Biocide-Resistant Escherichia coli ST540 Co-Harboring ESBL, dfrA14 Confers QnrS-Dependent Plasmid-Mediated Quinolone Resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
178501.0000Biocide-Resistant Escherichia coli ST540 Co-Harboring ESBL, dfrA14 Confers QnrS-Dependent Plasmid-Mediated Quinolone Resistance. Emerging sequence types of pathogenic bacteria have a dual ability to acquire resistance islands/determinants, and remain renitent towards disinfection practices; therefore, they are considered "critical risk factors" that contribute significantly to the global problem of antimicrobial resistance. Multidrug-resistant Escherichia coli was isolated, its genome sequenced, and its susceptibilities characterized, in order to understand the genetic basis of its antimicrobial resistance.The draft genome sequencing of E. coli ECU32, was performed with Illumina NextSeq 500, and annotated using a RAST server. The antibiotic resistome, genomic island, insertion sequences, and prophages were analyzed using bioinformatics tools. Subsequently, analyses including antibiotic susceptibility testing, E-test, bacterial growth, survival, and efflux inhibition assays were performed.The draft genome of E. coli ECU32 was 4.7 Mb in size, the contigs were 107, and the G+C content was 50.8%. The genome comprised 4658 genes, 4543 CDS, 4384 coding genes, 115 RNA genes, 88 tRNAs, and 3 CRISPR arrays. The resistome characterization of ST540 E. coli ECU32 revealed the presence of ESBL, APH(6)-Id, APH(3')-IIa, dfrA14, and QnrS1, with broad-spectrum multidrug and biocide resistance. Comparative genome sequence analysis revealed the presence of transporter and several virulence genes. Efflux activity and growth inhibition assays, which were performed with efflux substrates in the presence of inhibitor PAβN, exhibited significant reduced growth relative to its control.This study discusses the genotypic and phenotypic characterization of the biocide-tolerant multidrug-resistant E. coli O9:H30 strain, highlighting the contributory role of qnrS-dependent plasmid-mediated quinolone resistance, in addition to innate enzymatic modes of multidrug resistance mechanisms.202236551381
158210.9995Integrated Genomic and Phenotypic Characterization of an Mcr-10.1-Harboring Multidrug Resistant Escherichia coli Strain From Migratory Birds in China. Background: The global rise in antibiotic resistance among multidrug resistant (MDR) Gram-negative (GN) bacteria has posed significant health challenges, leading to the resurgence of colistin as a key defense against these bacteria. However, the widespread use of colistin has resulted in the rapid emergence of colistin resistance on a global scale. Ten members of the (mobile colistin resistance) mcr gene family, mcr-1 through mcr-10, have been reported and documented. Currently, bacteria reported to carry the mcr-10.1 gene are sensitive to colistin, but the mechanism underlying the low-level resistance phenomenon mediated by mcr-10.1 remains unclear. Methods: In this study, antimicrobial susceptibility testing (AST) was conducted on Escherichia coli (E.coli) isolated from Chinese migratory birds, resulting in the selection of 87 strains exhibiting MDR phenotypes. Whole-genome sequencing (draft) was performed on these 87 MDR E. coli strains, and for one of the E. coli strains carrying the mcr-10.1 gene, whole-genome sequencing, phenotypic characterization, AST and conjugation experiments were conducted to identify its resistance phenotypes and genetic characteristics. Results: Whole-genome sequencing (draft) of 87 MDR E. coli isolates revealed a diverse array of resistance genes, predominantly including aminoglycoside, β-lactam, tetracycline, and sulfonamide resistance genes. Remarkably, one isolate, despite being sensitive to colistin, harbored the mcr-10.1 gene. Further sequencing showed that mcr-10.1 was located in the conserved region of xerC-mcr-10.1, a hotspot for movable elements with various insertion sequences (ISs) or transposons nearby. Phenotypic characterization indicated that the MDR plasmid pGN25-mcr10.1 had no significant effect on the growth of GN25 and its derivatives but reduced the number of bacterial flagella. Conclusions: It is particularly important to note that bacteria harboring the mcr-10.1 gene may exhibit low minimum inhibitory concentration (MIC) values, but that the MIC values under colistin selective pressure can become progressively higher and exacerbate the difficulty of treating infections caused by mcr-10.1-associated bacteria. Therefore, vigilance for such "silent transmission" is warranted, and continuous monitoring of the spread of mcr-10.1 is necessary in the future.202540343190
