# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1770 | 0 | 1.0000 | Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Plasmid-encoded quinolone resistance was previously reported for different bacteria isolated from patients not only in the United States and Asia but also in Europe. Here we describe the isolation, by applying a new selection strategy, of the quinolone resistance plasmid pGNB2 from an activated sludge bacterial community of a wastewater treatment plant in Germany. The hypersensitive Escherichia coli strain KAM3 carrying a mutation in the multidrug efflux system genes acrAB was transformed with total plasmid DNA preparations isolated from activated sludge bacteria and subsequently selected on medium containing the fluoroquinolone norfloxacin. This approach resulted in the isolation of plasmid pGNB2 conferring decreased susceptibility to nalidixic acid and to different fluoroquinolones. Analysis of the pGNB2 nucleotide sequence revealed that it is 8,469 bp in size and has a G+C content of 58.2%. The plasmid backbone is composed of a replication initiation module (repA-repC) belonging to the IncQ-family and a two-component mobilization module that confers horizontal mobility to the plasmid. In addition, plasmid pGNB2 carries an accessory module consisting of a transposon Tn1721 remnant and the quinolone resistance gene, qnrS2, that is 92% identical to the qnrS gene located on plasmid pAH0376 from Shigella flexneri 2b. QnrS2 belongs to the pentapeptide repeat protein family and is predicted to protect DNA-gyrase activity against quinolones. This is not only the first report on a completely sequenced plasmid mediating quinolone resistance isolated from an environmental sample but also on the first qnrS-like gene detected in Europe. | 2006 | 16940104 |
| 1771 | 1 | 0.9998 | Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three beta-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment. | 2003 | 19719593 |
| 4530 | 2 | 0.9997 | Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. The emergence of drug-resistant bacteria is a severe problem in aquaculture. The ability of drug resistance genes to transfer from a bacterial cell to another is thought to be responsible for the wide dissemination of these genes in the aquaculture environment; however, little is known about the gene transfer mechanisms in marine bacteria. In this study, we show that a tetracycline-resistant strain of Photobacterium damselae subsp. damselae, isolated from seawater at a coastal aquaculture site in Japan, harbors a novel multiple drug resistance plasmid. This plasmid named pAQU1 can be transferred to Escherichia coli by conjugation. Nucleotide sequencing showed that the plasmid was 204,052 base pairs and contained 235 predicted coding sequences. Annotation showed that pAQU1 did not have known repA, suggesting a new replicon, and contained seven drug resistance genes: bla(CARB-9)-like, floR, mph(A)-like, mef(A)-like, sul2, tet(M) and tet(B). The plasmid has a complete set of genes encoding the apparatus for the type IV secretion system with a unique duplication of traA. Phylogenetic analysis of the deduced amino acid sequence of relaxase encoded by traI in pAQU1 demonstrated that the conjugative transfer system of the plasmid belongs to MOB(H12), a sub-group of the MOB(H) plasmid family, closely related to the IncA/C type of plasmids and SXT/R391 widely distributed among species of Enterobacteriaceae and Vibrionaceae. Our data suggest that conjugative transfer is involved in horizontal gene transfer among marine bacteria and provide useful insights into the molecular basis for the dissemination of drug resistance genes among bacteria in the aquaculture environment. | 2012 | 22446310 |
| 3043 | 3 | 0.9997 | The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2"). In 7% of gram-negative bacteria resistance to gentamicin is mainly mediated by plasmid-encoded aminoglycoside transferase ANT-(2"). The genome organization of 15 aadB plasmids (42-110 kb) was analyzed by restriction and hybridization techniques. They appeared to be IncFII-like replicons but were distinct from R6 by virtue of small substitutions in the transfer region. Aminoglycoside resistance genes aadB and aadA were located on Tn21 related elements. Only one of them was able to transpose its resistance genes mer sul aadA and aadB ( Tn4000 ), the other elements were naturally occurring defective transposons. In some of these structures deletions were identified at the termini, at sul, aadA , mer or transposition function--insertions adjacent to aadA or mer. The mode of these rearrangements and their site-specificity were considered with respect to the evolution of the Tn21 transposon family. | 1984 | 6328217 |
