# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1784 | 0 | 1.0000 | Draft genome sequence of a multidrug-resistant emerging pathogenic isolate of Vibrio alginolyticus from the Red Sea. The marine ecosystem is a growing reservoir of antimicrobial-resistant bacteria, and thus an emerging risk to human health. In this study, we report the first draft genome sequence of multidrug-resistant Vibrio alginolyticus strain OS1T-47, isolated from an offshore site in the Red Sea. The draft genome of V. alginolyticus OS1T-47 is 5 157 150 bp in length and has DNA G + C content of 44.83%. Strain OS1T-47 possesses 22 antimicrobial resistance genes, including those associated with multidrug-resistant efflux pumps. | 2020 | 33294196 |
| 1787 | 1 | 0.9995 | Whole genome sequence to decipher the resistome of Shewanella algae, a multidrug-resistant bacterium responsible for pneumonia, Marseille, France. We characterize and decipher the resistome and the virulence factors of Shewanella algae MARS 14, a multidrug-resistant clinical strain using the whole genome sequencing (WGS) strategy. The bacteria were isolated from the bronchoalveolar lavage of a hospitalized patient in the Timone Hospital in Marseille, France who developed pneumonia after plunging into the Mediterranean Sea. RESULTS: The genome size of S. algae MARS 14 was 5,005,710 bp with 52.8% guanine cytosine content. The resistome includes members of class C and D beta-lactamases and numerous multidrug-efflux pumps. We also found the presence of several hemolysins genes, a complete flagellum system gene cluster and genes responsible for biofilm formation. Moreover, we reported for the first time in a clinical strain of Shewanella spp. the presence of a bacteriocin (marinocin). CONCLUSION: The WGS analysis of this pathogen provides insight into its virulence factors and resistance to antibiotics. | 2016 | 26523633 |
| 1788 | 2 | 0.9994 | Draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 strain isolated from radiation-polluted soil and its pathogenic potential. OBJECTIVES: Stenotrophomonas is a genus of Gram-negative bacteria with several potential industrial uses as well as an increasingly relevant pathogen that may cause dangerous nosocomial infections. Here we present the draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 isolated from radiation-polluted soil in Xinjiang Uyghur Autonomous Region, China. METHODS: The genome of Stenotrophomonas sp. B1-1 was sequenced using a BGISEQ-500 platform. The generated sequencing reads were de novo assembled using SOAPdenovo and the resulting sequences were predicted and annotated to identify antimicrobial resistance genes and virulence factors using the ARDB and VFDB databases, respectively. RESULTS: The Stenotrophomonas sp. B1-1 genome assembly resulted in a total genome size of 4,723,769 bp with a GC content of 67.47%. There were 4280 predicted genes with 68 tRNAs, 2 rRNAs and 163 sRNAs. A number of antimicrobial resistance genes were identified conferring resistance to various antibiotics as well as numerous virulence genes. CONCLUSION: The genome sequence of Stenotrophomonas sp. B1-1 will provide timely information for comparison of the Stenotrophomonas genus and to help further understand the pathogenesis and antimicrobial resistance of this genus. | 2021 | 33373734 |
| 5712 | 3 | 0.9994 | Draft Genome Sequences of Three Multidrug-Resistant Staphylococcus spp. Isolated from Hospital Wastewater in Malaysia. Staphylococcus spp. are Gram-positive bacteria that reside within the normal microbiota of humans and animals but pose a health threat as reservoirs of antimicrobial resistance genes. Here, we present the draft genome sequences of three Staphylococcus sp. strains isolated from hospital wastewater in Malaysia that demonstrated resistance to multiple antibiotics. | 2021 | 33958405 |
| 1973 | 4 | 0.9994 | Draft Genome Sequences of Multidrug-Resistant Escherichia coli Strains Isolated from River Water in Malaysia. Antimicrobial resistance has become a primary concern in clinical and public health. Escherichia coli is one of the bacteria that carries and disseminates antimicrobial resistance genes to the community. Here, we report the draft genome sequence of three multidrug-resistant E. coli strains that were isolated from river water in Malaysia. | 2022 | 35678586 |