165820.9995Genetic characterization of extraintestinal Escherichia coli isolates from chicken, cow and swine. Phenotypic determination of antimicrobial resistance in bacteria is very important for diagnosis and treatment, but sometimes this procedure needs further genetic evaluation. Whole-genome sequencing plays a critical role in deciphering and advancing our understanding of bacterial evolution, transmission, and surveillance of antimicrobial resistance. In this study, whole-genome sequencing was performed on nineteen clinically extraintestinal Escherichia coli isolates from chicken, cows and swine and showing different antimicrobial susceptibility. A total of 44 different genes conferring resistance to 11 classes of antimicrobials were detected in 15 of 19 E. coli isolates (78.9%), and 22 types of plasmids were detected in 15/19 (78.9%) isolates. In addition, whole-genome sequencing of these 19 isolates identified 111 potential virulence factors, and 53 of these VFDB-annotated genes were carried by all these 19 isolates. Twelve different virulence genes were identified while the most frequent ones were gad (glutamate decarboxylase), iss (increased serum survival) and lpfA (long polar fimbriae). All isolates harbored at least one of the virulence genes. The findings from comparative genomic analyses of the 19 diverse E. coli isolates in this study provided insights into molecular basis of the rising multi-drug resistance in E. coli.201830019301
562130.9995Comparative Genomics of DH5α-Inhibiting Escherichia coli Isolates from Feces of Healthy Individuals Reveals Common Co-Occurrence of Bacteriocin Genes with Virulence Factors and Antibiotic Resistance Genes. Background/Objectives: The presence of multi-drug-resistant (MDR) bacteria in healthy individuals poses a significant public health concern, as these strains may contribute to or even facilitate the dissemination of antibiotic resistance genes (ARGs) and virulence factors. In this study, we investigated the genomic features of antimicrobial-producing Escherichia coli strains from the gut microbiota of healthy individuals in Singapore. Methods: Using a large-scale screening approach, we analyzed 3107 E. coli isolates from 109 fecal samples for inhibitory activity against E. coli DH5α and performed whole-genome sequencing on 37 representative isolates. Results: Our findings reveal genetically diverse strains, with isolates belonging to five phylogroups (A, B1, B2, D, and F) and 23 unique sequence types (STs). Bacteriocin gene clusters were widespread (92% of isolates carried one or more bacteriocin gene clusters), with colicins and microcins dominating the profiles. Notably, we identified an hcp-et3-4 gene cluster encoding an effector linked to a Type VI secretion system. Approximately 40% of the sequenced isolates were MDR, with resistance for up to eight antibiotic classes in one strain (strain D96). Plasmids were the primary vehicles for ARG dissemination, but chromosomal resistance determinants were also detected. Additionally, over 55% of isolates were classified as potential extraintestinal pathogenic E. coli (ExPEC), raising concerns about their potential pathogenicity outside the intestinal tract. Conclusions: Our study highlights the co-occurrence of bacteriocin genes, ARGs, and virulence genes in gut-residing E. coli, underscoring their potential role in shaping microbial dynamics and antibiotic resistance. While bacteriocin-producing strains show potential as probiotic alternatives, careful assessment of their safety and genetic stability is necessary for therapeutic applications.202541009839
158440.9995Molecular mechanisms and genomic basis of tigecycline-resistant Enterobacterales from swine slaughterhouses. The continuous emergence of tigecycline-resistant bacteria is undermining the effectiveness of clinical tigecycline. Environmental tigecycline-resistant bacteria have the potential to infect humans through human-environment interactions. Furthermore, the mechanisms of tigecycline resistance in Enterobacterales are complicated. In this study, we aimed to investigate the additional pathways of tigecycline resistance in environmental Enterobacterales besides tet(X) and tmexCD-toprJ. During the years 2019-2020, tigecycline-resistant Enterobacterales (n = 45) negative for tet(X) and tmexCD-toprJ were recovered from 328 different samples from two slaughterhouses. Five distinct bacteria species were identified, of which Klebsiella pneumoniae (n = 37) was the most common, with K. pneumoniae ST45 and ST35 being the predominant clones. Tigecycline resistance determinants analysis showed that tet(A) mutations and ramR inactivation were the most prevalent mechanisms for tigecycline resistance in the 45 strains. Two known tet(A) variants (type 1 and tet(A)-v) and one novel tet(A) variant (type 3) were identified. Cloning experiments confirmed that the novel type 3 tet(A) could enhance the 4-fold MIC for tigecycline. Inactivation of ramR was induced by either point mutations or indels of sequences, which could result in the overexpression of AcrAB pump genes leading to tigecycline resistance. In addition, all isolates were resistant to a wide range of antimicrobials and carried various resistance genes. These findings enriched the epidemiological and genomic characterizations of tigecycline-resistant Enterobacterales from slaughterhouses and contributed to a better understanding of the complex mechanisms of tigecycline resistance in environmental bacteria.202235985220
