 and Oxford nanopore. Bioinformatics analysis reveals antimicrobial resistance, virulence genes, and plasmids. This pathogenic enteric bacteria harbored more than three plasmid replicons of either Col and/or Inc type associated with outbreaks and AMR resistant gene pmrB responsible for colistin resistance. Plasmid reconstruction revealed an integrated tetA gene responsible for tetracycline resistance, and caa gene responsible for toxin production in two of the E.coli isolates, and a cusC gene known to induce neonatal meningitis in the K. quasivariicola ST3879. The global spread of MDR pathogenic enteric bacteria is a worrying phenomenon, and close surveillance of healthy individuals, especially children, is strongly recommended to prevent the continuous spread and achieve the elimination and eradication of these infections. Molecular epidemiological surveillance using whole genome sequencing (WGS) will improve the detection of MDR pathogens in Nigeria.202337503211
572960.9990Virulome and genome analyses identify associations between antimicrobial resistance genes and virulence factors in highly drug-resistant Escherichia coli isolated from veal calves. Food animals are known reservoirs of multidrug-resistant (MDR) Escherichia coli, but information regarding the factors influencing colonization by these organisms is lacking. Here we report the genomic analysis of 66 MDR E. coli isolates from non-redundant veal calf fecal samples. Genes conferring resistance to aminoglycosides, β-lactams, sulfonamides, and tetracyclines were the most frequent antimicrobial resistance genes (ARGs) detected and included those that confer resistance to clinically significant antibiotics (blaCMY-2, blaCTX-M, mph(A), erm(B), aac(6')Ib-cr, and qnrS1). Co-occurrence analyses indicated that multiple ARGs significantly co-occurred with each other, and with metal and biocide resistance genes (MRGs and BRGs). Genomic analysis also indicated that the MDR E. coli isolated from veal calves were highly diverse. The most frequently detected genotype was phylogroup A-ST Cplx 10. A high percentage of isolates (50%) were identified as sequence types that are the causative agents of extra-intestinal infections (ExPECs), such as ST69, ST410, ST117, ST88, ST617, ST648, ST10, ST58, and ST167, and an appreciable number of these isolates encoded virulence factors involved in the colonization and infection of the human urinary tract. There was a significant difference in the presence of multiple accessory virulence factors (VFs) between MDR and susceptible strains. VFs associated with enterohemorrhagic infections, such as stx, tir, and eae, were more likely to be harbored by antimicrobial-susceptible strains, while factors associated with extraintestinal infections such as the sit system, aerobactin, and pap fimbriae genes were more likely to be encoded in resistant strains. A comparative analysis of SNPs between strains indicated that several closely related strains were recovered from animals on different farms indicating the potential for resistant strains to circulate among farms. These results indicate that veal calves are a reservoir for a diverse group of MDR E. coli that harbor various resistance genes and virulence factors associated with human infections. Evidence of co-occurrence of ARGs with MRGs, BRGs, and iron-scavenging genes (sit and aerobactin) may lead to management strategies for reducing colonization of resistant bacteria in the calf gut.202235298535
185770.9990Diverse Acinetobacter in retail meat: a hidden vector of novel species and antimicrobial resistance genes, including plasmid-borne bla(OXA-58), mcr-4.3 and tet(X3). Acinetobacter species, particularly Acinetobacter baumannii, are recognized pathogens in clinical settings, yet their presence in food systems, including fresh meat remains underexplored. This comprehensive study investigated the prevalence, diversity, concentration, and antimicrobial resistance of Acinetobacter spp. in 100 fresh meat samples from diverse animal sources across various packaging conditions. Acinetobacter isolates were initially characterized by MALDI-TOF MS, with comprehensive genomic characterization through whole-genome sequencing (WGS) of 116 representative isolates. Taxonomic refinement was performed using GTDB-Tk, core-genome, rpoB gene and Average Nucleotide Identity (ANI) phylogenomic approaches. Antimicrobial resistance genes (ARGs), and their plasmidic locations, were identified, and antimicrobial susceptibility profiles were determined for 33 A. baumannii isolates. Acinetobacter spp. were detected in 74 % of samples, with turkey meat showing the highest occurrence. The counts of this bacterium ranged from < 0.23 to 3.13 log(10) CFU/g. A total of 20 know species and 2 putative novel Acinetobacter species were identified by genomic analysis. Moreover, 16 novel A. baumannii sequence types (STs) were identified. ARG profiling revealed a complex resistome, including plasmid-located ARGs spanning multiple antibiotic classes. Critical findings include the presence of plasmid-borne bla(OXA-58), mcr-4.3, and tet(X3) genes. This study expands our understanding of Acinetobacter spp. diversity and reveals fresh meat as a significant vector for this genus, including species associated with human infections. Moreover, the detection of diverse resistance genes, including some associated with plasmids and conferring resistance to critically important antibiotics, underscores the potential public health implications of meat as a transmission pathway for these bacteria.202540513431
