Conjugative plasmidic AmpC detected in Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae human clinical isolates from Portugal. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
171301.0000Conjugative plasmidic AmpC detected in Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae human clinical isolates from Portugal. AmpC is a type of β-lactamase enzyme produced by bacteria; these enzymes are classified in Class C and Group 1, and these confer resistance to cephamycin. Enterobacterales producing AmpC are reported worldwide and have great clinical importance due to therapeutic restriction and epidemiological importance once the easy dissemination by plasmidic genes to other bacteria is a real threat. These genes are naturally found in some enterobacteria as Enterobacter cloacae, Morganella morganii, and Citrobacter freundii, but other species have demonstrated similar resistance phenotype of AmpC production. Genes carried in plasmids have been described in these species conferring resistance to cefoxitin and causing therapeutic failure in some bacterial infections. This work detected and described five clinical strains of Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae that presented plasmid ampC (pAmpC) isolated from the north of Portugal collected in 2009. AmpC production was confirmed by inhibition of the enzyme by cloxacillin and boronic acid in agar diffusion tests. Also, PCR (polymerase chain reaction) was performed for the detection of gene universal to AmpC, bla(ampC), and others to AmpC group: bla(ACC), bla(CIT), bla(CMY), bla(DHA), and bla(EBC). The conjugation in liquid medium for 24 h was realized to determine if gene is localized in chromosome or plasmid. The isolates and their conjugants showed phenotypic characteristics and bla(CMY) and bla(CIT) were detected by PCR corroborating the AmpC characteristics observed in these bacteria. Confirmation of transfer of plasmid containing genes encoding AmpC is of high epidemiological relevance to the hospital studied and demonstrated the importance of AmpC surveillance and studies in hospital and community environments in order to choose the appropriate therapy for bacterial infections.202032740783
171410.9999Carbapenemase-producing enterobacteriaceae recovered from a Spanish river ecosystem. The increasing resistance to carbapenems is an alarming threat in the fight against multiresistant bacteria. The dissemination properties of antimicrobial resistance genes are supported by their detection in a diverse population of bacteria, including strains isolated from the environment. The objective of this study was to investigate the presence of carbapenemase-producing Enterobacteriaceae (CPE) collected from a river ecosystem in the Barcelona metropolitan area (Spain). Identification of β-lactamases and other resistance determinants was determined as was the antimicrobial susceptibility profile. Moreover, screening of virulence factors, plasmid addiction systems, plasmid partition systems and replicon typing was performed. The results identified 8 isolates belonging to different species (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica). The most prevalent enzyme was KPC-2 (n = 6), followed by VIM-1 (n = 2) and IMI-2 (n = 1), whereas no OXA-48-type was detected. In addition, one strain was positive for both KPC-2 and VIM-1 enzymes. All the carbapenemase-encoding plasmids carried at least one plasmid addiction or partition system, being vagCD and parAB the most frequently detected, respectively. E. coli and K. pneumoniae isolates carried a low number of virulence-associated factors and none of the detected clones has previously been identified in the clinical setting. These findings support the high dissemination potential of the carbapanemase-encoding genes and reinforce the idea that the environment is another reservoir that may play an important role in the capture, selection and dissemination of carbapenem resistance genes.201728380016
