International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
174301.0000International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried bla(CTX-M) -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.202032239649
263710.9998Potentially Pathogenic Multidrug-Resistant Escherichia coli in Lamb Meat. Extended-spectrum cephalosporin (ESC) resistance remains a threat since ESC are important antimicrobials used to treat infections in humans and animals. Escherichia coli is an important source of ESC-resistance genes, such as those encoding extended-spectrum β-lactamases (ESBLs). E. coli is a common commensal of lambs. Reports that contaminated food can be a source of ESC-resistant bacteria in humans and that ESBL-producing E. coli are found in sheep in Brazil led us to survey their presence in retail lamb meat. Twenty-five samples intended for human consumption were screened for ESC-resistant E. coli, and the isolates were characterized. IncI1-bla(CTX-M-8) and IncHI2-bla(CTX-M-2) were the main plasmids responsible for ESC resistance. The plasmids harbored common ESBL genes in Enterobacteriaceae from food-producing animals in Brazil. IncI1-bla(CTX-M-14) and IncF-bla(CTX-M-55) plasmids, associated with human infections, were also detected. Few CTX-M-producing E. coli have been clustered by typing methods, and some may be genetically pathogenic. The findings indicate the presence of diverse strains of E. coli, harboring important ESBL genes, in lamb meat in Brazil. Surveillance of ESC-resistant bacteria could reduce the spread of antimicrobial resistance through the food chain.202133417827
264320.9997Fecal carriage of multi-drug resistant and extended spectrum β-lactamases producing E. coli in household pigeons, Bangladesh. Antibiotic resistance and ESBL constitute a risk to human and animal health. Birds residing close to humans could mirror the spectrum of human associated antibiotic resistance. Household pigeons were screened in Bangladesh to shed light on human associated, as well as, environmental antibiotic resistance. Escherichia coli from pigeons (n=150) were tested against 11 antibiotics. 89% E. coli isolates were resistant to one or more critically important human antibiotics like ampicillin, cefadroxil, mecillinam, ciprofloxacin, gentamicin and tigecycline. No carbapenamase-producers were detected and the lower ESBL prevalence (5%) in pigeons. ESBL-producing E. coli isolates had blaCTX-M-15 genes. Pigeons shared some bacterial clones and had bird associated sequence types like E. coli ST1408. Fecal carriage of bacteria resistance of critically important human antibiotics, together with examples of shared genotypes among pigeons, indicate the human-birds and bird to bird transmissions are important in the epidemiology of antibiotic resistance.201424290770
174230.9997Shelter dogs as reservoirs of international clones of Escherichia coli carrying mcr-1.1 and bla(CTX-M) resistance genes in Lima, Peru. Antimicrobial resistance (AMR) poses a critical public health threat worldwide, particularly at the human-animal interface where cross-transmission of critical priority Enterobacterales, such as Escherichia coli, have become increasingly reported. Worryingly, E. coli encoding extended-spectrum β-lactamases (ESBLs) has been documented in companion animals worldwide. Conversely, the presence of mcr genes, which confer resistance to polymyxins, in bacteria from pets remains more infrequent. In this study, we sequenced and reported on the first genomic data of E. coli strains carrying mcr-1 and/or bla(CTX-M) genes isolated from rectal swabs of stray dogs in a shelter in the city of Lima, Peru. Antimicrobial susceptibility revealed that E. coli strains exhibited a multidrug resistance profile. In addition to mcr-1 and bla(CTX-M) genes, other clinically relevant resistance determinants were identified, with notably presence of bla(TEM-176) and the novel bla(SCO-2) variant. The association of mcr-1.1 and IncI2 plasmid was confirmed. Several virulence genes were detected, classifying strains as putative extraintestinal pathogenic E. coli. Multilocus sequence typing prediction recognized diverse sequence types (ST), including ST155, ST189, ST657, ST746, ST1140, ST3014, and ST7188. This study represents the first report of mcr-positive E. coli in dogs from Peru, emphasizing the need for continuous surveillance and genomic characterization to better understand the transmission dynamics of these critical resistance genes at the human-animal interface. Furthermore, our results provide evidence that stray, and shelter dogs could be a reservoir for the spread of WHO priority pathogens, and/or polymyxin and β-lactam resistance genes, which is a public health and One Health concern that requires appropriate management strategies.202540339258