198780.9990Plasmid sequence dataset of multidrug-resistant Enterobacterales isolated from hospital effluents and wastewater treatment plant. We present plasmid sequences of 21 multidrug resistant isolates of Enterobacterales belonging to Escherichia coli (n=10), Klebsiella pneumoniae (n=9), Klebsiella oxytoca (n=1), and Citrobacter freundii (n=1). The isolates originated from effluent collected from hospital sewer pipes and from a wastewater treatment plant (WWTP) in a southwestern Hungarian city. Isolation was carried out using eosin methylene blue agar supplemented with ceftriaxone and the isolates were identified with MALDI-TOF MS. Screening for multidrug resistance was conducted by determining susceptibility to four chemical classes namely, beta-lactams, aminoglycoside, fluoroquinolone, and sulfonamide. Plasmid DNA was isolated by alkaline lysis method using the Monarch plasmid DNA miniprep kit from freshly grown pure colonies. Molecular typing and Illumina sequencing of plasmid DNA of multiresistant strains were performed. After the assembly of contigs, genes localized on plasmid sequences were determined and functionally annotated. These reconstructed plasmid sequences supplemented with gene functional annotations were deposited in the Mendeley data. Using these datasets different plasmid incompatibility groups were identified. These conjugative plasmids appear to play a key role in the transmission of multiple resistance genes in enteric bacteria via wastewater. The presented data may provide useful insight on the correlations between environmental antibiotic contamination and the development of bacterial resistance, which poses a serious public health threat.202236426060
189890.9990Multiple-Replicon Resistance Plasmids of Klebsiella Mediate Extensive Dissemination of Antimicrobial Genes. Multiple-replicon resistance plasmids have become important carriers of resistance genes in Gram-negative bacteria, and the evolution of multiple-replicon plasmids is still not clear. Here, 56 isolates of Klebsiella isolated from different wild animals and environments between 2018 and 2020 were identified by phenotyping via the micro-broth dilution method and were sequenced and analyzed for bacterial genome-wide association study. Our results revealed that the isolates from non-human sources showed more extensive drug resistance and especially strong resistance to ampicillin (up to 80.36%). The isolates from Malayan pangolin were particularly highly resistant to cephalosporins, chloramphenicol, levofloxacin, and sulfamethoxazole. Genomic analysis showed that the resistance plasmids in these isolates carried many antibiotic resistance genes. Further analysis of 69 plasmids demonstrated that 28 plasmids were multiple-replicon plasmids, mainly carrying beta-lactamase genes such as bla (CTX-M-) (15), bla (CTX-M-) (14), bla (CTX-M-) (55), bla (OXA-) (1), and bla (TEM-) (1). The analysis of plasmids carried by different isolates showed that Klebsiella pneumoniae might be an important multiple-replicon plasmid host. Plasmid skeleton and structure analyses showed that a multiple-replicon plasmid was formed by the fusion of two or more single plasmids, conferring strong adaptability to the antibiotic environment and continuously increasing the ability of drug-resistant isolates to spread around the world. In conclusion, multiple-replicon plasmids are better able to carry resistance genes than non-multiple-replicon plasmids, which may be an important mechanism underlying bacterial responses to environments with high-antibiotic pressure. This phenomenon will be highly significant for exploring bacterial resistance gene transmission and diffusion mechanisms in the future.202134777312