179150.9995Complete genome sequence of Enterobacter cloacae R11 reveals multiple genes potentially associated with high-level polymyxin E resistance. Enterobacter cloacae strain R11 is a multidrug-resistant bacterium isolated from sewage water near a swine feedlot in China. Strain R11 can survive in medium containing up to 192 μg/mL polymyxin E, indicating a tolerance for this antibiotic that is significantly higher than that reported for other gram-negative bacteria. In this study, conjugation experiments showed that partial polymyxin E resistance could be transferred from strain R11 to Escherichia coli strain 25922, revealing that some genes related to polymyxin E resistance are plasmid-based. The complete genome sequence of this strain was determined, yielding a total of 4 993 008 bp (G+C content, 53.15%) and 4908 genes for the circular chromosome and 4 circular plasmids. Genome analysis revealed a total of 73 putative antibiotic resistance genes, including several polymyxin E resistance genes and genes potentially involved in multidrug resistance. These data provide insights into the genetic basis of the polymyxin E resistance and multidrug resistance of E. cloacae.201829073359
550660.9994Genomic and phenotypic insight into antimicrobial resistance of Pseudomonas fluorescens from King George Island, Antarctica. The genus Pseudomonas includes metabolically versatile microorganisms occupying diverse niches, from environmental habitats to plant pathogens, and has clinically significant strains. For this reason, Pseudomonas spp. might act as a reservoir of antimicrobial resistance genes, which have been detected even in isolated environments. The aim of this study was to report the antimicrobial susceptibility profile of 25 Pseudomonas fluorescens isolates from soil samples collected on King George Island (Antarctic Peninsula), and to select non-clonal isolates with unusual phenotypes for whole genome sequencing (WGS). Six classes of antimicrobials were assessed with disk diffusion and colistin with minimum inhibitory concentration (MIC) by broth microdilution. In order to confirm the discrepant phenotypes, MIC by agar dilution was performed for the beta-lactams aztreonam, ceftazidime, cefepime and the aminoglycoside neomycin. The genus Pseudomonas was confirmed by matrix-assisted laser desorption/ionization - time of flight (MALDI-TOF) and the clonal relationships were examined using repetitive extragenic palindromic polymerase chain reaction (BOX-PCR), from which 14 strains were selected for WGS. Antimicrobial susceptibility testing revealed that all strains were susceptible to neomycin and exhibited varying degrees of intermediate or full resistance to aztreonam and colistin. Additionally, 11 strains demonstrated intermediate resistance to ceftazidime, and six were resistant to cefepime. The genomic analysis identified various efflux pumps, predominantly from the ABC transporter and resistance-nodulation-division families. Resistance genes were detected against eight classes of antimicrobials, listed by prevalence: beta-lactams, tetracyclines, polymyxins, aminoglycosides, fosmidomycin, fosfomycin, quinolones, and chloramphenicol. Genes associated with heavy-metal resistance, prophages, and adaptations to extreme environments were also investigated. One notable isolate exhibited not only the highest number of pathogenicity and resistance islands, but also presented a carbapenemase-encoding gene (bla (PFM-2)) in its genome. Overall, one plasmid was identified in a distinct isolate, which did not exhibit antimicrobial resistance determinants. The genotypic and phenotypic findings are consistent, suggesting that efflux pumps play a critical role in antimicrobial extrusion. This study offers valuable insight into the evolution of antimicrobial resistance in P. fluorescens, particularly in extreme environments, such as Antarctica. By exploring the antimicrobial resistance mechanisms in P. fluorescens, the study sheds light on how isolated ecosystems drive the natural evolution of resistance genes.202540099188
158370.9994Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. Mobilized colistin resistance (mcr) genes are plasmid-borne genes that confer resistance to colistin, an antibiotic used to treat severe bacterial infections. To date, eight known mcr homologues have been described (mcr-1 to -8). Here, we describe mcr-9, a novel mcr homologue detected during routine in silico screening of sequenced Salmonella genomes for antimicrobial resistance genes. The amino acid sequence of mcr-9, detected in a multidrug-resistant (MDR) Salmonella enterica serotype Typhimurium (S Typhimurium) strain isolated from a human patient in Washington State in 2010, most closely resembled mcr-3, aligning with 64.5% amino acid identity and 99.5% coverage using Translated Nucleotide BLAST (tblastn). The S. Typhimurium strain was tested for phenotypic resistance to colistin and was found to be sensitive at the 2-mg/liter European Committee on Antimicrobial Susceptibility Testing breakpoint under the tested conditions. mcr-9 was cloned in colistin-susceptible Escherichia coli NEB5α under an IPTG (isopropyl-β-d-thiogalactopyranoside)-induced