| 4974 | 5 | 0.9994 | Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri. We performed a detailed whole-genome sequence analysis of Providencia rettgeri H1736, a multidrug-resistant clinical pathogen isolated in Israel in 2011. The objective was to describe the genomic flexibility of this bacterium that has greatly contributed to its pathogenicity. The genome has a chromosome size of 4,609,352 bp with 40.22% GC content. Five plasmids were predicted, as well as other mobile genetic elements (MGEs) including phages, genomic islands, and integrative and conjugative elements. The resistome consisted of a total of 27 different antibiotic resistance genes including blaNDM-1, mostly located on MGEs. Phenotypically, the bacteria displayed resistance to a total of ten different antimicrobial classes. Various features such as metabolic operons (including a novel carbapenem biosynthesis operon) and virulence genes were also borne on the MGEs, making P. rettgeri H1736 significantly different from other P. rettgeri isolates. A large quantity of the genetic diversity that exists in P. rettgeri H1736 was due to extensive horizontal gene transfer events, leading to an enormous presence of MGEs in its genome. Most of these changes contributed toward the pathogenic evolution of this bacterium. | 2016 | 27386606 |
| 4971 | 6 | 0.9994 | Antimicrobial and Metal Resistance Genes in Bacteria Isolated from Mine Water in Austria. Background/Objectives: Microbiomes surrounding mining sites have been found to harbor both antibiotic resistance genes and metal resistance genes. Within the "One Health" framework, which spans human, veterinary and environmental health, it is crucial to determine whether bacterial metal resistance (MR) genes can independently trigger antimicrobial resistance (AMR) or if they are linked to AMR genes and co-transferred horizontally. Methods and Results: Bacteria were isolated from an active and an inactive mining site in the alpine region of Austria. Most of the isolated bacteria harbored antimicrobial and metal resistance genes (88%). MALDI-TOF and whole genome sequencing (WGS) revealed that species from the Pseudomonadaceae family were the most identified, accounting for 32.5%. All Pseudomonas spp. carried AMR genes from the mex family, which encode multidrug efflux pumps. β-lactamase production encoded by bla genes were detected as the second most common (26%). The same AMR genes have often been detected within a particular bacterial genus. No tetracycline resistance gene has been identified. Among metal resistance genes, rufB (tellurium resistance) was the most prevalent (33%), followed by recGM (selenium resistance, 30%), copA (copper resistance, 26%), and mgtA (magnesium and cobalt resistance, 26%). Notably, the mer gene family (mercury resistance) was found exclusively in isolates from the inactive mining site (n = 6). In addition, genes associated with both antimicrobial and metal resistance, including arsBM, acrD, and the mer operon, were identified in 19 out of the 43 isolates. Conclusions: Bacteria isolated from mine water harbored both MR and AMR genes. Given the exceptional diversity of bacterial species in these settings, 16S rRNA gene sequence analysis is the recommended method for accurate species identification. Moreover, the presence of multi-drug transporters and transferable resistance genes against critically important antimicrobials such as fluoroquinolones and colistin identified in these environmental bacteria emphasizes the importance of retrieving environmental data within the "One Health" framework. | 2025 | 40149073 |
| 5936 | 7 | 0.9994 | Antibiotic Resistance Characterization and Molecular Characteristics of Enterococcus Species Isolated from Combination Probiotic Preparations in China. Enterococci can act as reservoirs for antibiotic-resistant genes that are potentially at risk of being transferred to other bacteria that inhabit in the gastrointestinal tract. The aim of this study was to determine the phenotypic and molecular characteristics of antibiotic-resistant enterococci isolated from probiotic preparations. In total, we isolated 15 suspected Enterococcus species from 5 compound probiotics, which were identified by 16S rDNA as 12 Enterococcus faecium and 3 Enterococcus faecalis. Determination of antimicrobial susceptibility by the microdilution broth method showed widespread resistance to sulfamethoxazole (100%), norfloxacin (99.3%), azithromycin (99.3%), gentamicin (86.7%), and chloramphenicol (20%). Whole genome sequencing of five resistant strains revealed that all had circular DNA chromosomes and that E. faecium J-1-A to J-4-A contained a plasmid, while E. faecalis J-5-A did not. The results of the resistance gene analysis revealed that each strain contained approximately 30 resistance genes, with the antibiotic resistance genes and the multidrug resistance efflux pump genes mdtG, lmrC, and lmrD detected in all strains. The chloramphenicol resistance genes ykkC and ykkD were first identified in E. faecalis. And there were 21, 19, 21, 21, and 29 virulence factors involved in strains, respectively. Further analysis of the gene islands (GIs) revealed that each strain contained more than 10 GIs. The above results confirm the existence of hidden dangers in the safety of probiotics and remind us to carefully select probiotic preparations containing enterococcal strains to avoid the potential spread of resistance and pathogenicity. | 2024 | 37824752 |
