Emergence of mobile tigecycline resistance gene tet(X4)-harbouring Shewanella xiamenensis in a water environment. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
177401.0000Emergence of mobile tigecycline resistance gene tet(X4)-harbouring Shewanella xiamenensis in a water environment. OBJECTIVES: Tigecycline resistance mediated by the mobile tigecycline-inactivating enzyme gene tet(X) in Gram-negative bacteria is an emerging concern for global public health. However, limited information is available on the distribution of tet(X) in the natural environment. In this study, we investigated the presence of tet(X) in environmental Gram-negative bacteria. METHODS: A carbapenem- and tigecycline-resistant Shewanella xiamenensis isolate (NUITM-VS1) was obtained from an urban drainage in Hanoi, Vietnam, in March 2021. Whole-genome sequencing analysis was performed by long- and short-read sequencing, resulting in a complete genome sequence. Antimicrobial resistance genes (ARGs) in the genome were detected based on the custom ARG database, including all known tigecycline resistance genes. RESULTS: Shewanella xiamenensis isolate NUITM-VS1 harboured the tet(X4) gene and the bla(OXA-48) carbapenemase gene on the chromosome. tet(X4) was flanked by IS91 family transposase genes, suggesting that the acquisition of tet(X4) was mediated by this mobile gene element (MGE), whereas no MGE was found surrounding bla(OXA-48), consistent with previous findings that bla(OXA-48-like) β-lactamase genes are species-specific intrinsic ARGs in Shewanella spp. CONCLUSION: To the best of our knowledge, this is the first report of a tet(X4)-harbouring Shewanella sp. isolate. Our results provide genetic evidence of the complexity of the dynamics of clinically important ARGs among bacteria in the water environment.202235021125
189210.9997Colistin Resistance Mediated by Mcr-3-Related Phosphoethanolamine Transferase Genes in Aeromonas Species Isolated from Aquatic Environments in Avaga and Pakro Communities in the Eastern Region of Ghana. PURPOSE: Colistin is classified by the World Health Organization (WHO) as a critically important and last-resort antibiotic for the treatment of infections caused by carbapenem-resistant bacteria. However, colistin resistance mediated by chromosomal mutations or plasmid-linked mobilized colistin resistance (mcr) genes has emerged. METHODS: Thirteen mcr-positive Aeromonas species isolated from water samples collected in Eastern Ghana were analyzed using whole-genome sequencing (WGS). Antimicrobial susceptibility was tested using the broth microdilution method. Resistome analysis was performed in silico using a web-based platform. RESULTS: The minimum inhibitory concentration (MIC) of colistin for all except three isolates was >4 µg/mL. Nine new sequence types were identified and whole-genome analysis revealed that the isolates harbored genes (mcr-3-related genes) that code for Lipid A phosphoethanolamine transferases on their chromosomes. BLAST analysis indicated that the amino acid sequences of the mcr-3-related genes detected varied from those previously reported and shared 79.04-99.86% nucleotide sequence identity with publicly available mcr-3 variants and mcr-3-related phosphoethanolamine transferases. Analysis of the genetic context of mcr-3-related genes revealed that the genetic environment surrounding mcr-3-related genes was diverse among the different species of Aeromonas but conserved among isolates of the same species. Mcr-3-related-gene-IS-mcr-3-related-gene segment was identified in three Aeromonas caviae strains. CONCLUSION: The presence of mcr-3-related genes close to insertion elements is important for continuous monitoring to better understand how to control the mobilization and dissemination of antibiotic resistance genes.202439050833