| 9968 | 4 | 0.9997 | Antibiotic Resistance, Core-Genome and Protein Expression in IncHI1 Plasmids in Salmonella Typhimurium. Conjugative plasmids from the IncHI1 incompatibility group play an important role in transferring antibiotic resistance in Salmonella Typhimurium. However, knowledge of their genome structure or gene expression is limited. In this study, we determined the complete nucleotide sequences of four IncHI1 plasmids transferring resistance to antibiotics by two different next generation sequencing protocols and protein expression by mass spectrometry. Sequence data including additional 11 IncHI1 plasmids from GenBank were used for the definition of the IncHI1 plasmid core-genome and pan-genome. The core-genome consisted of approximately 123 kbp and 122 genes while the total pan-genome represented approximately 600 kbp. When the core-genome sequences were used for multiple alignments, the 15 tested IncHI1 plasmids were separated into two main lineages. GC content in core-genome genes was around 46% and 50% in accessory genome genes. A multidrug resistance region present in all 4 sequenced plasmids extended over 20 kbp and, except for tet(B), the genes responsible for antibiotic resistance were those with the highest GC content. IncHI1 plasmids therefore represent replicons that evolved in low GC content bacteria. From their original host, they spread to Salmonella and during this spread these plasmids acquired multiple accessory genes including those coding for antibiotic resistance. Antibiotic-resistance genes belonged to genes with the highest level of expression and were constitutively expressed even in the absence of antibiotics. This is the likely mechanism that facilitates host cell survival when antibiotics suddenly emerge in the environment. | 2016 | 27189997 |
| 1772 | 5 | 0.9997 | Molecular Characterization and Comparative Genomics of IncQ-3 Plasmids Conferring Resistance to Various Antibiotics Isolated from a Wastewater Treatment Plant in Warsaw (Poland). As small, mobilizable replicons with a broad host range, IncQ plasmids are widely distributed among clinical and environmental bacteria. They carry antibiotic resistance genes, and it has been shown that they confer resistance to β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, sulphonamides, and tetracycline. The previously proposed classification system divides the plasmid group into four subgroups, i.e., IncQ-1, IncQ-2, IncQ-3, and IncQ-4. The last two subgroups have been poorly described so far. The aim of this study was to analyze five newly identified IncQ-3 plasmids isolated from a wastewater treatment plant in Poland and to compare them with all known plasmids belonging to the IncQ-3 subgroup whose sequences were retrieved from the NCBI database. The complete nucleotide sequences of the novel plasmids were annotated and bioinformatic analyses were performed, including identification of core genes and auxiliary genetic load. Furthermore, functional experiments testing plasmid mobility were carried out. Phylogenetic analysis based on three core genes (repA, mobA/repB, and mobC) revealed the presence of three main clusters of IncQ-3 replicons. Apart from having a highly conserved core, the analyzed IncQ-3 plasmids were vectors of antibiotic resistance genes, including (I) the qnrS2 gene that encodes fluoroquinolone resistance and (II) β-lactam, trimethoprim, and aminoglycoside resistance genes within integron cassettes. | 2020 | 32957637 |
| 9965 | 6 | 0.9997 | The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. The dissemination of antibiotic resistance genes among bacteria often occurs by means of plasmids. Wastewater treatment plants (WWTP) were previously recognized as hot spots for the horizontal transfer of genetic material. One of the plasmid groups that is often associated with drug resistance is the incompatibility group IncN. The aim of this study was to gain insights into the diversity and evolutionary history of IncN plasmids by determining and comparing the complete genome sequences of the four novel multi-drug resistance plasmids pRSB201, pRSB203, pRSB205 and pRSB206 that were exogenously isolated from the final effluent of a municipal WWTP. Their sizes range between 42,875 bp and 56,488 bp and they share a common set of backbone modules that encode plasmid replication initiation, conjugative transfer, and plasmid maintenance and control. All plasmids are transferable at high rates between Escherichia coli strains, but did not show a broad host range. Different genes conferring