| 4961 | 8 | 0.9993 | Draft genome of Serratia sp. R1 gives an insight into the antibiotic resistant genes against multiple antibiotics. BACKGROUND: Serratia is a pathogenic bacterium, commonly associated with neonatal intensive care units, and harbors antibiotic-resistant genes against multiple antibiotics e.g., resistance against penams, aminoglycosides, tetracyclines, cephalosporins, and macrolides. In the long-term contaminated habitat, the bacterial communities carry both antibiotic and metal resistance genes. This draft genome sequencing aimed to explore the alarming level of ARGs in the environment, additionally heavy metal-resistant genes were also explored in the draft genome. METHODS: Whole-genome sequencing was used to investigate ARGs in Serratia sp. R1. The bacteria were sequenced using Illumina Nova seq sequencer and subjected to genome annotation. The bacterial genome was explored for antibiotic- and metal-resistant genes. RESULTS: Sequencing resulted in 8.4 Mb genome and a total of 4411 functional genes were characterized in the draft genome. Genes resistant to Beta-lactams, cephalosporins, macrolides, fluoroquinolones, and tetracycline are present in the draft genome. Multiple metal-resistant genes are also present in the sequenced genome. CONCLUSION: The genes and proteins providing heavy metal and antibiotic resistance may be used in the bioremediation of environmental antibiotic residues to prevent the spread of antibiotic resistance. The current study can help us to adopt suitable mitigation measures against the multidrug-resistant Serratia. | 2022 | 35237932 |
| 5514 | 9 | 0.9993 | Resistance and virulence gene analysis and molecular typing of Escherichia coli from duck farms in Zhanjiang, China. INTRODUCTION: The widespread use of antibiotics in animal agriculture has increased the resistance of Escherichia coli, and pathogenic E. coli often harbor complex virulence factors. Antimicrobial resistance in pathogenic bacteria can cause public health problems. Correlation analyses of the resistance, virulence, and serotype data from the pathogenic bacteria found on farms and in the surrounding environment can thus provide extremely valuable data to help improve public health management. METHODS: In this investigation, we have assessed the drug resistance and virulence genes as well as the molecular typing characteristics of 30 E. coli strains isolated from duck farms in the Zhanjiang area of China. Polymerase chain reaction was used to detect the drug resistance and virulence genes as well as serotypes, and whole-genome sequencing was used to analyze the multilocus sequence typing. RESULTS: The detection rates for the oqxA resistance gene and fimC virulence gene were highest (93.3%, respectively). There were no correlations between the drug resistance and virulence gene numbers in the same strain. The epidemic serotype was O81 (5/24), ST3856 was an epidemic sequence type, and strains I-9 and III-6 carried 11 virulence genes. The E. coli strains from the duck farms in the Zhanjiang area were thus found to have a broad drug resistance spectrum, various virulence genes, complex serotypes, and certain pathogenicity and genetic relationship. DISCUSSION: Monitoring the spread of pathogenic bacteria and the provision of guidance regarding the use of antibiotics in the livestock and poultry industries will be required in the future in the Zhanjiang area. | 2023 | 37396302 |
| 5518 | 10 | 0.9993 | Analysis of Resistance Gene Prevalence in Whole-Genome Sequenced Enterobacteriales from Brazil. Enterobacteriales is an order of bacteria responsible for community and hospital-acquired infections related to high rates of antimicrobial resistance and increased treatment costs, morbidity, and mortality globally. The aims of this study were to analyze the frequency of the resistance genes detected and distribution over the years and sources of isolation in sequenced Enterobacteriales strains isolated in Brazil and available at the Pathogen Detection website. The presence of resistance genes was analyzed in 1,507 whole-genome sequenced strains of 19 Enterobacteriales species. A total of 58.0% of the strains presented resistance genes to at least one antimicrobial class and 684 strains presented a multidrug-resistant (MDR) profile. Resistance genes to 14 classes of antimicrobials were detected. Aminoglycosides presented the most prevalent and diverse resistance genes, while the sulfonamide resistance gene, sul2, was the most prevalent among the strains studied. The presence of resistance genes from 14 different antimicrobial classes, the high levels of MDR strains, and the detection of genes related to clinical and veterinary-used drugs reinforce the necessity of more efficient control measures. Moreover, it warns for the necessity of the rational use of antimicrobials in veterinary and clinical situations in Brazil, since contaminated food may act as a vehicle for human infections. | 2020 | 31746671 |