177320.9997Detection of SXT/R391 integrative conjugative elements carrying tigecycline resistance genes in Shewanella spp. isolated from retail seafood. Tigecycline is a last resort antibiotic that is used to treat serious infections; however, some bacteria have developed tigecycline resistance by producing a tigecycline-inactivating enzyme or tigecycline resistance efflux pump, encoded by tet(X) and tmexCD-toprJ genes, respectively. Tons of seafood are consumed annually in China; however, whether seafood harbors tigecycline-resistant bacteria is not known. In this study, we isolated various tigecycline-resistant bacteria from retail seafood; among these, Shewanella was the predominant tigecycline-resistant genus (33/76, 43.4%). Genomic sequencing revealed that two Shewanella strains carried the tet(X4) gene, while one Shewanella chilikensis strain co-harbored tmexCD2-toprJ2 and bla(NDM-1) genes. The tet(X4) and tmexCD2-toprJ2 were found to be located on novel members of the SXT/R391 family of integrated conjugative elements (ICEs). As per our knowledge, this is the first report on the emergence of SXT/R391 ICEs carrying tet(X4) or tmexCD2-toprJ2 gene in Shewanella strains. The SXT/R391 family ICEs could mediate the spread of tigecycline resistance genes among aquatic bacteria, and contact between seafood and consumers may lead to the dissemination of tigecycline-resistant bacteria. Our study revealed that Shewanella spp. may act as potential reservoirs of tigecycline resistance genes.202540569748
188930.9997Widespread Dissemination of Plasmid-Mediated Tigecycline Resistance Gene tet(X4) in Enterobacterales of Porcine Origin. The emergence of the plasmid-mediated high levels of the tigecycline resistance gene has drawn worldwide attention and has posed a major threat to public health. In this study, we investigated the prevalence of the tet(X4)-positive Enterobacterales isolates collected from a pig slaughterhouse and farms. A total of 101 tigecycline resistance strains were isolated from 353 samples via a medium with tigecycline, of which 33 carried tet(X4) (9.35%, 33/353) and 2 carried tet(X6) (0.57%, 2/353). These strains belong to seven different species, with Escherichia coli being the main host bacteria. Importantly, this report is the first one to demonstrate that tet(X4) was observed in Morganella morganii. Whole-genome sequencing results revealed that tet(X4)-positive bacteria can coexist with other resistance genes, such as bla(NDM-1) and cfr. Additionally, we were the first to report that tet(X4) and bla(NDM-1) coexist in a Klebsiella quasipneumoniae strain. The phylogenetic tree of 533 tet(X4)-positive E. coli strains was constructed using 509 strains from the NCBI genome assembly database and 24 strains from this study, which arose from 8 sources and belonged to 135 sequence types (STs) worldwide. We used Nanopore sequencing to interpret the selected 21 nonclonal and representative strains and observed that 19 tet(X4)-harboring plasmids were classified into 8 replicon types, and 2 tet(X6) genes were located on integrating conjugative elements. A total of 68.42% of plasmids carrying tet(X4) were transferred successfully with a conjugation frequency of 10(-2) to 10(-7). These findings highlight that diverse plasmids drive the widespread dissemination of the tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. IMPORTANCE Tigecycline is considered to be the last resort of defense against diseases caused by broad-spectrum resistant Gram-negative bacteria. In this study, we systematically analyzed the prevalence and genetic environments of the resistance gene tet(X4) in a pig slaughterhouse and farms and the evolutionary relationship of 533 tet(X4)-positive Escherichia coli strains, including 509 tet(X4)-positive E. coli strains selected from the 27,802 assembled genomes of E. coli from the NCBI between 2002 and 2022. The drug resistance of tigecycline is widely prevalent in pig farms where tetracycline is used as a veterinary drug. This prevalence suggests that pigs are a large reservoir of tet(X4) and that tet(X4) can spread horizontally through the food chain via mobile genetic elements. Furthermore, tetracycline resistance may drive tigecycline resistance through some mechanisms. Therefore, it is important to monitor tigecycline resistance, develop effective control measures, and focus on tetracycline use in the pig farms.202236125305