promoter to determine whether it was capable of conferring resistance to colistin when expressed in a heterologous host. Expression of mcr-9 conferred resistance to colistin in E. coli NEB5α at 1, 2, and 2.5 mg/liter colistin, albeit at a lower level than mcr-3 Pairwise comparisons of the predicted protein structures associated with all nine mcr homologues (Mcr-1 to -9) revealed that Mcr-9, Mcr-3, Mcr-4, and Mcr-7 share a high degree of similarity at the structural level. Our results indicate that mcr-9 is capable of conferring phenotypic resistance to colistin in Enterobacteriaceae and should be immediately considered when monitoring plasmid-mediated colistin resistance.IMPORTANCE Colistin is a last-resort antibiotic that is used to treat severe infections caused by MDR and extensively drug-resistant (XDR) bacteria. The World Health Organization (WHO) has designated colistin as a "highest priority critically important antimicrobial for human medicine" (WHO, Critically Important Antimicrobials for Human Medicine, 5th revision, 2017, https://www.who.int/foodsafety/publications/antimicrobials-fifth/en/), as it is often one of the only therapies available for treating serious bacterial infections in critically ill patients. Plasmid-borne mcr genes that confer resistance to colistin pose a threat to public health at an international scale, as they can be transmitted via horizontal gene transfer and have the potential to spread globally. Therefore, the establishment of a complete reference of mcr genes that can be used to screen for plasmid-mediated colistin resistance is essential for developing effective control strategies.201931064835
164280.9994Characterization of resistance genes and plasmids from sick children caused by Salmonella enterica resistance to azithromycin in Shenzhen, China. INTRODUCTION: Samonella is 1 of 4 key global causes of diarrhoeal diseases, sometimes it can be serious, especially for yong children. Due to the extensive resistance of salmonella serotypes to conventional first-line drugs, macrolides (such as azithromycin) have been designated as the most important antibiotics for the treatment of salmonella. Antimicrobial resistance is a major public health problem in the world, and the mechanism of azithromycin resistance is rarely studied. METHODS: This study determined the azithromycin resistance and plasmids of Salmonella enterica isolates from children attending the Shenzhen Children's Hospital. The susceptibility of ampicillin (AMP), ciprofloxacin (CIP), ceftriaxone (CRO), sulfamethoxazole (SMZ), chloramphenicol (CL), and azithromycin (AZM) were detected and the genes and plasmids from azithromycin-resistant Salmonella were detected by Illumina hi-seq and Nanopore MinIone whole genome sequencing (WGS) using a map-based method, and the genomic background of these factors was evaluated using various bioinformatics tools. RESULTS: In total, 15 strains of nontyphoid Salmonella strains that were isolated (including S. typhimurium, S.London, S. Goldcoast, and S.Stanley) demonstrated resistance to azithromycin (minimum inhibitory concentration,MIC from 32 to >256 µg/mL), and the resistance rate was 3.08% (15/487). The sensitivity test to other antibiotics demonstrated 100% resistance to AMP, and the resistance to SMZ and CL was 86.7% and 80.0%, respectively. Through WGS analysis, all isolates were positive for a plasmid-encoded mphA gene. Plasmid incompatibility typing identified five IncFIB(K), five IncHI2/HI2A/Q1, two IncC, one IncHI2/HI2A/N, one IncR, one IncFII and one IncHI2/HI2A plasmids. Sequence analyses of plasmids revealed extensive homology to various plasmids or transposons in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. CONCLUSION: mphA is the main gene involved in azithromycin, a macrolide, and resistance to Salmonella. It is usually located on plasmids and easily spreads, hence posing a great threat to the current treatment of Salmonella infection. The plasmid sequence similarities suggest that the plasmids acquired resistance genes from a variety of enterica bacteria and underscore the importance of a further understanding of horizontal gene transfer among enterica bacteria.202337065212
550990.9994Exploring Virulence Characteristics of Clinical Escherichia coli Isolates from Greece. The aim of this study was to examine the genetic characteristics that could be associated with the virulence characteristics of Escherichia coli collected from clinical samples. A collection of 100 non-repetitive E. coli isolates was analyzed. All isolates were typed by MLST. String production, biofilm formation and serum resistance were examined for all isolates. Twenty E. coli isolates were completely sequenced Illumina platform. The results showed that the majority of E. coli isolates (87%) produced significant levels of biofilm, while none of the isolates were positive for string test and resistance to serum. Additionally, the presence of CRISPR/Cas systems (type I-E or I-F) was found in 18% of the isolates. Analysis of WGS data found that all sequenced isolates harbored a variety of virulence genes that could be implicated in adherence, invasion, iron uptake. Also, WGS data confirmed the presence of a wide variety of resistance genes, including ESBL- and carbapenemase-encoding genes. In conclusion, an important percentage (87%) of the E. coli isolates had a significant ability to form biofilm. Biofilms, due to their heterogeneous nature and ability to make microorganisms tolerant to multiple antimicrobials, complicate treatment strategies. Thus, in combination with the presence of multidrug resistance, expression of virulence factors could challenge antimicrobial therapy of infections caused by such bacteria.202540731998