163740.9997Genomic surveillance of antimicrobial resistance in bovine fecal samples from Lebanon. Antimicrobial resistance (AMR) threatens human and animal health worldwide, driven by the spread of extended-spectrum β-lactamase (ESBL)-producing, and carbapenem-resistant Gram-negative bacteria. In Lebanon, inadequate surveillance and antibiotic misuse worsen the issue. Animal fecal material is an important reservoir of resistance genes and mobile elements. This study aims to address AMR in bovine feces. To achieve this, bovine fecal samples were collected from 24 farms in Lebanon. Sixty-two ESBL-producing bacteria were recovered on CHROMagar ESBL and whole-genome sequencing followed by in silico typing was used to determine the resistance genes, virulence factors, and mobile genetic elements. Disk diffusion assay revealed the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (33/62) with Escherichia coli being the most common (37/62). Resistance to amoxicillin, ceftriaxone, and cefotaxime was detected in all 37 E. coli isolates, with one also exhibiting resistance to colistin. β-lactam resistance was primarily associated with bla(CTX-M-15) and bla(TEM-1B), while colistin resistance was linked to mcr-1.1 on an IncHI2A/IncFIC multi-replicon plasmid. Plasmid typing identified 22 replicons, the most common being IncFIB and IncFII. Virulence factor analysis identified enterotoxin-encoding genes in one E. coli isolate, suggesting a potentially pathogenic strain with diarrheagenic properties among the recovered isolates. The findings of this study revealed highly resistant Gram-negative bacteria with plasmid-mediated resistance to critical antibiotics such as colistin, emphasizing the risks posed to human and livestock health. Comprehensive surveillance and responsible antibiotic use, guided by an integrated One Health approach, are essential steps to effectively tackle the interconnected challenges of AMR.202540482361
172950.9997Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia coli and Klebsiella pneumoniae in Global Food Products. Plasmid-mediated extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase producing Enterobacteriaceae, in particular Escherichia coli and Klebsiella pneumoniae, with potential zoonotic transmission routes, are one of the greatest threats to global health. The aim of this study was to investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes. We sampled 200 food products purchased from Finland capital region during fall 2018. Products originated from 35 countries from six continents and represented four food categories: vegetables (n = 60), fruits and berries (n = 50), meat (n = 60), and seafood (n = 30). Additionally, subsamples (n = 40) were taken from broiler meat. Samples were screened for ESBL/AmpC-producing Enterobacteriaceae and whole genome sequenced to identify resistance and virulence genes and sequence types (STs). To accurately identify plasmids harboring resistance and virulence genes, a hybrid sequence analysis combining long- and short-read sequencing was employed. Sequences were compared to previously published plasmids to identify potential epidemic plasmid types. Altogether, 14 out of 200 samples were positive for ESBL/AmpC-producing E. coli and/or K. pneumoniae. Positive samples were recovered from meat (18%; 11/60) and vegetables (5%; 3/60) but were not found from seafood or fruit. ESBL/AmpC-producing E. coli and/or K. pneumoniae was found in 90% (36/40) of broiler meat subsamples. Whole genome sequencing of selected isolates (n = 21) revealed a wide collection of STs, plasmid replicons, and genes conferring multidrug resistance. bla (CTX-M-15)-producing K. pneumoniae ST307 was identified in vegetable (n = 1) and meat (n = 1) samples. Successful IncFII plasmid type was recovered from vegetable and both IncFII and IncI1-Iγ types from meat samples. Hybrid sequence analysis also revealed chromosomally located beta-lactamase genes in two of the isolates and indicated similarity of food-derived plasmids to other livestock-associated sources and also to plasmids obtained from human clinical samples from various countries, such as IncI type plasmid harboring bla (TEM-52C) from a human urine sample obtained in the Netherlands which was highly similar to a plasmid obtained from broiler meat in this study. Results indicate certain foods contain bacteria with multidrug resistance and pose a possible risk to public health, emphasizing the importance of surveillance and the need for further studies on epidemiology of epidemic plasmids.202133613476