171220.9999Low-virulence Citrobacter species encode resistance to multiple antimicrobials. Citrobacter spp. are gram-negative commensal bacteria that infrequently cause serious nosocomial infections in compromised hosts. They are often resistant to cephalosporins due to overexpression of their chromosomal beta-lactamase. During a recent study of multidrug-resistant Enterobacteriaceae (MDRE) in solid-organ transplant patients, we found that almost half of patients colonized with MDRE carried one or more cefpodoxime-resistant Citrobacter freundii, Citrobacter braakii, or Citrobacter amalonaticus strains. Pulsed-field gel electrophoresis showed that 36 unique strains of Citrobacter were present among 32 patients. Genetic and phenotypic analysis of the resistance mechanisms of these bacteria showed that the extended-spectrum beta-lactamase (ESBL) SHV-5 or SHV-12 was encoded by 8 strains (26%) and expressed by 7 strains (19%). A number of strains were resistant to other drug classes, including aminoglycosides (28%), trimethoprim-sulfamethoxazole (31%), and fluoroquinolones (8%). PCR and DNA analysis of these multiresistant strains revealed the presence of class I integrons, including the first integrons reported for C. braakii and C. amalonaticus. The integrons encoded aminoglycoside resistance, trimethoprim resistance, or both. Despite the prevalence of MDR Citrobacter spp. in our solid-organ transplant patients, only a single infection with a colonizing strain was recorded over 18 months. Low-virulence Citrobacter spp., which can persist in the host for long periods, could influence pathogen evolution by accumulation of genes encoding resistance to multiple antimicrobial classes.200212384364
91030.9998Analysis of Antimicrobial Resistance Genes (ARGs) in Enterobacterales and A. baumannii Clinical Strains Colonizing a Single Italian Patient. The dramatic increase in infections caused by critically multidrug-resistant bacteria is a global health concern. In this study, we characterized the antimicrobial resistance genes (ARGs) of K. pneumoniae, P. mirabilis, E. cloacae and A. baumannii isolated from both surgical wound and rectal swab of a single Italian patient. Bacterial identification was performed by MALDI-TOF MS and the antimicrobial susceptibility was carried out by Vitek 2 system. The characterization of ARGs was performed using next-generation sequencing (NGS) methodology (MiSeq Illumina apparatus). K. pneumoniae, P. mirabilis and E. cloacae were resistant to most β-lactams and β-lactam/β-lactamases inhibitor combinations. A. baumannii strain was susceptible only to colistin. The presence of plasmids (IncN, IncR, IncFIB, ColRNAI and Col (MGD2)) was detected in all Enterobacterales but not in A. baumannii strain. The IncN plasmid and bla(NDM-1) gene were found in K. pneumoniae, P. mirabilis and E. cloacae, suggesting a possible transfer of this gene among the three clinical species. Conjugation experiments were performed using K. pneumoniae (1 isolate), P. mirabilis (2 isolates) and E. cloacae (2 isolates) as donors and E. coli J53 as a recipient. The bla(NDM-1) gene was identified by PCR analysis in all transconjugants obtained. The presence of four different bacterial species harboring resistance genes to different classes of antibiotics in a single patient substantially reduced the therapeutic options.202336978306
90840.9998Multidrug-resistant Raoultella ornithinolytica misidentified as Klebsiella oxytoca carrying blaOXA β-lactamases: antimicrobial profile and genomic characterization. Class D β-lactamases OXA-232 and OXA-48 hydrolyze penicillin, cephalosporins and carbapenems, limiting the pharmacological therapeutics in bacteraemia. OXA producer microorganisms are considered a great emergent threat, especially in nosocomial environments. To determine the resistance profile and genomic characterization of two isolates initially identified as potential carbapenemase-producer Klebsiella oxytoca in a third level hospital. Automated platform BD Phoenix-100 System was used to identify and to biochemically characterize both isolates. Furthermore, the resistance profile was determined through CLSI methods and the whole genome sequences were obtained using Next-Generation Sequencing. Resistance genes were analyzed, and the virtual fingerprinting was determined to corroborate the similarity with related bacteria. Both strains correspond to Raoultella ornithinolytica carrying OXA 232 and OXA-48 genes, confirming the class D β-lactamases assay results. Here, we present the genetic and phenotypic analysis of multidrug resistance R. ornithinolytica, representing the first report in Mexico.202134499216