1856100.9990Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China. Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clinical ECC isolates between 2019 and 2020 from three hospitals in Zhejiang, China and performed a retrospective whole-genome sequencing to analyze their population structure and drug resistance mechanisms. Of the 172 ECC isolates, 160 belonged to 9 classified species, and 12 belonged to unclassified species based on ANI analysis. Most isolates belonged to E. hormaechei (45.14%) followed by E. kobei (13.71%), which contained 126 STs, including 62 novel STs, as determined by multilocus sequence typing (MLST) analysis. Pan-genome analysis of the two ECC species showed that they have an "open" tendency, which indicated that their Pan-genome increased considerably with the addition of new genomes. A total of 80 resistance genes associated with 11 antimicrobial agent categories were identified in the genomes of all the isolates. The most prevailing resistance genes (12/29, 41.38%) were related to β-lactams followed by aminoglycosides. A total of 247 β-lactamase genes were identified, of which the bla(ACT) genes were the most dominant (145/247, 58.70%), followed by the bla(TEM) genes (21/247, 8.50%). The inherent ACT type β-lactamase genes differed among different species. bla(ACT-2) and bla(ACT-3) were only present in E. asburiae, while bla(ACT-9), bla(ACT-12), and bla(ACT-6) exclusively appeared in E. kobei, E. ludwigii, and E. mori. Among the six carbapenemase-encoding genes (bla(NDM-1), bla(NDM-5), bla(IMP-1), bla(IMP-4), bla(IMP-26), and bla(KPC-2)) identified, two (bla(NDM-1) and bla(IMP-1)) were identified in an ST78 E. hormaechei isolate. Comparative genomic analysis of the carbapenemase gene-related sequences was performed, and the corresponding genetic structure of these resistance genes was analyzed. Genome-wide molecular characterization of the ECC population and resistance mechanism would offer valuable insights into the effective management of ECC infection in clinical settings. IMPORTANCE The presence and emergence of multiple species/subspecies of ECC have led to diversity and complications at the taxonomic level, which impedes our further understanding of the epidemiology and clinical significance of species/subspecies of ECC. Accurate identification of ECC species is extremely important. Also, it is of great importance to study the carbapenem-resistant genes in ECC and to further understand the mechanism of horizontal transfer of the resistance genes by analyzing the surrounding environment around the genes. The occurrence of ECC carrying two MBL genes also indicates that the selection pressure of bacteria is further increased, suggesting that we need to pay special attention to the emergence of such bacteria in the clinic.202236350178
1855110.9990High Genetic Diversity of Carbapenem-Resistant Acinetobacter baumannii Isolates Recovered in Nigerian Hospitals in 2016 to 2020. Acinetobacter baumannii causes difficult-to-treat infections mostly among immunocompromised patients. Clinically relevant A. baumannii lineages and their carbapenem resistance mechanisms are sparsely described in Nigeria. This study aimed to characterize the diversity and genetic mechanisms of carbapenem resistance among A. baumannii strains isolated from hospitals in southwestern Nigeria. We sequenced the genomes of all A. baumannii isolates submitted to Nigeria's antimicrobial resistance surveillance reference laboratory between 2016 and 2020 on an Illumina platform and performed in silico genomic characterization. Selected strains were sequenced using the Oxford Nanopore technology to characterize the genetic context of carbapenem resistance genes. The 86 A. baumannii isolates were phylogenetically diverse and belonged to 35 distinct Oxford sequence types ((oxf)STs), 16 of which were novel, and 28 Institut Pasteur STs ((pas)STs). Thirty-eight (44.2%) isolates belonged to none of the known international clones (ICs). Over 50% of the isolates were phenotypically resistant to 10 of 12 tested antimicrobials. The majority (n = 54) of the isolates were carbapenem resistant, particularly the IC7 ((pas)ST25; 100%) and IC9 ((pas)ST85; >91.7%) strains. bla(OXA-23) (34.9%) and bla(NDM-1) (27.9%) were the most common carbapenem resistance genes detected. All bla(OXA-23) genes were carried on Tn2006 or Tn2006-like transposons. Our findings suggest that a 10-kb Tn125 composite transposon is the primary means of bla(NDM-1) dissemination. Our findings highlight an increase in bla(NDM-1) prevalence and the widespread transposon-facilitated dissemination of carbapenemase genes in diverse A. baumannii lineages in southwestern Nigeria. We make the case for improving surveillance of these pathogens in Nigeria and other understudied settings. IMPORTANCE Acinetobacter baumannii bacteria are increasingly clinically relevant due to their propensity to harbor genes conferring resistance to multiple antimicrobials, as well as their ability to persist and disseminate in hospital environments and cause difficult-to-treat nosocomial infections. Little is known about the molecular epidemiology and antimicrobial resistance profiles of these organisms in Nigeria, largely due to limited capacity for their isolation, identification, and antimicrobial susceptibility testing. Our study characterized the diversity and antimicrobial resistance profiles of clinical A. baumannii in southwestern Nigeria using whole-genome sequencing. We also identified the key genetic elements facilitating the dissemination of carbapenem resistance genes within this species. This study provides key insights into the clinical burden and population dynamics of A. baumannii in hospitals in Nigeria and highlights the importance of routine whole-genome sequencing-based surveillance of this and other previously understudied pathogens in Nigeria and other similar settings.202337067411