| 1658 | 11 | 0.9993 | Genetic characterization of extraintestinal Escherichia coli isolates from chicken, cow and swine. Phenotypic determination of antimicrobial resistance in bacteria is very important for diagnosis and treatment, but sometimes this procedure needs further genetic evaluation. Whole-genome sequencing plays a critical role in deciphering and advancing our understanding of bacterial evolution, transmission, and surveillance of antimicrobial resistance. In this study, whole-genome sequencing was performed on nineteen clinically extraintestinal Escherichia coli isolates from chicken, cows and swine and showing different antimicrobial susceptibility. A total of 44 different genes conferring resistance to 11 classes of antimicrobials were detected in 15 of 19 E. coli isolates (78.9%), and 22 types of plasmids were detected in 15/19 (78.9%) isolates. In addition, whole-genome sequencing of these 19 isolates identified 111 potential virulence factors, and 53 of these VFDB-annotated genes were carried by all these 19 isolates. Twelve different virulence genes were identified while the most frequent ones were gad (glutamate decarboxylase), iss (increased serum survival) and lpfA (long polar fimbriae). All isolates harbored at least one of the virulence genes. The findings from comparative genomic analyses of the 19 diverse E. coli isolates in this study provided insights into molecular basis of the rising multi-drug resistance in E. coli. | 2018 | 30019301 |
| 1641 | 12 | 0.9993 | Comparative genomics and antibiotic resistance of Yersinia enterocolitica obtained from a pork production chain and human clinical cases in Brazil. Previous work found a high similarity of macro-restriction patterns for isolates of Yersinia enterocolitica 4/O:3 obtained at a pork production chain from Minas Gerais, Brazil. Herein we aimed to determine the clonality and the antibiotic resistance profiles of a subset of these isolates (n = 23) and human clinical isolates (n = 3). Analysis based on whole genome sequencing (WGS) showed that the isolates were distributed into two major clades based on single nucleotide polymorphisms (SNP) with one isolate defining Clade A (isolate R31) and remaining isolates (n = 25, 96.2%) defining Clade B. Seven clonal groups were identified. The inclusion of isolate R31 as a distinct clonal group was due to the presence of several phage-related genes, allowing its characterization as serotype O:5 by WGS. Disk-diffusion assays (14 antibiotics) identified 13 multidrug resistant isolates (50.0%). Subsequent sequence analysis identified 17 different antibiotic resistance related genes. All isolates harbored blaA (y56 beta-lactamase), vatF, rosA, rosB and crp, while nine isolates harbored a high diversity of antibiotic resistance related genes (n = 13). The close genetic relationship among Y. enterocolitica obtained from a pork production chain and human clinical isolates in Brazil was confirmed, and we can highlight the role of swine in the potential transmission of an antibiotic-resistant clones of a pathogenic bio-serotype to humans, or the transmission of these resistant bacteria from people to animals. The role of veterinary antibiotic use in this process is unclear. | 2022 | 35181088 |
| 2036 | 13 | 0.9993 | Genotypic and Phenotypic Characterization of Antimicrobial and Heavy Metal Tolerance in Salmonella enterica and Escherichia coli Isolates from Swine Feed Mills. Antimicrobials and heavy metals are commonly used in the animal feed industry. The role of in-feed antimicrobials on the evolution and persistence of resistance in enteric bacteria is not well described. Whole-Genome Sequencing (WGS) is widely used for genetic characterizations of bacterial isolates, including antimicrobial resistance, heavy metal tolerance, virulence factors, and relatedness to other sequenced isolates. The goals of this study were to i) use WGS to characterize Salmonella enterica (n = 33) and Escherichia coli (n = 30) isolated from swine feed and feed mill environments; and ii) investigate their genotypic and phenotypic antimicrobial and heavy metal tolerance. Salmonella isolates belonged to 10 serovars, the most common being Cubana, Senftenberg, and Tennessee. E. coli isolates were grouped into 22 O groups. Phenotypic resistance to at least one antimicrobial was observed in 19 Salmonella (57.6%) and 17 E. coli (56.7%) isolates, whereas multidrug resistance (resistant to ≥3 antimicrobial classes) was observed in four Salmonella (12%) and two E. coli (7%) isolates. Antimicrobial resistance genes were identified in 17 Salmonella (51%) and 29 E. coli (97%), with 11 and 29 isolates possessing genes conferring resistance to multiple antimicrobial classes. Phenotypically, 53% Salmonella and 58% E. coli presented resistance to copper and arsenic. All isolates that possessed the copper resistance operon were resistant to the highest concentration tested (40 mM). Heavy metal tolerance genes to copper and silver were present in 26 Salmonella isolates. Our study showed a strong agreement between predicted and measured resistances when comparing genotypic and phenotypic data for antimicrobial resistance, with an overall concordance of 99% and 98.3% for Salmonella and E. coli, respectively. | 2023 | 37290750 |