168450.9998Plasmid-encoded gene duplications of extended-spectrum β-lactamases in clinical bacterial isolates. INTRODUCTION: The emergence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is an urgent and alarming One Health problem. This study aimed to investigate duplications of plasmid-encoded ESBL genes and their impact on antimicrobial resistance (AMR) phenotypes in clinical and screening isolates. METHODS: Multi-drug-resistant bacteria from hospitalized patients were collected during routine clinical surveillance from January 2022 to June 2023, and their antimicrobial susceptibility patterns were determined. Genotypes were extracted from long-read whole-genome sequencing data. Furthermore, plasmids and other mobile genetic elements associated with ESBL genes were characterized, and the ESBL genes were correlated to ceftazidime minimal inhibitory concentration (MIC). RESULTS: In total, we identified four cases of plasmid-encoded ESBL gene duplications that match four genetically similar plasmids during the 18-month surveillance period: five Escherichia coli and three Klebsiella pneumoniae isolates. As the ESBL genes were part of transposable elements, the surrounding sequence regions were duplicated as well. In-depth analysis revealed insertion sequence (IS)-mediated transposition mechanisms. Isolates with duplicated ESBL genes exhibited a higher MIC for ceftazidime in comparison to isolates with a single gene copy (3-256 vs. 1.5-32 mg/L, respectively). CONCLUSION: ESBL gene duplications led to an increased phenotypic resistance against ceftazidime. Our data suggest that ESBL gene duplications by an IS-mediated transposition are a relevant mechanism for how AMR develops in the clinical setting and is part of the microevolution of plasmids.202438469349
168560.9998Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were bla(OXA-48) and bla(NDM-1), which frequently occurred together, while bla(KPC-2) together with bla(NDM-1) was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.202438479059
171670.9998Detection of clinically important β-lactamases by using PCR. Increasing antimicrobial resistance of nosocomial pathogens is becoming a serious threat to public health. To control the spread of this resistance, it is necessary to detect β-lactamase-producing organisms in the clinical setting. The aims of the study were to design a PCR assay for rapid detection of clinically encountered β-lactamase genes described in Enterobacteriaceae and Gram-negative non-fermenting bacteria. The functionality of proposed primers was verified using eight reference strains and 17 strains from our collection, which contained 29 different β-lactamase genes. PCR products of the test strains were confirmed by Sanger sequencing. Sequence analysis was performed using bioinformatics software Geneious. Overall, 67 pairs of primers for detecting 12 members of the class C β-lactamase family, 15 members of class A β-lactamases, six gene families of subclass B1, one member each of subclasses B2, B3 and class D β-lactamases were designed, of which 43 pairs were experimentally tested in vitro. All 29 β-lactamase genes, including 10 oxacillinase subgroups, were correctly identified by PCR. The proposed set of primers should be able to specifically detect 99.7% of analyzed β-lactamase subtypes and more than 79.8% of all described β-lactamase genes.202134100944
162480.9998Detection of chromosomal and plasmid-mediated mechanisms of colistin resistance in Escherichia coli and Klebsiella pneumoniae from Indian food samples. OBJECTIVES: Numerous previous publications on the detection of bacterial isolates harbouring the mcr-1 gene from animals and humans strongly suggest an underlying route of transmission of colistin resistance via the food chain. The aim of this study was to investigate the presence of colistin-resistant (Col-R) bacteria in Indian food samples and to identify the underlying mechanisms conferring colistin resistance. METHODS: Raw food material, including poultry meat, mutton meat, fish, fruit and vegetables, collected from food outlets in Chennai, India, were processed to identify Col-R bacteria using eosin methylene blue agar supplemented with colistin. Colistin minimum inhibitory concentrations (MICs) were determined by the broth microdilution method. PCR for the mcr-1 and mcr-3 genes was performed on Col-R Escherichia coli and Klebsiella pneumoniae isolates. Mutations in the mgrB gene were analysed in K. pneumoniae isolates. One representative mcr-1-positive E. coli was subjected to whole-genome sequencing. RESULTS: Of 110 food samples tested, 51 (46.4%) were positive for non-intrinsic Col-R Gram-negative bacteria. Three E. coli isolates were found to harbour mcr-1, whereas none were positive for mcr-3. Ten K. pneumoniae isolates had alterations in mgrB, with mutations in four and insertional inactivation in six. CONCLUSION: The presence of Col-R bacteria and the mcr-1 gene in raw food samples further complicates the antimicrobial resistance scenario in India. To the best of our knowledge, this is the first report in the global literature on mgrB mutation and its insertional inactivation conferring Col-R in K. pneumoniae from food samples.201930244040