resistances to ampicillin, streptomycin, spectinomycin, sulfonamides, tetracycline and trimethoprim were identified in accessory modules inserted in these plasmids. Comparative analysis of the four WWTP IncN plasmids and IncN plasmids deposited in the NCBI database enabled the definition of a core set of backbone genes for this group. Moreover, this approach revealed a close phylogenetic relationship between the IncN plasmids isolated from environmental and clinical samples. Phylogenetic analysis also suggests the existence of host-specific IncN plasmid subgroups. In conclusion, IncN plasmids likely contribute to the dissemination of resistance determinants between environmental bacteria and clinical strains. This is of particular importance since multi-drug resistance IncN plasmids have been previously identified in members of the Enterobacteriaceae that cause severe infections in humans. | 2012 | 22326849 |
| 4528 | 7 | 0.9997 | Study on the excision and integration mediated by class 1 integron in Streptococcus pneumoniae. As a novel antibiotic resistance mobile element, integron was recognized as a primary source of antibiotic genes among Gram-positive organisms for its excision and integration of exogenous genes. In this study, Streptococcus pneumoniae was subjected to investigate the excision and integration of class 1 integron with eight different plasmids. As the results indicated, excision in both att site and gene cassettes were successfully observed, which was further confirmed by integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes may raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Streptococcus. | 2017 | 28923604 |
| 1769 | 8 | 0.9996 | DNA sequence and comparative genomics of pAPEC-O2-R, an avian pathogenic Escherichia coli transmissible R plasmid. In this study, a 101-kb IncF plasmid from an avian pathogenic Escherichia coli (APEC) strain (APEC O2) was sequenced and analyzed, providing the first completed APEC plasmid sequence. This plasmid, pAPEC-O2-R, has functional transfer and antimicrobial resistance-encoding regions. The resistance-encoding region encodes resistance to eight groups of antimicrobial agents, including silver and other heavy metals, quaternary ammonium compounds, tetracycline, sulfonamides, aminoglycosides, trimethoprim, and beta-lactam antimicrobial agents. This region of the plasmid is unique among previously described IncF plasmids in that it possesses a class 1 integron that harbors three gene cassettes and a heavy metal resistance operon. This region spans 33 kb and is flanked by the RepFII plasmid replicon and an assortment of plasmid maintenance genes. pAPEC-O2-R also contains a 32-kb transfer region that is nearly identical to that found in the E. coli F plasmid, rendering it transferable by conjugation to plasmid-less strains of bacteria, including an APEC strain, a fecal E. coli strain from an apparently healthy bird, a Salmonella enterica serovar Typhimurium strain, and a uropathogenic E. coli strain from humans. Differences in the G+C contents of individual open reading frames suggest that various regions of pAPEC-O2-R had dissimilar origins. The presence of pAPEC-O2-R-like plasmids that encode resistance to multiple antimicrobial agents and that are readily transmissible from APEC to other bacteria suggests the possibility that such plasmids may serve as a reservoir of resistance genes for other bacteria of animal and human health significance. | 2005 | 16251312 |
| 4523 | 9 | 0.9996 | Mosaic structure of a multiple-drug-resistant, conjugative plasmid from Campylobacter jejuni. Partial sequence analysis of a tet(O) plasmid from a multiple-drug-resistant clinical isolate of Campylobacter jejuni revealed 10 genes or pseudogenes encoding different aminoglycoside inactivating enzymes, transposase-like genes, and multiple unknown genes from a variety of pathogenic and commensal bacteria. The plasmid could be mobilized by a P incompatibility group plasmid into Escherichia coli, where it apparently integrated into the chromosome and expressed high-level resistance to multiple aminoglycoside antibiotics. This work provides new information about both the nature of drug resistance in C. jejuni and the ability of C. jejuni to exchange genes with other bacterial species. | 2005 | 15917546 |