187040.9997Novel Insights into bla(GES) Mobilome Reveal Extensive Genetic Variation in Hospital Effluents. Mobile genetic elements contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance among different bacterial species and genera. This study characterizes the genetic backbone of bla(GES) in Aeromonas spp. and Klebsiella spp. isolated from untreated hospital effluents. Plasmids ranging in size from 9 to 244 kb, sequenced using Illumina and Nanopore platforms, revealed representatives of plasmid incompatibility groups IncP6, IncQ1, IncL/M1, IncFII, and IncFII-FIA. Different GES enzymes (GES-1, GES-7, and GES-16) were located in novel class 1 integrons in Aeromonas spp. and GES-5 in previously reported class 1 integrons in Klebsiella spp. Furthermore, in Klebsiella quasipneumoniae, bla(GES-5) was found in tandem as a coding sequence that disrupted the 3' conserved segment (CS). In Klebsiella grimontii, bla(GES-5) was observed in two different plasmids, and one of them carried multiple IncF replicons. Three Aeromonas caviae isolates presented bla(GES-1), one Aeromonas veronii isolate presented bla(GES-7), and another A. veronii isolate presented bla(GES-16). Multilocus sequence typing (MLST) analysis revealed novel sequence types for Aeromonas and Klebsiella species. The current findings highlight the large genetic diversity of these species, emphasizing their great adaptability to the environment. The results also indicate a public health risk because these antimicrobial-resistant genes have the potential to reach wastewater treatment plants and larger water bodies. Considering that they are major interfaces between humans and the environment, they could spread throughout the community to clinical settings. IMPORTANCE In the "One Health" approach, which encompasses human, animal, and environmental health, emerging issues of antimicrobial resistance are associated with hospital effluents that contain clinically relevant antibiotic-resistant bacteria along with a wide range of antibiotic concentrations, and lack regulatory status for mandatory prior and effective treatment. bla(GES) genes have been reported in aquatic environments despite the low detection of these genes among clinical isolates within the studied hospitals. Carbapenemase enzymes, which are relatively unusual globally, such as GES type inserted into new integrons on plasmids, are worrisome. Notably, K. grimontii, a newly identified species, carried two plasmids with bla(GES-5), and K. quasipneumoniae carried two copies of bla(GES-5) at the same plasmid. These kinds of plasmids are primarily responsible for multidrug resistance among bacteria in both clinical and natural environments, and they harbor resistant genes against antibiotics of key importance in clinical therapy, possibly leading to a public health problem of large proportion.202235880869
198650.9997Plasmid Identification and Plasmid-Mediated Antimicrobial Gene Detection in Norwegian Isolates. Norway is known for being one of the countries with the lowest levels of antimicrobial resistance (AMR). AMR, through acquired genes located on transposons or conjugative plasmids, is the horizontal transmission of genes required for a given bacteria to withstand antibiotics. In this work, bioinformatic analysis of whole-genome sequences and hybrid assembled data from Escherichia coli, and Klebsiella pneumoniae isolates from Norwegian patients was performed. For detection of putative plasmids in isolates, the plasmid assembly mode in SPAdes was used, followed by annotation of resulting contigs using PlasmidFinder and two curated plasmid databases (Brooks and PLSDB). Furthermore, ResFinder and Comprehensive Antibiotic Resistance Database (CARD) were used for the identification of antibiotic resistance genes (ARGs). The IncFIB plasmid was detected as the most prevalent plasmid in both E. coli, and K. pneumoniae isolates. Furthermore, ARGs such as aph(3″)-Ib, aph(6)-Id, sul1, sul2, tet(D), and qnrS1 were identified as the most abundant plasmid-mediated ARGs in Norwegian E. coli and K. pneumoniae isolates, respectively. Using hybrid assembly, we were able to locate plasmids and predict ARGs more confidently. In conclusion, plasmid identification and ARG detection using whole-genome sequencing data are heavily dependent on the database of choice; therefore, it is best to use several tools and/or hybrid assembly for obtaining reliable identification results.202033375502