1788100.9994Draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 strain isolated from radiation-polluted soil and its pathogenic potential. OBJECTIVES: Stenotrophomonas is a genus of Gram-negative bacteria with several potential industrial uses as well as an increasingly relevant pathogen that may cause dangerous nosocomial infections. Here we present the draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 isolated from radiation-polluted soil in Xinjiang Uyghur Autonomous Region, China. METHODS: The genome of Stenotrophomonas sp. B1-1 was sequenced using a BGISEQ-500 platform. The generated sequencing reads were de novo assembled using SOAPdenovo and the resulting sequences were predicted and annotated to identify antimicrobial resistance genes and virulence factors using the ARDB and VFDB databases, respectively. RESULTS: The Stenotrophomonas sp. B1-1 genome assembly resulted in a total genome size of 4,723,769 bp with a GC content of 67.47%. There were 4280 predicted genes with 68 tRNAs, 2 rRNAs and 163 sRNAs. A number of antimicrobial resistance genes were identified conferring resistance to various antibiotics as well as numerous virulence genes. CONCLUSION: The genome sequence of Stenotrophomonas sp. B1-1 will provide timely information for comparison of the Stenotrophomonas genus and to help further understand the pathogenesis and antimicrobial resistance of this genus.202133373734
5466110.9994The Trade-Off Between Sanitizer Resistance and Virulence Genes: Genomic Insights into E. coli Adaptation. BACKGROUND: Escherichia coli is one of the most studied bacteria worldwide due to its genetic plasticity. Recently, in addition to characterizing its pathogenic potential, research has focused on understanding its resistance profile to inhibitory agents, whether these be antibiotics or sanitizers. OBJECTIVES: The present study aimed to investigate six of the main serogroups of foodborne infection (O26, O45, O103, O111, O121, and O157) and to understand the dynamics of heterogeneity in resistance to sanitizers derived from quaternary ammonium compounds (QACs) and peracetic acid (PAA) using whole-genome sequencing (WGS). METHODS: Twenty-four E. coli strains with varied resistance profiles to QACs and PAA were analyzed by WGS using NovaSeq6000 (150 bp Paired End reads). Bioinformatic analyses included genome assembly (Shovill), annotation via Prokka, antimicrobial resistance gene identification using Abricate, and core-genome analysis using Roary. A multifactorial multiple correspondence analysis (MCA) was conducted to explore gene-sanitizer relationships. In addition, a large-scale analysis utilizing the NCBI Pathogen Detection database involved a 2 × 2 chi-square test to examine associations between the presence of qac and stx genes. RESULTS: The isolates exhibited varying antimicrobial resistance profiles, with O45 and O157 being the most resistant serogroups. In addition, the qac gene was identified in only one strain (S22), while four other strains carried the stx gene. Through multifactorial multiple correspondence analysis, the results obtained indicated that strains harboring genes encoding Shiga toxin (stx) presented profiles that were more likely to be sensitive to QACs. To further confirm these results, we analyzed 393,216 E. coli genomes from the NCBI Pathogen Detection database. Our results revealed a significant association (p < 0.001) between the presence of qac genes and the absence of stx1, stx2, or both toxin genes. CONCLUSION: Our findings highlight the complexity of bacterial resistance mechanisms and suggest that non-pathogenic strains may exhibit greater tolerance to QAC sanitizer than those carrying pathogenicity genes, particularly Shiga toxin genes.202540149102
4974120.9994Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri. We performed a detailed whole-genome sequence analysis of Providencia rettgeri H1736, a multidrug-resistant clinical pathogen isolated in Israel in 2011. The objective was to describe the genomic flexibility of this bacterium that has greatly contributed to its pathogenicity. The genome has a chromosome size of 4,609,352 bp with 40.22% GC content. Five plasmids were predicted, as well as other mobile genetic elements (MGEs) including phages, genomic islands, and integrative and conjugative elements. The resistome consisted of a total of 27 different antibiotic resistance genes including blaNDM-1, mostly located on MGEs. Phenotypically, the bacteria displayed resistance to a total of ten different antimicrobial classes. Various features such as metabolic operons (including a novel carbapenem biosynthesis operon) and virulence genes were also borne on the MGEs, making P. rettgeri H1736 significantly different from other P. rettgeri isolates. A large quantity of the genetic diversity that exists in P. rettgeri H1736 was due to extensive horizontal gene transfer events, leading to an enormous presence of MGEs in its genome. Most of these changes contributed toward the pathogenic evolution of this bacterium.201627386606