| 4527 | 10 | 0.9996 | Study on the excision and integration mediated by class 1 integron in Enterococcus faecalis. Recognized as a mobile genetic element, integron is correlated to the excision and integration of exogenous genes, especially bacterial resistance genes. However, most of the investigations focused on Gram-positive bacteria with few exceptions. In this study, Enterococcus faecalis was selected to investigate the excision and integration of class 1 integron. A total of eight plasmids were subjected to establish the transformants for excision and integration test. As results showed, positive excision assay was observed, which had been confirmed by the further integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes should raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Enterococcus. | 2017 | 28390978 |
| 5855 | 11 | 0.9996 | Plasmid-encoded resistance to arsenic compounds in Gram-negative bacteria isolated from a hospital environment in Venezuela. Resistance to arsenic compounds was examined among amikacin resistant Gram-negative bacteria isolate from a hospital environment. Arsenite resistance (Ars(r)) was found in a high proportion of isolates ( >60%) being frequently associated with resistance to tellurite (40%), and to other antimicrobial agents. Ars determinants (27%) were found to be transferable to E. coli K12 strains from which large plasmid DNA molecules were isolated and characterized by agarose gel electrophoresis. Plasmids were identified by both classical incompatibility tests, and by replicon typing using DNA specific probes. Most of the amikacin-arsenite (Ak-Ars) conjugative plasmids belong to the H incompatibility group. These results suggest that Ak-Ars resistance linked to IncH plasmids is wide spread in Gram-negative bacteria. | 1997 | 18611788 |
| 4531 | 12 | 0.9996 | Various pAQU plasmids possibly contribute to disseminate tetracycline resistance gene tet(M) among marine bacterial community. Emergence of antibiotic-resistant bacteria in the aquaculture environment is a significant problem for disease control of cultured fish as well as in human public health. Conjugative mobile genetic elements (MGEs) are involved in dissemination of antibiotic resistance genes (ARGs) among marine bacteria. In the present study, we first designed a PCR targeting traI gene encoding essential relaxase for conjugation. By this new PCR, we demonstrated that five of 83 strains isolated from a coastal aquaculture site had traI-positive MGEs. While one of the five strains that belonged to Shewanella sp. was shown to have an integrative conjugative element of the SXT/R391 family (ICEVchMex-like), the MGEs of the other four strains of Vibrio spp. were shown to have the backbone structure similar to that of previously described in pAQU1. The backbone structure shared by the pAQU1-like plasmids in the four strains corresponded to a ~100-kbp highly conserved region required for replication, partition and conjugative transfer, suggesting that these plasmids constituted "pAQU group." The pAQU group plasmids were shown to be capable of conjugative transfer of tet(M) and other ARGs from the Vibrio strains to E. coli. The pAQU group plasmid in one of the examined strains was designated as pAQU2, and its complete nucleotide sequence was determined and compared with that of pAQU1. The results revealed that pAQU2 contained fewer ARGs than pAQU1 did, and most of the ARGs in both of these plasmids were located in the similar region where multiple transposases were found, suggesting that the ARGs were introduced by several events of DNA transposition into an ancestral plasmid followed by drug selection in the aquaculture site. The results of the present study indicate that the "pAQU group" plasmids may play an important role in dissemination of ARGs in the marine environment. | 2014 | 24860553 |
| 9961 | 13 | 0.9996 | Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. OBJECTIVES: To investigate a set of MDR conjugative plasmids found in Vibrio species and characterize the underlying evolution process. METHODS: pAQU-type plasmids from Vibrio species were sequenced using both Illumina and PacBio platforms. Bioinformatics tools were utilized to analyse the typical MDR regions and core genes in the plasmids. RESULTS: The nine pAQU-type plasmids ranged from ∼160 to 206 kb in size and were found to harbour as many as 111 core genes encoding conjugative, replication and maintenance functions. Eight plasmids were found to carry a typical MDR region, which contained various accessory and resistance genes, including ISCR1-blaPER-1-bearing complex class 1 integrons, ISCR2-floR, ISCR2-tet(D)-tetR-ISCR2, qnrVC6, a Tn10-like structure and others associated with mobile elements. Comparison between a plasmid without resistance genes and different MDR plasmids showed that integration of different mobile elements, such as IS26, ISCR1, ISCR2, IS10 and IS6100, into the plasmid backbone was the key mechanism by which foreign resistance genes were acquired during the evolution process. CONCLUSIONS: This study identified pAQU-type plasmids as emerging MDR conjugative plasmids among important pathogens from different origins in Asia. These findings suggest that aquatic bacteria constitute a major reservoir of resistance genes, which may be transmissible to other human pathogens during food production and processing. | 2017 | 28637205 |