189560.9997Comparative Genome Analysis of Livestock and Human Colistin-Resistant Escherichia coli Isolates from the Same Household. BACKGROUND: Emergence and dissemination of colistin-resistant bacteria that harbor mobile colistin resistance (mcr) genes pose a dire challenge for the treatment of intractable infections caused by multidrug-resistant bacteria. Current findings on colistin-resistant bacteria in both humans and livestock of the same households highlight the need to identify the dissemination mechanisms of colistin-resistant bacteria. METHODS: In this study, a comparative genome analysis of colistin-resistant Escherichia coli isolates from livestock and humans of the same household was performed to clarify the possible dissemination mechanism of mcr genes among bacteria. Pulsed-field gel electrophoresis and whole-genome sequencing followed by sequence typing of the isolates were performed for assessment of the samples. RESULTS: The study revealed that two colistin-resistant E. coli isolates, one each from a pig and a chicken, were phylogenetically similar but not identical to the human isolates obtained from the same household. The comparative genome analysis revealed that the chicken isolate and a human isolate shared the same IncHl2 plasmid harboring the mcr transposon (mcr-1-PAP2). The pig isolate and the other human isolate retained the mcr-1 transposon on the chromosome, with the pig isolate carrying the complete mcr transposon (ISApl1-mcr-1-PAP2-ISApl1) and the human isolate carrying the incomplete mcr transposon (ISApl1-mcr-1-PAP2). CONCLUSION: The results of the study confirm the distribution of colistin-resistant bacteria and subsequent transmission of the resistance gene-carrying transposon between livestock and humans of the same household. To the best of our knowledge, this is the first report on genomic analysis of colistin-resistant E. coli isolates obtained from livestock and residents of the same household.202133688219
198270.9997Comamonas resistens Co-Producing GES-5 and OXA-17 in Urban Wastewater as a Potential Novel Disseminator of Clinically Relevant β-Lactamases. Comamonas species have been isolated from different sources, with Comamonas testosteroni and Comamonas resistens commonly related to human diseases and multidrug resistance, respectively. During a surveillance study to monitor carbapenem resistance in bacteria from wastewater samples in Brazil, a carbapenem-resistant strain, named M13, was obtained and identified as C. resistens (ANI 98.90%, dDDH 94.60%) by genomic analysis, being a species distinct from C. testosteroni. It exhibited multidrug resistance and presented small inhibition zones around disks containing novel β-lactams and β-lactam-β-lactamase inhibitor combinations. Comparative genomics showed significant single nucleotide polymorphism divergence between M13 and other C. resistens genomes, suggesting geographically driven genomic diversity. Strain M13 uniquely harbored genes related to antimicrobial resistance and metal tolerance as follows: bla(GES-5) (carbapenem resistance), bla(OXA-17) (third-generation cephalosporin resistance), mer operon (mercury tolerance), and pco operon (copper tolerance). The bla(GES-5) and bla(OXA-17) genes were located on distinct plasmids that lacked conjugative genes but contained mobilization elements, indicating the potential for horizontal transfer. Unlike C. resistens strains from China, M13 strain may have acquired clinically relevant antimicrobial resistance genes via interactions with Brazilian microbial communities. These findings highlight the relevance of monitoring Comamonas species as potential reservoirs and disseminators of clinically relevant antimicrobial resistance genes and underscore the need for environmental monitoring of carbapenem-resistant strains.202540719913
191480.9997Comprehensive analysis of distribution characteristics and horizontal gene transfer elements of bla(NDM-1)-carrying bacteria. The worldwide dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to almost all clinical β-lactam antibiotics, is a major public health problem. The global distribution, species, sources, and potential transfer risk of bla(NDM-1)-carrying bacteria are unclear. Results of a comprehensive analysis of literature in 2010-2022 showed that a total of 6002 bla(NDM-1) carrying bacteria were widely distributed around 62 countries with a high trend in the coastal areas. Opportunistic pathogens or pathogens like Klebsiella sp., Escherichia sp., Acinetobacter sp. and Pseudomonas sp. were the four main species indicating the potential microbial risk. Source analysis showed that 86.45 % of target bacteria were isolated from the source of hospital (e.g., Hospital patients and wastewater) and little from surface water (5.07 %) and farms (3.98 %). A plasmid-encoded bla(NDM-1)Acinetobacter sp. with the resistance mechanisms of antibiotic efflux pump, antibiotic target change and antibiotic degradation was isolated from the wastewater of a typical tertiary hospital. Insertion sequences (IS3 and IS30) located in the adjacent 5 kbp of bla(NDM-1)-ble(MBL) gene cluster indicating the transposon-mediated horizontal gene transfer risk. These results showed that the worldwide spread of bla(NDM-1)-carrying bacteria and its potential horizontal gene transfer risk deserve good control.202438906294