| 5737 | 14 | 0.9993 | Survey of Colistin Resistance in Commensal Bacteria from Penaeus vannamei Farms in China. Aquatic environments are important reservoirs for drug resistance. Aquatic foods may act as carriers to lead antibiotic-resistant commensal bacteria into the human gastrointestinal system, then contacting gut microbiota and spreading antibiotic resistance. Here, several shrimp farms were investigated to identify colistin resistance among commensal bacteria of aquaculture. A total of 884 (41.6%) colistin-resistant isolates were identified among 2126 strains. Electroporation demonstrated that colistin-resistant fragments were present in some commensal bacteria that could be transferred to other bacteria. Most of the resistant bacteria were Bacillus spp., with 69.3% of the Bacillus species exhibiting multiple drug resistance. Bacillus licheniformis was prevalent, with 58 strains identified that comprised six sequence types (ST) based on multilocus sequence typing. Whole-genome sequencing and comparisons with previous B. licheniformis genomes revealed a high degree of genomic similarity among isolates from different regions. Thus, this species is widely distributed, and this study provides new insights into global antibiotic-resistant characteristics of B. licheniformis. Sequence analyses further revealed some of these strains are even pathogenic and virulent, suggesting the antibiotic resistance and hazards of commensal bacteria in aquaculture should be considered. Considering the "One Health" perspective, improved monitoring of aquatic food is needed to prevent the spread of drug-resistant commensal bacteria from food-associated bacteria to humans. | 2023 | 37297388 |
| 1972 | 15 | 0.9993 | Draft Genome Sequences of Multidrug-Resistant Escherichia coli Isolated from River Water. The spread of antibiotic resistance poses a critical challenge worldwide. Contaminated environments can become reservoirs, spreading antibiotic-resistant bacteria and genetic determinants of resistance to humans directly or indirectly. Here, we report the draft genome sequence, the resistome, virulence genes, and sequence types of seven multidrug-resistant Escherichia coli strains isolated from river water. | 2022 | 36222705 |
| 5738 | 16 | 0.9993 | Unveiling the Genomic Landscape of Understudied Salmonella enterica Serovars from Poultry and Human: Implications for Food Safety. Despite the bacteria of the genus Salmonella are pathogens of zoonotic importance, the factors associated with some serovars genetic diversity remain unclear. We investigated genotypic profiles of antimicrobial resistance, plasmid replicons, and virulence factors in 301 S. enterica genomes from human and animal sources, supplemented by ten sequenced genomes from fecal samples of laying hens in Brazil. Many antimicrobial resistance genes have been detected across various Salmonella serovars; with a limited number of unique resistance genes predicted in poultry isolates compared to human isolates. Specifically, among the 52 antimicrobial resistance genes identified, 48% were shared between poultry and human isolates, while 21.1% were exclusive to poultry isolates and 30.7% were exclusive to human isolates. Chromosomal mutations in the gyrA and parC genes were also predicted. To the best of our knowledge, this is the first work to report S. Braenderup carrying the SPI-10. SGI-1 was detected in a few isolates of S. Schwarzengrund from poultry and the CS54 island was solely noticed in genomes referring to the serovars S. Saintpaul and S. Braenderup. Among the serovars analyzed, S. Saintpaul showed the lowest plasmid diversity. A total of 161 (161/271) virulence genes were common to all serovars, the remaining genes were exclusively identified within specific serovars, revealing a distinct distribution pattern within the S. enterica population. Overall, our study brings to light the genetic potential of Salmonella serovars frequently neglected in poultry production, which threatens public health, particularly due to multidrug-resistant profiles against active principles used to treat human infections. | 2025 | 40327155 |