| 4465 | 14 | 0.9996 | Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria. | 1991 | 1952855 |
| 9967 | 15 | 0.9996 | The biology of IncI2 plasmids shown by whole-plasmid multi-locus sequence typing. IncI2 type plasmids are medium-sized (~55-80 kb) conjugative plasmids that have been found carrying important antimicrobial resistance genes but have also been frequently found as cryptic plasmids. The DNA sequences for 147 fully sequenced IncI2 plasmids were studied by a whole-plasmid multi-locus sequence typing (wpMLST) scheme. A total of 171 loci were identified of which 52 were considered core (carried by greater than 95% of the plasmids). Most of the plasmids carrying the antimicrobial gene mcr-1 were in a distinct clade while most of the antimicrobial gene free plasmids were more distantly related. However, the host strains of bacteria were disparate for both groups of plasmids, showing that conjugal transfer of IncI2 plasmid is frequent. The mcr-1 gene was likely to have been introduced into IncI2 plasmids multiple times. It was also observed that the genes for conjugation showed significant linkage disequilibrium despite substantial diversity for most of those genes. Genes associated with biofilm formation were also among the core genes. The core genes can be considered the cohesive unit that defines the IncI2 plasmid group. Given the role conjugation can play in biofilm formation, it was concluded that conjugation is an active survival strategy for IncI2 plasmids. The IncI2 plasmid will have selective advantage when the plasmid-bearing bacteria are introduced to a new animal host that carries potential conjugal mates. | 2019 | 31629716 |
| 4524 | 16 | 0.9996 | Functional genomics in Campylobacter coli identified a novel streptomycin resistance gene located in a hypervariable genomic region. Numerous aminoglycoside resistance genes have been reported in Campylobacter spp. often resembling those from Gram-positive bacterial species and located in transferable genetic elements with other resistance genes. We discovered a new streptomycin (STR) resistance gene in Campylobactercoli showing 27-34 % amino acid identity to aminoglycoside 6-nucleotidyl-transferases described previously in Campylobacter. STR resistance was verified by gene expression and insertional inactivation. This ant-like gene differs from the previously described aminoglycoside resistance genes in Campylobacter spp. in several aspects. It does not appear to originate from Gram-positive bacteria and is located in a region corresponding to a previously described hypervariable region 14 of C. jejuni with no other known resistance genes detected in close proximity. Finally, it does not belong to a multiple drug resistance plasmid or transposon. This novel ant-like gene appears widely spread among C. coli as it is found in strains originating both from Europe and the United States and from several, apparently unrelated, hosts and environmental sources. The closest homologue (60 % amino acid identity) was found in certain C. jejuni and C. coli strains in a similar genomic location, but an association with STR resistance was not detected. Based on the findings presented here, we hypothesize that Campylobacter ant-like gene A has originated from a common ancestral proto-resistance element in Campylobacter spp., possibly encoding a protein with a different function. In conclusion, whole genome sequencing allowed us to fill in a knowledge gap concerning STR resistance in C. coli by revealing a novel STR resistance gene possibly inherent to Campylobacter. | 2016 | 27154456 |