191890.9997Molecular Detection of Class 1 Integron-Associated Gene Cassettes in KPC-2-Producing Klebsiella pneumoniae Clones by Whole-Genome Sequencing. The dissemination of antimicrobial resistance genes and the bacterium that harbor them have increasingly become a public concern, especially in low- and middle-income countries. The present study used whole-genome sequencing to analyze 10 KPC-2-producing Klebsiella pneumoniae isolates obtained from clinical specimens originated from Brazilian hospitals. The study documents a relevant "snapshot" of the presence of class 1 integrons in 90% of the strains presenting different gene cassettes (dfrA30, dfrA15, dfrA12, dfrA14, aadA1, aadA2, and aac(6')Iq), associated or not with transposons. Two strains presented nonclassical integron (lacking the normal 3'conserved segment). In general, most strains showed a complex resistome, characterizing them as highly resistant. Integrons, a genetically stable and efficient system, confer to bacteria as highly adaptive and low cost evolution potential to bacteria, even more serious when associated with high-risk clones, indicating an urgent need for control and prevention strategies to avoid the spread of resistance determinants in Brazil. Despite this, although the class 1 integron identified in the KPC-2-producing K. pneumoniae clones is important, our findings suggest that other elements probably have a greater impact on the spread of antimicrobial resistance, since many of these important genes were not related to this cassette.201931074706
1981100.9997Detecting Class 1 Integrons and Their Variable Regions in Escherichia coli Whole-Genome Sequences Reported from Andean Community Countries. Various genetic elements, including integrons, are known to contribute to the development of antimicrobial resistance. Class 1 integrons have been identified in E. coli isolates and are associated with multidrug resistance in countries of the Andean Community. However, detailed information on the gene cassettes located on the variable regions of integrons is lacking. Here, we investigated the presence and diversity of class 1 integrons, using an in silico approach, in 2533 whole-genome sequences obtained from EnteroBase. IntFinder v1.0 revealed that almost one-third of isolates contained these platforms. Integron-bearing isolates were associated with environmental, food, human, and animal origins reported from all countries under scrutiny. Moreover, they were identified in clones known for their pathogenicity or multidrug resistance. Integrons carried cassettes associated with aminoglycoside (aadA), trimethoprim (dfrA), cephalosporin (blaOXA; blaDHA), and fluoroquinolone (aac(6')-Ib-cr; qnrB) resistance. These platforms showed higher diversity and larger numbers than previously reported. Moreover, integrons carrying more than three cassettes in their variable regions were determined. Monitoring the prevalence and diversity of genetic elements is necessary for recognizing emergent patterns of resistance in pathogenic bacteria, especially in countries where various factors are recognized to favor the selection of resistant microorganisms.202438786123
1902110.9997Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. INTRODUCTION: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. METHODS: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. RESULTS: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the bla(KPC-2), bla(NDM-5), bla(OXA-1), bla(OXA-48), and bla(OXA-181) β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. DISCUSSION: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance.202337323902