| 5517 | 17 | 0.9993 | Analysis of the antimicrobial resistance gene frequency in whole-genome sequenced Vibrio from Latin American countries. Vibrio species are important environmental-related bacteria responsible for diverse infections in humans due to consumption of contaminated water and seafood in underdeveloped areas of the world. This study aimed to investigate the frequency of antimicrobial resistance genes in 577 sequenced Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus strains isolated in Latin American countries available at the NCBI Pathogen Detection database and to determine the sequence type (ST) of the strains. Almost all strains studied (99.8%) carried at least one antimicrobial resistance gene, while 54.2 % presented a multidrug-resistance profile. The Vibrio strains exhibited genotypic resistance to 11 antimicrobial classes and almG, varG, and catB9, which confer resistance to antibiotic peptides, β-lactams and amphenicols, respectively, were the most detected genes. Vibrio parahaemolyticus and V. vulnificus showed a broad diversity of STs. Vibrio cholerae strains isolated in Haiti after 2010's earthquake presented the highest diversity and amount of resistance genes in the set of strains analysed and mostly belonged to ST69. In conclusion, the detection of resistance genes from 11 antimicrobial classes and the high number of multidrug-resistant Vibrio species strains emphasize that Latin American public health authorities should employ more efficient control measures and that special attention should be given for the rational use of antimicrobials in human therapy and aquaculture, since the consumption of contaminated water and seafood with resistant Vibrio may result in human infections difficult to be treated. | 2021 | 34586052 |
| 5527 | 18 | 0.9993 | Antibiotic Resistance Properties among Pseudomonas spp. Associated with Salmon Processing Environments. Continuous monitoring of antimicrobial resistance in bacteria along the food chain is crucial for the assessment of human health risks. Uncritical use of antibiotics in farming over years can be one of the main reasons for increased antibiotic resistance in bacteria. In this study, we aimed to classify 222 presumptive Pseudomonas isolates originating from a salmon processing environment, and to examine the phenotypic and genotypic antibiotic resistance profiles of these isolates. Of all the analyzed isolates 68% belonged to Pseudomonas, and the most abundant species were Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas gessardii, Pseudomonas libanesis, Pseudomonas lundensis, Pseudomonas cedrina and Pseudomonas extremaustralis based on sequencing of the rpoD gene. As many as 27% of Pseudomonas isolates could not be classified to species level. Phenotypic susceptibility analysis by disc diffusion method revealed a high level of resistance towards the antibiotics ampicillin, amoxicillin, cefotaxime, ceftriaxone, imipenem, and the fish farming relevant antibiotics florfenicol and oxolinic acid among the Pseudomonas isolates. Whole genome sequencing and subsequent analysis of AMR determinants by ResFinder and CARD revealed that no isolates harbored any acquired resistance determinants, but all isolates carried variants of genes known from P. aeruginosa to be involved in multidrug efflux pump systems. | 2022 | 35889139 |
| 1789 | 19 | 0.9993 | Genomic and phylogenetic analysis of a multidrug-resistant Burkholderia contaminans strain isolated from a patient with ocular infection. OBJECTIVES: The genus Burkholderia comprises rod-shaped, non-spore-forming, obligately aerobic Gram-negative bacteria that is found across diverse ecological niches. Burkholderia contaminans, an emerging pathogen associated with cystic fibrosis, is frequently isolated from contaminated medical devices in hospital settings. The aim of this study was to understand the genomic characteristics, antimicrobial resistance profile and virulence determinants of B. contaminans strain SBC01 isolated from the eye of a patient hit by a cow's tail. METHODS: A hybrid sequence of isolate SBC01 was generated using Illumina HiSeq and Oxford Nanopore Technology platforms. Unicycler was used to assemble the hybrid genomic sequence. The draft genome was annotated using the NCBI Prokaryotic Genome Annotation Pipeline. Antimicrobial susceptibility testing was performed by VITEK®2. Antimicrobial resistance and virulence genes were identified using validated bioinformatics tools. RESULTS: The assembled genome size is 8 841 722 bp with a G+C content of 66.33% distributed in 19 contigs. Strain SBC01 was found to possess several antimicrobial resistance and efflux pump genes. The isolate was susceptible to tetracyclines, meropenem and ceftazidime. Many genes encoding potential virulence factors were identified. CONCLUSION: Burkholderia contaminans SBC01 belonging to sequence type 482 (ST482) is a multidrug-resistant strain containing diverse antimicrobial resistance genes, revealing the risks associated with infections by new Burkholderia spp. The large G+C-rich genome has a myriad of virulence factors, highlighting its pathogenic potential. Thus, while providing insights into the antimicrobial resistance and virulence potential of this uncommon species, the present analysis will aid in understanding the evolution and speciation in the Burkholderia genus. | 2021 | 33965629 |