102290.9998Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms. The intestinal tract is a huge reservoir of Enterobacteriaceae, some of which are opportunist pathogens. Several genera of these bacteria harbour intrinsic antibiotic resistance genes, such as ampC genes in species of Citrobacter, Enterobacter or Escherichia genera. In this work, beta-lactamases and other resistance mechanisms have been characterized in Enterobacteriaceae isolates recovered from healthy human faecal samples, focusing on the ampC beta-lactamase genes. Fifty human faecal samples were obtained, and 70 Enterobacteriaceae bacteria were isolated: 44 Escherichia coli, 4 Citrobacter braakii, 9 Citrobacter freundii, 8 Enterobacter cloacae, 1 Proteus mirabilis, 1 Proteus vulgaris, 1 Klebsiella oxytoca, 1 Serratia sp. and 1 Cronobacter sp. A high percentage of resistance to ampicillin was detected (57%), observing the AmpC phenotype in 22 isolates (31%) and the ESBL phenotype in 3 isolates. AmpC molecular characterization showed high diversity into bla CMY and bla ACT genes from Citrobacter and Enterobacter species, respectively, and the pulsed-field gel electrophoresis (PFGE) analysis demonstrated low clonality among them. The prevalence of people colonized by strains carrying plasmid-mediated ampC genes obtained in this study was 2%. The unique plasmid-mediated bla AmpC identified in this study was the bla CMY-2 gene, detected in an E. coli isolate ascribed to the sequence type ST405 which belonged to phylogenetic group D. The hybridization and conjugation experiments demonstrated that the ISEcp1-bla CMY-2-blc structure was carried by a ~78-kb self-transferable IncK plasmid. This study shows a high polymorphism among beta-lactamase genes in Enterobacteriaceae from healthy people microbiota. Extensive AmpC-carrier studies would provide important information and could allow the anticipation of future global health problems.201525501887
1717100.9998Integrated detection of extended-spectrum-beta-lactam resistance by DNA microarray-based genotyping of TEM, SHV, and CTX-M genes. Extended-spectrum beta-lactamases (ESBL) of the TEM, SHV, or CTX-M type confer resistance to beta-lactam antibiotics in gram-negative bacteria. The activity of these enzymes against beta-lactam antibiotics and their resistance against inhibitors can be influenced by genetic variation at the single-nucleotide level. Here, we describe the development and validation of an oligonucleotide microarray for the rapid identification of ESBLs in gram-negative bacteria by simultaneously genotyping bla(TEM), bla(SHV), and bla(CTX-M). The array consists of 618 probes that cover mutations responsible for 156 amino acid substitutions. As this comprises unprecedented genotyping coverage, the ESBL array has a high potential for epidemiological studies and infection control. With an assay time of 5 h, the ESBL microarray also could be an attractive option for the development of rapid antimicrobial resistance tests in the future. The validity of the DNA microarray was demonstrated with 60 blinded clinical isolates, which were collected during clinical routines. Fifty-eight of them were characterized phenotypically as ESBL producers. The chip was characterized with regard to its resolution, phenotype-genotype correlation, and ability to resolve mixed genotypes. ESBL phenotypes could be correctly ascribed to ESBL variants of bla(CTX-M) (76%), bla(SHV) (22%), or both (2%), whereas no ESBL variant of bla(TEM) was found. The most prevalent ESBLs identified were CTX-M-15 (57%) and SHV-12 (18%).201020007393
1575110.9998Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. A transferable plasmid encoding SHV-12 extended-spectrum beta-lactamase, TEM-116, and aminoglycoside resistance was responsible for two sequential clonal outbreaks of Enterobacter cloacae and Acinetobacter baumannii bacteria. A similar plasmid was present among isolates of four different bacterial species. Recognition of plasmid transfer is crucial for control of outbreaks of multidrug-resistant nosocomial pathogens.200516145160