1882120.9990Genomic Characterization of Multidrug-Resistant Pathogenic Enteric Bacteria from Healthy Children in Osun State, Nigeria. Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial infections. Surveillance of AMR in healthy individuals is usually not considered, though these individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp., Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms. A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q, and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and surveillance should be extended to healthy individuals, especially children. WGS for epidemiological surveillance will improve the detection of AMR pathogens for management and control.202438543556
1986130.9990Plasmid Identification and Plasmid-Mediated Antimicrobial Gene Detection in Norwegian Isolates. Norway is known for being one of the countries with the lowest levels of antimicrobial resistance (AMR). AMR, through acquired genes located on transposons or conjugative plasmids, is the horizontal transmission of genes required for a given bacteria to withstand antibiotics. In this work, bioinformatic analysis of whole-genome sequences and hybrid assembled data from Escherichia coli, and Klebsiella pneumoniae isolates from Norwegian patients was performed. For detection of putative plasmids in isolates, the plasmid assembly mode in SPAdes was used, followed by annotation of resulting contigs using PlasmidFinder and two curated plasmid databases (Brooks and PLSDB). Furthermore, ResFinder and Comprehensive Antibiotic Resistance Database (CARD) were used for the identification of antibiotic resistance genes (ARGs). The IncFIB plasmid was detected as the most prevalent plasmid in both E. coli, and K. pneumoniae isolates. Furthermore, ARGs such as aph(3″)-Ib, aph(6)-Id, sul1, sul2, tet(D), and qnrS1 were identified as the most abundant plasmid-mediated ARGs in Norwegian E. coli and K. pneumoniae isolates, respectively. Using hybrid assembly, we were able to locate plasmids and predict ARGs more confidently. In conclusion, plasmid identification and ARG detection using whole-genome sequencing data are heavily dependent on the database of choice; therefore, it is best to use several tools and/or hybrid assembly for obtaining reliable identification results.202033375502
2470140.9990Whole-genome sequencing of Klebsiella pneumoniae MDR circulating in a pediatric hospital setting: a comprehensive genome analysis of isolates from Guayaquil, Ecuador. BACKGROUND: Klebsiella pneumoniae is the major cause of nosocomial infections worldwide and is related to a worsening increase in Multidrug-Resistant Bacteria (MDR) and virulence genes that seriously affect immunosuppressed patients, long-stay intensive care patients, elderly individuals, and children. Whole-Genome Sequencing (WGS) has resulted in a useful strategy for characterizing the genomic components of clinically important bacteria, such as K. pneumoniae, enabling them to monitor genetic changes and understand transmission, highlighting the risk of dissemination of resistance and virulence associated genes in hospitals. In this study, we report on WGS 14 clinical isolates of K. pneumoniae from a pediatric hospital biobank of Guayaquil, Ecuador. RESULTS: The main findings revealed pronounced genetic heterogeneity among the isolates. Multilocus sequencing type ST45 was the predominant lineage among non-KPC isolates, whereas ST629 was found more frequently among KPC isolates. Phylogenetic analysis suggested local transmission dynamics. Comparative genomic analysis revealed a core set of 3511 conserved genes and an open pangenome in neonatal isolates. The diversity of MLSTs and capsular types, and the high genetic diversity among these isolates indicate high intraspecific variability. In terms of virulence factors, we identified genes associated with adherence, biofilm formation, immune evasion, secretion systems, multidrug efflux pump transporters, and a notably high number of genes related to iron uptake. A large number of these genes were detected in the ST45 isolate, whereas iron uptake yersiniabactin genes were found exclusively in the non-KPC isolates. We observed high resistance to commonly used antibiotics and determined that these isolates exhibited multidrug resistance including β-lactams, aminoglycosides, fluoroquinolones, quinolones, trimetropins, fosfomycin and macrolides; additionally, resistance-associated point mutations and cross-resistance genes were identified in all the isolates. We also report the first K. pneumoniae KPC-3 gene producers in Ecuador. CONCLUSIONS: Our WGS results for clinical isolates highlight the importance of MDR in neonatal K. pneumoniae infections and their genetic diversity. WGS will be an imperative strategy for the surveillance of K. pneumoniae in Ecuador, and will contribute to identifying effective treatment strategies for K. pneumoniae infections in critical units in patients at stratified risk.202439367302