109760.9997CTX-M-producing Escherichia coli Isolated from urban pigeons (Columba livia domestica) in Brazil. INTRODUCTION: Worldwide urban pigeons (Columba livia domestica) are an important reservoir of pathogenic and multidrug-resistant bacteria (MDR). Plasmids are key genetic elements in the dissemination of antimicrobial drug resistance in bacteria, including beta-lactams and quinolones, which are the most important classes of drugs for treatment of Enterobacteriaceae infections in human and veterinary medicine. The aim of this study was to determine the presence of Escherichia coli (E. coli) harboring plasmids containing extend-spectrum (ESBL) and pAmpC beta-lactamases, also plasmid-mediated quinolone resistance (PMQR) genes in urban pigeons from São Paulo State, Brazil. METHODOLOGY: A collection of 107 isolates of E. coli from urban pigeons from four cities was screened by antimicrobial resistance phenotypic and PCR for genes encoding ESBL, pAmpC and PMQR genes. Clonality was evaluated by ERIC-PCR. RESULTS: We found three strains positive for blaCTX-M genes. In two clonally related CTX-M-8-producing strains, the gene was associated with IncI1 plasmids. An MDR strain harboring blaCTX-M-2, the plasmid could not be transferred. No strain was positive for PMQR genes. CONCLUSION: These results indicate that CTX-M-2 and CTX-M-8-producing E. coli are present in urban pigeons, which could serve as a reservoir for ESBL-producing E. coli in Brazil.201932087078
172870.9997VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. Carbapenems belong to the group of last resort antibiotics in human medicine. Therefore, the emergence of growing numbers of carbapenemase-producing bacteria in food-producing animals or the environment is worrying and an important concern for the public health sector. In the present study, a set of 45 Enterobacteriaceae isolated from German retail seafood (clams and shrimps), sampled in 2016, were investigated by real-time PCR for the presence of carbapenemase-producing bacteria. One Escherichia coli (ST10), isolated from a Venus clam (Ruditapes philippinarum) harvested in the Mediterranean Sea (Italy), contained the carbapenemase gene bla(VIM-1) as part of the variable region of a class I integron. Whole-genome sequencing indicated that the integron was embedded in a Tn3-like transposon that also contained the fluoroquinolone resistance gene qnrS1. Additional resistance genes such as the extended-spectrum beta-lactamase bla(SHV-12) and the AmpC gene bla(ACC-1) were also present in this isolate. Except bla(ACC-1), all resistance genes were located on an IncY plasmid. These results confirm previous observations that carbapenemase-producing bacteria have reached the food chain and are of increasing concern for public health.201729090680
161280.9997Carriage of antimicrobial resistant Escherichia coli in dogs: Prevalence, associated risk factors and molecular characteristics. Resistance to antimicrobials, in particular that mediated by extended spectrum β-lactamases (ESBL) and AmpC β-lactamases are frequently reported in bacteria causing canine disease as well as in commensal bacteria, which could be a potential health risk for humans they come into contact with. This cross-sectional study aimed to estimate the prevalence and investigate the molecular characteristics of ESBL and plasmid encoded AmpC (pAmpC)-producing E. coli in the mainland UK vet-visiting canine population and, using responses from detailed questionnaires identify factors associated with their carriage. Faecal samples were cultured for antimicrobial resistant (AMR), ESBL and pAmpC-producing E. coli. A subset of ESBL and pAmpC-producing isolates were subjected to multi-locus sequence typing and DNA microarray analyses. Multivariable logistic regression analysis was used to construct models to identify risk factors associated with multidrug resistant (MDR, resistance to three or more antimicrobial classes), fluoroquinolone resistant, ESBL and AmpC-producing E. coli. AMR E.coli were isolated from 44.8% (n=260) of samples, with 1.9% and 7.1% of samples carrying ESBL and pAmpC-producing E. coli, respectively. MDR E. coli were identified in 18.3% of samples. Recent use of antimicrobials and being fed raw poultry were both identified as risk factors in the outcomes investigated. A number of virulence and resistance genes were identified, including genes associated with extra-intestinal and enteropathogenic E. coli genotypes. Considering the close contact that people have with dogs, the high levels of AMR E. coli in canine faeces may be a potential reservoir of AMR bacteria or resistance determinants.201728110781
108190.9997Chromosome-Borne CTX-M-65 Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serovar Infantis, Taiwan. A CTX-M-65‒producing Salmonella enterica serovar Infantis clone, probably originating in Latin America and initially reported in the United States, has emerged in Taiwan. Chicken meat is the most likely primary carrier. Four of the 9 drug resistance genes have integrated into the chromosome: bla(CTX-M-65), tet(A), sul1, and aadA1.202337486207