2072130.9994Interplay between IncF plasmids and topoisomerase mutations conferring quinolone resistance in the Escherichia coli ST131 clone: stability and resistance evolution. The Escherichia coli ST131 H30-Rx subclone vehicles CTX-M-15 plasmids and mutations in gyrA and parC conferring multidrug resistance successfully in the clinical setting. The aim of this study was (1) to investigate the relationship of specific topoisomerase mutations on the stability of IncF (CTX-M producing) plasmids using isogenic E. coli mutants and (2) to investigate the impact of the IncF-type plasmids present in the E. coli clone ST131 on the evolution of quinolone resistance. E. coli ATCC 25922 (background strain) and derived mutants encoding specific QRDR substitutions were used. Also, NGS-characterized IncFIA and IncFIB plasmids (encoding CTX-M genes) were included. Plasmid stability was evaluated by sequential dilutions into Luria broth medium without antibiotics for 7 days. Mutant frequency to ciprofloxacin was also evaluated. Moderate differences in the IncF plasmids stability were observed among E. coli ATCC 25922 and isogenic mutants. Under our experimental conditions, the fluctuation of bacteria harboring plasmids was less than 0.5-log((10)) in all cases. In the mutant frequency tests, it was observed that the presence of these IncF plasmids increased this value significantly (10-1000-fold). Quinolone resistance substitutions in gyrA or parC genes, frequently found associated with E. coli clone ST131, do not modify the stability of ST131-associated IncFIA and IncFIB plasmids under in vitro conditions. IncF-type plasmids present in E. coli clone ST131 facilitate the selection of resistance to quinolones. These results are consistent with the clinical scenario in which the combination of resistance to quinolones and beta-lactams is highly frequent in the E. coli clone ST131.202134787748
1789140.9994Genomic and phylogenetic analysis of a multidrug-resistant Burkholderia contaminans strain isolated from a patient with ocular infection. OBJECTIVES: The genus Burkholderia comprises rod-shaped, non-spore-forming, obligately aerobic Gram-negative bacteria that is found across diverse ecological niches. Burkholderia contaminans, an emerging pathogen associated with cystic fibrosis, is frequently isolated from contaminated medical devices in hospital settings. The aim of this study was to understand the genomic characteristics, antimicrobial resistance profile and virulence determinants of B. contaminans strain SBC01 isolated from the eye of a patient hit by a cow's tail. METHODS: A hybrid sequence of isolate SBC01 was generated using Illumina HiSeq and Oxford Nanopore Technology platforms. Unicycler was used to assemble the hybrid genomic sequence. The draft genome was annotated using the NCBI Prokaryotic Genome Annotation Pipeline. Antimicrobial susceptibility testing was performed by VITEK®2. Antimicrobial resistance and virulence genes were identified using validated bioinformatics tools. RESULTS: The assembled genome size is 8 841 722 bp with a G+C content of 66.33% distributed in 19 contigs. Strain SBC01 was found to possess several antimicrobial resistance and efflux pump genes. The isolate was susceptible to tetracyclines, meropenem and ceftazidime. Many genes encoding potential virulence factors were identified. CONCLUSION: Burkholderia contaminans SBC01 belonging to sequence type 482 (ST482) is a multidrug-resistant strain containing diverse antimicrobial resistance genes, revealing the risks associated with infections by new Burkholderia spp. The large G+C-rich genome has a myriad of virulence factors, highlighting its pathogenic potential. Thus, while providing insights into the antimicrobial resistance and virulence potential of this uncommon species, the present analysis will aid in understanding the evolution and speciation in the Burkholderia genus.202133965629
5197150.9994Genome analysis of NDM-1 producing Morganella morganii clinical isolate. OBJECTIVE: To analyze the resistome and virulence genes of Morganella morganii F675, a multidrug-resistant clinical isolate using whole genome sequencing (WGS). METHODS: M. morganii F675 was isolated from a patient from Jerusalem, Israel. WGS was performed using both 454 and SOLiD sequencing technologies. Analyses of the bacterial resistome and other virulence genes were performed in addition to comparison with other available M. morganii genomes. RESULTS: The assembled sequence had a genome size of 4,127,528 bp with G+C content of 51%. The resistome consisted of 13 antibiotic resistance genes including blaNDM-1 located in a plasmid likely acquired from Acinetobacter spp. Moreover, we characterized for the first time the whole lipid A biosynthesis pathway in this species along with the O-antigen gene cluster, the urease gene cluster and several other virulence genes. CONCLUSION: The WGS analysis of this pathogen further provides insight into its pathogenicity and resistance to antibiotics.201425081858