1896120.9997Difference analysis and characteristics of incompatibility group plasmid replicons in gram-negative bacteria with different antimicrobial phenotypes in Henan, China. BACKGROUND: Multi-drug-resistant organisms (MDROs) in gram-negative bacteria have caused a global epidemic, especially the bacterial resistance to carbapenem agents. Plasmid is the common vehicle for carrying antimicrobial resistance genes (ARGs), and the transmission of plasmids is also one of the important reasons for the emergence of MDROs. Different incompatibility group plasmid replicons are highly correlated with the acquisition, dissemination, and evolution of resistance genes. Based on this, the study aims to identify relevant characteristics of various plasmids and provide a theoretical foundation for clinical anti-infection treatment. METHODS: 330 gram-negative strains with different antimicrobial phenotypes from a tertiary hospital in Henan Province were included in this study to clarify the difference in incompatibility group plasmid replicons. Additionally, we combined the information from the PLSDB database to elaborate on the potential association between different plasmid replicons and ARGs. The VITEK mass spectrometer was used for species identification, and the VITEK-compact 2 automatic microbial system was used for the antimicrobial susceptibility test (AST). PCR-based replicon typing (PBRT) detected the plasmid profiles, and thirty-three different plasmid replicons were determined. All the carbapenem-resistant organisms (CROs) were tested for the carbapenemase genes. RESULTS: 21 plasmid replicon types were detected in this experiment, with the highest prevalence of IncFII, IncFIB, IncR, and IncFIA. Notably, the detection rate of IncX3 plasmids in CROs is higher, which is different in strains with other antimicrobial phenotypes. The number of plasmid replicons they carried increased with the strain resistance increase. Enterobacterales took a higher number of plasmid replicons than other gram-negative bacteria. The same strain tends to have more than one plasmid replicon type. IncF-type plasmids tend to be associated with MDROs. Combined with PLSDB database analysis, IncFII and IncX3 are critical platforms for taking bla(KPC-2) and bla(NDM). CONCLUSIONS: MDROs tend to carry more complex plasmid replicons compared with non-MDROs. The plasmid replicons that are predominantly prevalent and associated with ARGs differ in various species. The wide distribution of IncF-type plasmids and their close association with MDROs should deserve our attention. Further investigation into the critical role of plasmids in the carriage, evolution, and transmission of ARGs is needed.202438373913
1894130.9997Phenotypic and Genotypic Characterization of Multidrug-Resistant Enterobacter hormaechei Carrying qnrS Gene Isolated from Chicken Feed in China. Multidrug resistance (MDR) in Enterobacteriaceae including resistance to quinolones is rising worldwide. The plasmid-mediated quinolone resistance (PMQR) gene qnrS is prevalent in Enterobacteriaceae. However, the qnrS gene is rarely found in Enterobacter hormaechei (E. hormaechei). Here, we reported one multidrug resistant E. hormaechei strain M1 carrying the qnrS1 and bla(TEM-1) genes. This study was to analyze the characteristics of MDR E. hormaechei strain M1. The E. hormaechei strain M1 was identified as Enterobacter cloacae complex by biochemical assay and 16S rRNA sequencing. The whole genome was sequenced by the Oxford Nanopore method. Taxonomy of the E. hormaechei was based on multilocus sequence typing (MLST). The qnrS with the other antibiotic resistance genes were coexisted on IncF plasmid (pM1). Besides, the virulence factors associated with pathogenicity were also located on pM1. The qnrS1 gene was located between insertion element IS2A (upstream) and transposition element ISKra4 (downstream). The comparison result of IncF plasmids revealed that they had a common plasmid backbone. Susceptibility experiment revealed that the E. hormaechei M1 showed extensive resistance to the clinical antimicrobials. The conjugation transfer was performed by filter membrane incubation method. The competition and plasmid stability assays suggested the host bacteria carrying qnrS had an energy burden. As far as we know, this is the first report that E. hormaechei carrying qnrS was isolated from chicken feed. The chicken feed and poultry products could serve as a vehicle for these MDR bacteria, which could transfer between animals and humans through the food chain. We need to pay close attention to the epidemiology of E. hormaechei and prevent their further dissemination. IMPORTANCE Enterobacter hormaechei is an opportunistic pathogen. It can cause infections in humans and animals. Plasmid-mediated quinolone