1611100.9997Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and AmpC β-Lactamases Producing but no Carbapenem Resistant Ones. The increase of extended- spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) in humans and in food-producing animals is of public health concern. The latter could contribute to spreading of these bacteria or their resistance genes to humans. Several studies have reported the isolation of third generation cephalosporin resistant bacteria in livestock animals. However, the number of samples and the methodology used differ considerably between studies limiting comparability and prevalence assessment. In the present study, a total of 564 manure and dust samples were collected from 47 pig farms in Northern Germany and analysed to determine the prevalence of ESBL-E. Molecular typing and characterization of resistance genes was performed for all ESBL-E isolates. ESBL-E isolates were found in 55.3% of the farms. ESBL-Escherichia coli was found in 18.8% of the samples, ESBL-Klebsiella pneumoniae in 0.35%. The most prevalent ESBL genes among E. coli were CTX-M-1 like (68.9%), CTX-M-15 like (16%) and CTX-M-9 group (14.2%). In 20% of the latter two, also the OXA-1 like gene was found resulting in a combination of genes typical for isolates from humans. Genetic relation was found between isolates not only from the same, but also from different farms, with multilocus sequence type (ST) 10 being predominant among the E. coli isolates. In conclusion, we showed possible spread of ESBL-E between farms and the presence of resistance genes and STs previously shown to be associated with human isolates. Follow-up studies are required to monitor the extent and pathways of ESBL-E transmission between farms, animals and humans.201526225428
2638110.9997Prevalence and mechanisms of extended-spectrum cephalosporin resistance in clinical and fecal Enterobacteriaceae isolates from dogs in Ontario, Canada. There is little information on the genetic basis of resistance to the critically important extended-spectrum cephalosporins (ESCs) in Enterobacteriaceae from dogs in Canada. This study assessed the frequency of ESC resistance in Enterobacteriaceae isolated from dogs in Ontario and the distribution of major ESC resistance genes in these bacteria. A total of 542 Enterobacteriaceae were isolated from 506 clinical samples from two diagnostic laboratories in Ontario. Eighty-eight ESC-resistant Enterobacteriaceae and 217 Escherichia coli were isolated from 234 fecal samples from dogs collected at leash-free dog parks. These fecal isolates were tested for ESC resistance along with the clinical isolates. Isolates with reduced ESC susceptibility were screened for bla(CMY), bla(CTX-M), and bla(SHV), and all CTX-M-positive isolates underwent whole-genome sequencing. The prevalence of ESC resistance in clinical Enterobacteriaceae was 10.4%. The average frequency of fecal carriage of ESC-resistant Enterobacteriaceae in healthy dogs was 26.5%. The majority of ESC-resistant isolates were E. coli and the other major Enterobacteriaceae carrying ESC resistance genes were Klebsiella pneumoniae and Proteus mirabilis. The results show that the same ESC resistance genes can be found in clinical and fecal Enterobacteriaceae in dogs. The identified E. coli sequence types (including ST131 and ST648) and CTX-M variants (including CTX-M-14, -15, and -27) support the hypothesis of transfer of resistant bacteria between humans and dogs. CTX-M-1 was frequently found in canine fecal Enterobacteriaceae, while it is still rare in human Enterobacteriaceae in Canada, thus suggesting transfer of resistant bacteria to dogs from food animals or other sources.201829292008
981120.9997ESBL- and pAmpC-producing Enterobacterales from Swedish dogs and cats 2017-2021: a retrospective study. BACKGROUND: Antibiotic resistant bacteria are a threat to both human and animal health. Of special concern are resistance mechanisms that are transmissible between bacteria, such as extended-spectrum beta-lactamases (ESBL) and plasmid-mediated AmpC (pAmpC). ESBL/AmpC resistance is also of importance as it confers resistance to beta-lactam antibiotics including third generation cephalosporins. The Swedish Veterinary Agency (former English name National Veterinary Institute) performs confirmatory testing of suspected ESBL-/pAmpC-producing Enterobacterales. The aim of this study is to describe the clinical background, antibiotic susceptibility, and genetic relationships of confirmed isolates from dogs and cats in Sweden from 2017 to 2021. RESULTS: The study includes 92 isolates of ESBL/pAmpC-producing