1643160.9994Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. The foodborne transfer of resistant genes from enterococci to humans and their tolerance to several commonly used antimicrobials are of growing concern worldwide. Linezolid is a last-line drug for managing complicated illnesses resulting from multidrug-resistant Gram-positive bacteria. The optrA gene has been reported in enterococci as one of the acquired linezolid resistance mechanisms. The present study uses whole-genome sequencing analysis to characterize the first reported isolates of linezolid-resistant E. faecium (n = 6) and E. faecalis (n = 10) harboring the optrA gene isolated from samples of supermarket broiler meat (n = 165) in the United Arab Emirates (UAE). The sequenced genomes were used to appraise the study isolates' genetic relatedness, antimicrobial resistance determinants, and virulence traits. All 16 isolates carrying the optrA gene demonstrated multidrug-resistance profiles. Genome-based relatedness classified the isolates into five clusters that were independent of the isolate sources. The most frequently known genotype among the isolates was the sequence type ST476 among E. faecalis (50% (5/10)). The study isolates revealed five novel sequence types. Antimicrobial resistance genes (ranging from 5 to 13) were found among all isolates that conferred resistance against 6 to 11 different classes of antimicrobials. Sixteen different virulence genes were found distributed across the optrA-carrying E. faecalis isolates. The virulence genes in E. faecalis included genes encoding invasion, cell adhesion, sex pheromones, aggregation, toxins production, the formation of biofilms, immunity, antiphagocytic activity, proteases, and the production of cytolysin. This study presented the first description and in-depth genomic characterization of the optrA-gene-carrying linezolid-resistant enterococci from retail broiler meat in the UAE and the Middle East. Our results call for further monitoring of the emergence of linezolid resistance at the retail and farm levels. These findings elaborate on the importance of adopting a One Health surveillance approach involving enterococci as a prospective bacterial indicator for antimicrobial resistance spread at the human-food interface.202237430937
1856170.9994Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China. Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clinical ECC isolates between 2019 and 2020 from three hospitals in Zhejiang, China and performed a retrospective whole-genome sequencing to analyze their population structure and drug resistance mechanisms. Of the 172 ECC isolates, 160 belonged to 9 classified species, and 12 belonged to unclassified species based on ANI analysis. Most isolates belonged to E. hormaechei (45.14%) followed by E. kobei (13.71%), which contained 126 STs, including 62 novel STs, as determined by multilocus sequence typing (MLST) analysis. Pan-genome analysis of the two ECC species showed that they have an "open" tendency, which indicated that their Pan-genome increased considerably with the addition of new genomes. A total of 80 resistance genes associated with 11 antimicrobial agent categories were identified in the genomes of all the isolates. The most prevailing resistance genes (12/29, 41.38%) were related to β-lactams followed by aminoglycosides. A total of 247 β-lactamase genes were identified, of which the bla(ACT) genes were the most dominant (145/247, 58.70%), followed by the bla(TEM) genes (21/247, 8.50%). The inherent ACT type β-lactamase genes differed among different species. bla(ACT-2) and bla(ACT-3) were only present in E. asburiae, while bla(ACT-9), bla(ACT-12), and bla(ACT-6) exclusively appeared in E. kobei, E. ludwigii, and E. mori. Among the six carbapenemase-encoding genes (bla(NDM-1), bla(NDM-5), bla(IMP-1), bla(IMP-4), bla(IMP-26), and bla(KPC-2)) identified, two (bla(NDM-1) and bla(IMP-1)) were identified in an ST78 E. hormaechei isolate. Comparative genomic analysis of the carbapenemase gene-related sequences was performed, and the corresponding genetic structure of these resistance genes was analyzed. Genome-wide molecular characterization of the ECC population and resistance mechanism would offer valuable insights into the effective management of ECC infection in clinical settings. IMPORTANCE The presence and emergence of multiple species/subspecies of ECC have led to diversity and complications at the taxonomic level, which impedes our further understanding of the epidemiology and clinical significance of species/subspecies of ECC. Accurate identification of ECC species is extremely important. Also, it is of great importance to study the carbapenem-resistant genes in ECC and to further understand the mechanism of horizontal transfer of the resistance genes by analyzing the surrounding environment around the genes. The occurrence of ECC carrying two MBL genes also indicates that the selection pressure of bacteria is further increased, suggesting that we need to pay special attention to the emergence of such bacteria in the clinic.202236350178