resistance (PMQR) gene qnrS can be transferred intergenus, which is leading to increase the quinolone resistance levels in Enterobacteriaceae. Chicken feed could serve as a vehicle for the MDR E. hormaechei. Therefore, antibiotic-resistance genes (ARGs) might be transferred to the intestinal flora after entering the gastrointestinal tract with the feed. Furthermore, antibiotic-resistant bacteria (ARB) were also excreted into environment with feces, posing a huge threat to public health. This requires us to monitor the ARB and antibiotic-resistant plasmids in the feed. Here, we demonstrated the characteristics of one MDR E. hormaechei isolate from chicken feed. The plasmid carrying the qnrS gene is a conjugative plasmid with transferability. The presence of plasmid carrying antibiotic-resistance genes requires the maintenance of antibiotic pressure. In addition, the E. hormaechei M1 belonged to new sequence type (ST). These data show the MDR E. hormaechei M1 is a novel strain that requires our further research.202235467399
1978140.9997Antibiotic resistance plasmids in Enterobacteriaceae isolated from fresh produce in northern Germany. In this study, the genomes of 22 Enterobacteriaceae isolates from fresh produce and herbs obtained from retail markets in northern Germany were completely sequenced with MiSeq short-read and MinION long-read sequencing and assembled using a Unicycler hybrid assembly. The data showed that 17 of the strains harbored between one and five plasmids, whereas in five strains, only the circular chromosomal DNA was detected. In total, 38 plasmids were identified. The size of the plasmids detected varied between ca. 2,000 and 326,000 bp, and heavy metal resistance genes were found on seven (18.4%) of the plasmids. Eleven plasmids (28.9%) showed the presence of antibiotic resistance genes. Among large plasmids (>32,000 bp), IncF plasmids (specifically, IncFIB and IncFII) were the most abundant replicon types, while all small plasmids were Col-replicons. Six plasmids harbored unit and composite transposons carrying antibiotic resistance genes, with IS26 identified as the primary insertion sequence. Class 1 integrons carrying antibiotic resistance genes were also detected on chromosomes of two Citrobacter isolates and on four plasmids. Mob-suite analysis revealed that 36.8% of plasmids in this study were found to be conjugative, while 28.9% were identified as mobilizable. Overall, our study showed that Enterobacteriaceae from fresh produce possess antibiotic resistance genes on both chromosome and plasmid, some of which are considered to be transferable. This indicates the potential for Enterobacteriaceae from fresh produce that is usually eaten in the raw state to contribute to the transfer of resistance genes to bacteria of the human gastrointestinal system. IMPORTANCE: This study showed that Enterobacteriaceae from raw vegetables carried plasmids ranging in size from 2,715 to 326,286 bp, of which about less than one-third carried antibiotic resistance genes encoding resistance toward antibiotics such as tetracyclines, aminoglycosides, fosfomycins, sulfonamides, quinolones, and β-lactam antibiotics. Some strains encoded multiple resistances, and some encoded extended-spectrum β-lactamases. The study highlights the potential of produce, which may be eaten raw, as a potential vehicle for the transfer of antibiotic-resistant bacteria.202439287384
1898150.9996Multiple-Replicon Resistance Plasmids of Klebsiella Mediate Extensive Dissemination of Antimicrobial Genes. Multiple-replicon resistance plasmids have become important carriers of resistance genes in Gram-negative bacteria, and the evolution of multiple-replicon plasmids is still not clear. Here, 56 isolates of Klebsiella isolated from different wild animals and environments between 2018 and 2020 were identified by phenotyping via the micro-broth dilution method and were sequenced and analyzed for bacterial genome-wide association study. Our results revealed that the isolates from non-human sources showed more extensive drug resistance and especially strong resistance to ampicillin (up to 80.36%). The isolates from Malayan pangolin were particularly highly resistant to cephalosporins, chloramphenicol, levofloxacin, and sulfamethoxazole. Genomic analysis showed that the resistance plasmids in these isolates carried many antibiotic resistance genes. Further analysis of 