bacteria from 82 dogs, and 28 isolates from 23 cats. Escherichia coli was the most commonly isolated bacteria, and the most frequent sampling site was the urinary tract. From eight dogs and two cats, ESBL/pAmpC-producing bacteria were isolated on more than one occasion. Multi-resistance was more than twice as common in samples from dogs (50%) than in samples from cats (22%). Among dogs, sequence type (ST) 131 and ST372 were the dominant strains and bla(CMY-2) and bla(CTX-M-15) the dominant genes conferring reduced susceptibility to third-generation cephalosporins. Among cats, ST73 was the dominant strain and bla(CTX-M-15) the dominant gene. CONCLUSIONS: Monitoring the resistance patterns and genetic relationships of bacteria over time is important to follow the results of measures taken to reduce resistance. Knowledge of the appropriate antibiotic usage is also crucial. In this study, a variety of STs and ESBL/pAmpC-genes were detected among the isolates. There were available antibiotics likely effective for treatment in all cases, based on resistance pattern, infection site and host species.202539762972
1730130.9997Molecular Epidemiology of mcr-Encoded Colistin Resistance in Enterobacteriaceae From Food-Producing Animals in Italy Revealed Through the EU Harmonized Antimicrobial Resistance Monitoring. Colistin resistance by mobilisable mcr genes has been described in bacteria of food-animal origin worldwide, which has raised public health concerns about its potential foodborne transmission to human pathogenic bacteria. Here we provide baseline information on the molecular epidemiology of colistin-resistant, mcr-positive Escherichia coli and Salmonella isolates in food-producing animals in Italy in 2014-2015. A total 678, 861 and 236 indicator E. coli, Extended Spectrum Beta-Lactamase (ESBL)/AmpC-producing E. coli, and Salmonella isolates, respectively, were tested for colistin susceptibility. These isolates were collected according to the EU harmonized antimicrobial resistance monitoring program and are representative of at least 90 and 80% of the Italian poultry (broiler chickens and turkeys) and livestock (pigs and bovines < 12 months) production, respectively. Whole genome sequencing by Illumina technology and bioinformatics (Center for Genomic Epidemiology pipeline) were used to type 42 mcr-positive isolates by PCR. Colistin resistance was mainly observed in the ESBL/AmpC E. coli population, and was present in 25.9, 5.3, 6.5, and 3.9% of such isolates in turkeys, broilers, pigs, and bovines, respectively. Most colistin-resistant isolates (141/161, 87.5%) harbored genes of the mcr-1 group. mcr-1 was also detected in a small proportion of Salmonella isolates (3/146, 2.0%) in turkeys. Additional mcr types were mcr-3 in four ESBL-producing E. coli from bovines, and two mcr-4 in ESBL (n = 1) and indicator E. coli (n = 1) from pigs and bovines. We describe notable diversity of mcr variants with predominance of mcr-1.1 and mcr-1.2 on conjugative IncX4 plasmids in E. coli and in Salmonella serovars Typhimurium, Newport, Blockley from turkey. A new variant, mcr-1.13 was detected in the chromosome in E. coli in turkey and pig isolates. Additionally, we describe mcr-3.2 and mcr-4.3 in E. coli from bovines, and mcr-4.2 in E. coli from pigs. These findings elucidate the epidemiology of colistin resistance in food-producing animals in Italy along with its genetic background, and highlight the likelihood of mcr horizontal transfer between commensal bacteria and major food-borne pathogens (Salmonella) within the same type of productions. Thorough action and strategies are needed in order to mitigate the risk of mcr transfer to humans, in a "One Health" perspective.201829951045
2639140.9997Prevalence and risk analysis of mobile colistin resistance and extended-spectrum β-lactamase genes carriage in pet dogs and their owners: a population based cross-sectional study. Mobile colistin resistance gene mcr-1 and extended-spectrum β-lactamase gene bla (CTX-M) are highly prevalent in human - and pet-derived bacteria. Isolation of identical strains of mcr-1-positive Escherichia coli (MCRPEC) or bla (CTX-M)-positive E. coli (CTX-MPEC) from pets and humans highlighted the potential for co-colonization of antibiotic-resistant bacteria which can be a risk for dissemination of resistance genes. In this study, the prevalence of mcr-1 and bla (CTX-M) carriage from rectal swabs in 299 families (dogs and their owners) were 2.7 and 5.3%, respectively. We identified a significant association of mcr-1 carriage between dogs and their owners. Whilst antibiotic use in the previous three months was associated with bla (CTX-M) carriage in dogs. Only one instance of dog and owner carrying identical CTX-MPEC was observed. Although the prevalence of identical strains in one family is rare, the huge number of dog ownership worldwide suggest that this threat should not be underestimated.202133502946