| 9966 | 17 | 0.9996 | The A to Z of A/C plasmids. Plasmids belonging to incompatibility groups A and C (now A/C) were among the earliest to be associated with antibiotic resistance in Gram-negative bacteria. A/C plasmids are large, conjugative plasmids with a broad host range. The prevalence of A/C plasmids in collections of clinical isolates has revealed their importance in the dissemination of extended-spectrum β-lactamases and carbapenemases. They also mobilize SGI1-type resistance islands. Revived interest in the family has yielded many complete A/C plasmid sequences, revealing that RA1, designated A/C1, is different from the remainder, designated A/C2. There are two distinct A/C2 lineages. Backbones of 128-130 kb include over 120 genes or ORFs encoding proteins of at least 100 amino acids, but very few have been characterized. Genes potentially required for replication, stability and transfer have been identified, but only the replication system of RA1 and the regulation of transfer have been studied. There is enormous variety in the antibiotic resistance genes carried by A/C2 plasmids but they are usually clustered in larger regions at various locations in the backbone. The ARI-A and ARI-B resistance islands are always at a specific location but have variable content. ARI-A is only found in type 1 A/C2 plasmids, which disseminate blaCMY-2 and blaNDM-1 genes, whereas ARI-B, carrying the sul2 gene, is found in both type 1 and type 2. This review summarizes current knowledge of A/C plasmids, and highlights areas of research to be considered in the future. | 2015 | 25910948 |
| 9887 | 18 | 0.9996 | PCR-Based Analysis of ColE1 Plasmids in Clinical Isolates and Metagenomic Samples Reveals Their Importance as Gene Capture Platforms. ColE1 plasmids are important vehicles for the spread of antibiotic resistance in the Enterobacteriaceae and Pasteurellaceae families of bacteria. Their monitoring is essential, as they harbor important resistant determinants in humans, animals and the environment. In this work, we have analyzed ColE1 replicons using bioinformatic and experimental approaches. First, we carried out a computational study examining the structure of different ColE1 plasmids deposited in databases. Bioinformatic analysis of these ColE1 replicons revealed a mosaic genetic structure consisting of a host-adapted conserved region responsible for the housekeeping functions of the plasmid, and a variable region encoding a wide variety of genes, including multiple antibiotic resistance determinants. From this exhaustive computational analysis we developed a new PCR-based technique, targeting a specific sequence in the conserved region, for the screening, capture and sequencing of these small plasmids, either specific for Enterobacteriaceae or specific for Pasteurellaceae. To validate this PCR-based system, we tested various collections of isolates from both bacterial families, finding that ColE1 replicons were not only highly prevalent in antibiotic-resistant isolates, but also present in susceptible bacteria. In Pasteurellaceae, ColE1 plasmids carried almost exclusively antibiotic resistance genes. In Enterobacteriaceae, these plasmids encoded a large range of traits, including not only antibiotic resistance determinants, but also a wide variety of genes, showing the huge genetic plasticity of these small replicons. Finally, we also used a metagenomic approach in order to validate this technique, performing this PCR system using total DNA extractions from fecal samples from poultry, turkeys, pigs and humans. Using Illumina sequencing of the PCR products we identified a great diversity of genes encoded by ColE1 replicons, including different antibiotic resistance determinants, supporting the previous results achieved with the collections of bacterial isolates. In addition, we detected cryptic ColE1 plasmids in both families with no known genes in their variable region, which we have named sentinel plasmids. In conclusion, in this work we present a useful genetic tool for the detection and analysis of ColE1 plasmids, and confirm their important role in the dissemination of antibiotic resistance, especially in the Pasteurellaceae family of bacteria. | 2018 | 29615998 |
| 5851 | 19 | 0.9996 | Arsenic resistance determinants from environmental bacteria. Arsenic resistance determinants from 42 environmental bacterial isolates (32 Gram negative) were analyzed by DNA: DNA hybridization using probes derived from Escherichia coli and Staphylococcus plasmid or chromosomal arsenic resistance (ars) genes. In colony hybridization assays, 11 and 1 Gram negative strains hybridized with the E. coli chromosome and plasmid probes, respectively. No hybridization was detected using a probe containing only the arsA (ATPase) gene from E. coli plasmid or with a Staphylococcus plasmid ars probe. From Southern hybridization tests of some of the positive strains it was concluded that homology to ars chromosomal genes occurred within chromosome regions, except in an E. coli isolate where hybridization occurred in both the chromosome and a 130-kb plasmid. Our results show that DNA sequences homologous to E. coli ars chromosomal genes are commonly present in the chromosomes of environmental arsenic-resistant Gram negative isolates. | 1998 | 10932734 |