69 plasmids demonstrated that 28 plasmids were multiple-replicon plasmids, mainly carrying beta-lactamase genes such as bla (CTX-M-) (15), bla (CTX-M-) (14), bla (CTX-M-) (55), bla (OXA-) (1), and bla (TEM-) (1). The analysis of plasmids carried by different isolates showed that Klebsiella pneumoniae might be an important multiple-replicon plasmid host. Plasmid skeleton and structure analyses showed that a multiple-replicon plasmid was formed by the fusion of two or more single plasmids, conferring strong adaptability to the antibiotic environment and continuously increasing the ability of drug-resistant isolates to spread around the world. In conclusion, multiple-replicon plasmids are better able to carry resistance genes than non-multiple-replicon plasmids, which may be an important mechanism underlying bacterial responses to environments with high-antibiotic pressure. This phenomenon will be highly significant for exploring bacterial resistance gene transmission and diffusion mechanisms in the future.202134777312
1919160.9996Combining Functional Genomics and Whole-Genome Sequencing to Detect Antibiotic Resistance Genes in Bacterial Strains Co-Occurring Simultaneously in a Brazilian Hospital. (1) Background: The rise of multi-antibiotic resistant bacteria represents an emergent threat to human health. Here, we investigate antibiotic resistance mechanisms in bacteria of several species isolated from an intensive care unit in Brazil. (2) Methods: We used whole-genome analysis to identify antibiotic resistance genes (ARGs) and plasmids in 34 strains of Gram-negative and Gram-positive bacteria, providing the first genomic description of Morganella morganii and Ralstonia mannitolilytica clinical isolates from South America. (3) Results: We identified a high abundance of beta-lactamase genes in resistant organisms, including seven extended-spectrum beta-lactamases (OXA-1, OXA-10, CTX-M-1, KPC, TEM, HYDRO, BLP) shared between organisms from different species. Additionally, we identified several ARG-carrying plasmids indicating the potential for a fast transmission of resistance mechanism between bacterial strains. Furthermore, we uncovered two pairs of (near) identical plasmids exhibiting multi-drug resistance. Finally, since many highly resistant strains carry several different ARGs, we used functional genomics to investigate which of them were indeed functional. In this sense, for three bacterial strains (Escherichia coli, Klebsiella pneumoniae, and M. morganii), we identified six beta-lactamase genes out of 15 predicted in silico as those mainly responsible for the resistance mechanisms observed, corroborating the existence of redundant resistance mechanisms in these organisms. (4) Conclusions: Systematic studies similar to the one presented here should help to prevent outbreaks of novel multidrug-resistant bacteria in healthcare facilities.202133920372
1859170.9996Transcontinental Dissemination of Enterobacterales Harboring bla(NDM-1) in Retail Frozen Shrimp. The global food trade provides a means of disseminating antimicrobial resistant (AMR) bacteria and genes. Using selective media, carbapenem-resistant species of Enterobacterales (Providencia sp. and Citrobacter sp.), were detected in a single package of imported frozen shrimp purchased from a grocery store in Ohio, USA. Polymerase chain reaction confirmed that both isolates harbored bla(NDM-1) genes. Following PacBio long read sequencing, the sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline. The bla(NDM-1) genes were found in IncC plasmids, each with different antimicrobial resistance island configuration. We found that the bla(NDM-1) AMR islands had close relationships with previously reported environmental, food, and clinical isolates detected in Asia and the United States, highlighting the importance of the food chain in the global dissemination of antimicrobial resistance.202538563789
1901180.9996Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that bla(CTX-M) is the dominant ESBL gene type found in South Korea. The spread of bla(CTX-M) appears to have been facilitated by both clonal spread between different host species and conjugation. Most bla(CTX-M) genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of bla(CTX-M)-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes.202438554973
1899190.9996Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance.201222808141