1986180.9994Plasmid Identification and Plasmid-Mediated Antimicrobial Gene Detection in Norwegian Isolates. Norway is known for being one of the countries with the lowest levels of antimicrobial resistance (AMR). AMR, through acquired genes located on transposons or conjugative plasmids, is the horizontal transmission of genes required for a given bacteria to withstand antibiotics. In this work, bioinformatic analysis of whole-genome sequences and hybrid assembled data from Escherichia coli, and Klebsiella pneumoniae isolates from Norwegian patients was performed. For detection of putative plasmids in isolates, the plasmid assembly mode in SPAdes was used, followed by annotation of resulting contigs using PlasmidFinder and two curated plasmid databases (Brooks and PLSDB). Furthermore, ResFinder and Comprehensive Antibiotic Resistance Database (CARD) were used for the identification of antibiotic resistance genes (ARGs). The IncFIB plasmid was detected as the most prevalent plasmid in both E. coli, and K. pneumoniae isolates. Furthermore, ARGs such as aph(3″)-Ib, aph(6)-Id, sul1, sul2, tet(D), and qnrS1 were identified as the most abundant plasmid-mediated ARGs in Norwegian E. coli and K. pneumoniae isolates, respectively. Using hybrid assembly, we were able to locate plasmids and predict ARGs more confidently. In conclusion, plasmid identification and ARG detection using whole-genome sequencing data are heavily dependent on the database of choice; therefore, it is best to use several tools and/or hybrid assembly for obtaining reliable identification results.202033375502
1894190.9994Phenotypic and Genotypic Characterization of Multidrug-Resistant Enterobacter hormaechei Carrying qnrS Gene Isolated from Chicken Feed in China. Multidrug resistance (MDR) in Enterobacteriaceae including resistance to quinolones is rising worldwide. The plasmid-mediated quinolone resistance (PMQR) gene qnrS is prevalent in Enterobacteriaceae. However, the qnrS gene is rarely found in Enterobacter hormaechei (E. hormaechei). Here, we reported one multidrug resistant E. hormaechei strain M1 carrying the qnrS1 and bla(TEM-1) genes. This study was to analyze the characteristics of MDR E. hormaechei strain M1. The E. hormaechei strain M1 was identified as Enterobacter cloacae complex by biochemical assay and 16S rRNA sequencing. The whole genome was sequenced by the Oxford Nanopore method. Taxonomy of the E. hormaechei was based on multilocus sequence typing (MLST). The qnrS with the other antibiotic resistance genes were coexisted on IncF plasmid (pM1). Besides, the virulence factors associated with pathogenicity were also located on pM1. The qnrS1 gene was located between insertion element IS2A (upstream) and transposition element ISKra4 (downstream). The comparison result of IncF plasmids revealed that they had a common plasmid backbone. Susceptibility experiment revealed that the E. hormaechei M1 showed extensive resistance to the clinical antimicrobials. The conjugation transfer was performed by filter membrane incubation method. The competition and plasmid stability assays suggested the host bacteria carrying qnrS had an energy burden. As far as we know, this is the first report that E. hormaechei carrying qnrS was isolated from chicken feed. The chicken feed and poultry products could serve as a vehicle for these MDR bacteria, which could transfer between animals and humans through the food chain. We need to pay close attention to the epidemiology of E. hormaechei and prevent their further dissemination. IMPORTANCE Enterobacter hormaechei is an opportunistic pathogen. It can cause infections in humans and animals. Plasmid-mediated quinolone resistance (PMQR) gene qnrS can be transferred intergenus, which is leading to increase the quinolone resistance levels in Enterobacteriaceae. Chicken feed could serve as a vehicle for the MDR E. hormaechei. Therefore, antibiotic-resistance genes (ARGs) might be transferred to the intestinal flora after entering the gastrointestinal tract with the feed. Furthermore, antibiotic-resistant bacteria (ARB) were also excreted into environment with feces, posing a huge threat to public health. This requires us to monitor the ARB and antibiotic-resistant plasmids in the feed. Here, we demonstrated the characteristics of one MDR E. hormaechei isolate from chicken feed. The plasmid carrying the qnrS gene is a conjugative plasmid with transferability. The presence of plasmid carrying antibiotic-resistance genes requires the maintenance of antibiotic pressure. In addition, the E. hormaechei M1 belonged to new sequence type (ST). These data show the MDR E. hormaechei M1 is a novel strain that requires our further research.202235467399