1589150.9997Clonal Complexes 23, 10, 131 and 38 as Genetic Markers of the Environmental Spread of Extended-Spectrum β-Lactamase (ESBL)-Producing E. coli. In accordance with the global action plan on antimicrobial resistance adopted by the World Health Assembly in 2015, there is a need to develop surveillance programs for antimicrobial resistant bacteria. In this context, we have analyzed the clonal diversity of Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from aquatic environments and human and food samples in Spain, with the aim of determining possible clonal complexes (CCs) that act as markers of the potential risk of transmission of these resistant bacteria. The phylogenetic groups, sequence types (STs) and CCs were determined by different Polymerase Chain Reaction (PCR) and Multilocus Sequence Typing (MLST) techniques. Phylogroup A was prevalent and was mainly present in food and water strains, while human strains were mostly associated with phylogroup B2. According to the observed prevalence in the different niches, CC23 and CC10 are proposed as markers of phylogroups A and C, related with the spread of bla(CTX-M1) and bla(CTX-M15) genes. Similarly, CC131 and CC38 could be associated to the dissemination of pathogenic strains (phylogroups B2 and D) carrying mainly bla(CTX-M14) and bla(CTX-M15) genes. Some strains isolated from wastewater treatment plants (WWTPs) showed identical profiles to those isolated from other environments, highlighting the importance that water acquires in the dissemination of bacterial resistance. In conclusion, the detection of these genetic markers in different environments could be considered as an alert in the spread of ESBL.202236358120
2641160.9997Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe. BACKGROUND: Extended spectrum β-lactamases (ESBLs), a group of enzymes conferring resistance to third generation cephalosporins have rapidly increased in Enterobacteriacae and pose a major challenge to human health care. Resistant isolates are common in domestic animals and clinical settings, but prevalence and genotype distribution varies on a geographical scale. Although ESBL genes are frequently detected in bacteria isolated from wildlife samples, ESBL dissemination of resistant bacteria to the environment is largely unknown. To address this, we used three closely related gull species as a model system and collected more than 3000 faecal samples during breeding times in nine European countries. Samples were screened for ESBL-producing bacteria, which were characterized to the level of ESBL genotype groups (SHV, TEM), or specific genotypes (CTX-M). RESULTS: ESBL-producing bacteria were frequently detected in gulls (906 of 3158 samples, 28.7 %), with significant variation in prevalence rates between countries. Highest levels were found in Spain (74.8 %), The Netherlands (37.8 %) and England (27.1 %). Denmark and Poland represented the other extreme with no, or very few positive samples. Genotyping of CTX-M isolates identified 13 different variants, with bla CTX-M-1 and bla CTX-M-14 as the most frequently detected. In samples from England, Spain and Portugal, bla CTX-M-14 dominated, while in the rest of the sampled countries bla CTX-M-1 (except Sweden where bla CTX-M-15 was dominant) was the most frequently detected genotype, a pattern similar to what is known from studies of human materials. CONCLUSIONS: CTX-M type ESBLs are common in the faecal microbiota from gulls across Europe. The gull ESBL genotype distribution was in large similar to published datasets from human and food-production animals in Europe. The data suggests that the environmental dissemination of ESBL is high from anthropogenic sources, and widespread occurrence of resistant bacteria in common migratory bird species utilizing urban and agricultural areas suggests that antibiotic resistance genes may also be spread through birds.201526526188