1985150.9990Plasmid characterization in bacterial isolates of public health relevance in a tertiary healthcare facility in Kilimanjaro region, Tanzania. OBJECTIVES: Plasmids are infectious double stranded DNA molecules that are found within bacteria. Horizontal gene transfer promotes successful spread of different types of plasmids within or among bacteria species, making their detection an important task for guiding clinical treatment. We used whole genome sequenced data to determine the prevalence of plasmid replicon types in clinical bacterial isolates, the presence of resistance and virulence genes in plasmid replicon types, and the relationship between resistance and virulence genes within each plasmid replicon. METHODS: All bacterial sequences were de novo assembled using Unicycler before extraction of plasmids. Assembly graphs were submitted to Gplas+plasflow for plasmid contigs prediction. The predicted plasmid contigs were validated using PlasmidFinder. RESULTS: A total of 159 (56.2%) out of 283 bacterial isolates were found to carry plasmid replicons, with Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus being the most prevalent plasmid carriers. A total of 26 (86.7%) multiple-replicon types were found to carry both resistance and virulence genes compared to 4 (13.3%) single plasmid replicons. No statistically significant correlation was found between the number of antibiotic resistance and virulence genes in multiple-replicon types (r = - 0.14, P > 0.05). CONCLUSION: Our findings show a relatively high proportion of plasmid replicon-carrying isolates suggesting selection pressure due to antibiotic use in the hospital. Co-occurrence of antibiotic resistance and virulence genes in clinical isolates is a public health problem warranting attention.202235798255
1570160.9990Genomic Insights into Two Colistin-Resistant Klebsiella pneumoniae Strains Isolated from the Stool of Preterm Neonate During the First Week of Life. Background: Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life. Materials and Methods: In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates. Results: The strains harbored bla(SHV-27), bla(SHV-71), and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance. Conclusion: The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.202031545116
882170.9990Ceftriaxone-resistant Salmonella enterica serotype typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid. Multidrug-resistant bacteria pose a major challenge to the clinical management of infections in resource-poor settings. Although nontyphoidal Salmonella (NTS) bacteria cause predominantly enteric self-limiting illness in developed countries, NTS is responsible for a huge burden of life-threatening bloodstream infections in sub-Saharan Africa. Here, we characterized nine S. Typhimurium isolates from an outbreak involving patients who initially failed to respond to ceftriaxone treatment at a referral hospital in Kenya. These Salmonella enterica serotype Typhimurium isolates were resistant to ampicillin, chloramphenicol, cefuroxime, ceftriaxone, aztreonam, cefepime, sulfamethoxazole-trimethoprim, and cefpodoxime. Resistance to β-lactams, including to ceftriaxone, was associated with carriage of a combination of blaCTX-M-15, blaOXA-1, and blaTEM-1 genes. The genes encoding resistance to heavy-metal ions were borne on the novel IncHI2 plasmid pKST313, which also carried a pair of class 1 integrons. All nine isolates formed a single clade within S. Typhimurium ST313, the major clone of an ongoing invasive NTS epidemic in the region. This emerging ceftriaxone-resistant clone may pose a major challenge in the management of invasive NTS in sub-Saharan Africa.201525779570
1650180.9990Multidrug-Resistant Salmonella enterica 4,[5],12:i:- Sequence Type 34, New South Wales, Australia, 2016-2017. Multidrug- and colistin-resistant Salmonella enterica serotype 4,[5],12:i:- sequence type 34 is present in Europe and Asia. Using genomic surveillance, we determined that this sequence type is also endemic to Australia. Our findings highlight the public health benefits of genome sequencing-guided surveillance for monitoring the spread of multidrug-resistant mobile genes and isolates.201829553318
1899190.9990Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance.201222808141