1588170.9997Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France. Extended Spectrum beta-Lactamase (ESBL) producing Enterobacteriaceae started to appear in the 1980s, and have since emerged as some of the most significant hospital-acquired infections with Escherichia coli and Klebsiella being main players. More than 100 different ESBL types have been described, the most widespread being the CTX-M beta-lactamase enzymes (bla(CTX-M) genes). This study focuses on the zoonotic dissemination of ESBL bacteria, mainly CTX-M type, in the southern coastal region of France. We found that the level of general antibiotic resistance in single randomly selected E. coli isolates from wild Yellow-legged Gulls in France was high. Nearly half the isolates (47.1%) carried resistance to one or more antibiotics (in a panel of six antibiotics), and resistance to tetracycline, ampicillin and streptomycin was most widespread. In an ESBL selective screen, 9.4% of the gulls carried ESBL producing bacteria and notably, 6% of the gulls carried bacteria harboring CTX-M-1 group of ESBL enzymes, a recently introduced and yet the most common clinical CTX-M group in France. Multi locus sequence type and phylogenetic group designations were established for the ESBL isolates, revealing that birds and humans share E. coli populations. Several ESBL producing E. coli isolated from birds were identical to or clustered with isolates with human origin. Hence, wild birds pick up E. coli of human origin, and with human resistance traits, and may accordingly also act as an environmental reservoir and melting pot of bacterial resistance with a potential to re-infect human populations.200919536298
999180.9997Occurrence of KPC-Producing Escherichia coli in Psittaciformes Rescued from Trafficking in Paraíba, Brazil. The emergence and spread of antimicrobial resistance pose a threat to public health globally. Antibiotic-resistant bacteria and genes can disseminate among environments, animals and humans. Therefore, investigation into potential reservoirs of multidrug-resistant bacteria is of great importance to the understanding of putative transmission routes of resistant bacteria and resistance genes. This study aimed to report the occurrence of Escherichia coli harboring the Klebsiella pneumoniae carbapenemase-producing gene (bla(KPC)) in Psittaciformes rescued from wildlife trafficking in Paraíba State, Brazil. Cloacal swabs were collected from thirty birds and cultured by conventional microbiology using MacConkey and serum tryptone glucose glycerol (STGG) media supplemented with selective antimicrobials. E. coli isolates (n = 43) were identified by phenotypic tests and confirmed by MALDI-TOF. Antimicrobial susceptibility profiles were determined by means of Kirby-Bauer test. All isolates were further screened for extended-spectrum beta-lactamase (ESBL) production, and putative genes encoding ESBL were investigated by PCR. Additionally, bla(KPC)-harboring strains were genotyped by REP-PCR. A total of 43 E. coli phenotypically resistant isolates were recovered. The highest resistance rate was observed against ciprofloxacin. Among the resistance genes, only bla(KPC) was found in seven different birds from three species. According to the genotyping, these seven isolates belonged to four different strains. To date, this is the first report on the occurrence of KPC-E. coli in Psittaciformes rescued from trafficking in Northeastern Brazil. Due to the high clinical importance of KPC-E. coli, our findings suggest that wild animals in captivity at wildlife rescue centers can play a role as reservoirs of bacteria that are resistance to Critically Important antimicrobials in human medicine.202033375538
1735190.9997Multiple transmissible genes encoding fluoroquinolone and third-generation cephalosporin resistance co-located in non-typhoidal Salmonella isolated from food-producing animals in China. The aim of this study was to identify genes conferring resistance to fluoroquinolones and extended-spectrum β-lactams in non-typhoidal Salmonella (NTS) from food-producing animals in China. In total, 31 non-duplicate NTS were obtained from food-producing animals that were sick. Isolates were identified and serotyped and the genetic relatedness of the isolates was determined by pulsed-field gel electrophoresis of XbaI-digested chromosomal DNA. Antimicrobial susceptibility was determined using Clinical and Laboratory Standards Institute methodology. The presence of extended-spectrum β-lactamase (ESBL) and fluoroquinolone resistance genes was established by PCR and sequencing. Genes encoded on transmissible elements were identified by conjugation and transformation. Plasmids were typed by PCR-based replicon typing. The occurrence and diversity of numerous different transmissible genes conferring fluoroquinolone resistance [qnrA, qnrD, oqxA and aac(6')-Ib-cr] and ESBLs (CTX-M-27 and CTX-M-14), and which co-resided in different isolates and serovars of Salmonella, were much higher than in European countries. Furthermore, different plasmids encoded fluoroquinolone resistance (ca. 6 kb) and β-lactam resistance (ca. 63 kb) and these co-resided in isolates with mutations in topoisomerase genes (gyrA and parC) giving very resistant Salmonella. The presence of multidrug-resistant bacteria in food-producing animals in countries that export foodstuffs suggests that global transfer of antibiotic resistances from country to country on food is possible.201424581597