1686120.9998Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. The emergence and dissemination of carbapenemases, bacterial enzymes able to inactivate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concurrent spread of resistance against colistin, an antibiotic of last resort, further compounds this challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid and accurate detection/characterization of existing and emergent resistance determinants, an essential aspect of public health surveillance and response activities to combat the spread of antimicrobial resistant bacteria. In the current study, WGS data was used to characterize the genomic content of antimicrobial resistance genes, including those encoding carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan. These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-relevant antimicrobials were determined by broth microdilution; resistant phenotypes were observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically, 8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates, respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromosomal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive isolates. The application of WGS to molecular epidemiology and surveillance studies, as exemplified here, will provide both a more complete understanding of the global distribution of MDR isolates and a robust surveillance tool useful for detecting emerging threats to public health.201829883490
886130.9998Detection of Plasmid-Mediated Resistance against Colistin in Multi-Drug-Resistant Gram-Negative Bacilli Isolated from a Tertiary Hospital. The aim of this study was to determine the prevalence of plasmid-mediated colistin resistance mcr-1 to mcr-5 genes among colistin and multi-drug-resistant Gram-negative bacilli strains isolated from patients in a tertiary hospital in Toluca, Mexico. The presence of mcr genes among the 241 strains collected was assessed by PCR. In the case of mcr-carrying E. coli, further PCR tests were performed to determine the presence of bla(CTX-M) and whether the strains belonged to the O25b-ST131 clone. Conjugation experiments were also carried out to assess the horizontal transmission of colistin resistance. A total of twelve strains (5.0%), of which four were E. coli; four were P. aeruginosa; three were K. pneumoniae, and one E. cloacae, were found to be resistant to colistin. Of these strains, two E. coli isolates were found to carry mcr-1, and Southern blot hybridization demonstrated its presence on an approximately 60 kb plasmid. Both mcr-1-carrying E. coli strains were found to co-express bla(CTX-M), belong to the O25b-ST131 clone, and horizontally transmit their colistin resistance. The results of this study confirm the presence of plasmid-mediated colistin resistance in hospitalized patients in Mexico and demonstrated that the multi-drug-resistant O25b-ST131 E. coli clone can acquire mcr genes and transmit such resistance traits to other bacteria.202337630556
1037140.9998Genetic Background of β-Lactamases in Enterobacteriaceae Isolates from Environmental Samples. The prevalence of β-lactamase-producing Enterobacteriaceae has increased worldwide. Although antibiotic-resistant bacteria are usually associated with hospitals, there are a growing number of reports of resistant bacteria in other environments. Concern about resistant microorganisms outside the hospital setting highlights the need to investigate mechanisms of antibiotic resistance in isolates collected from the environment. The present study evaluated the resistance mechanism to β-lactam antibiotics in 40 isolates from hospital sewage and surface water from the Dilúvio Stream, Porto Alegre City, Southern Brazil. The multiplex PCR technique was used to detect several resistance genes of β-lactamases: extended-spectrum β-lactamases (ESBLs), carbapenemases, and β-lactamase AmpC. After genes, detection amplicons were sequenced to confirm their identification. The clonal relationship was established by DNA macrorestriction using the XbaI enzyme, followed by pulsed-field gel electrophoresis (PFGE). The results indicated that resistance genes were present in 85% of the isolates. The most prevalent genes encoded narrow-spectrum β-lactamase, such as TEM-1 and SHV-1 with 70% of the strains, followed by carbapenemase KPC and GES (45%), ESBL types SHV-5 and CTX-M-8 (27.5%), and AmpC (ACT-1/MIR-1) (2.5%). Twelve isolates contained only one resistance gene, 14 contained two, and eight isolates had three resistance genes. PFGE indicated a clonal relationship among K. pneumoniae isolates. It was not possible to establish a clonal relationship between Enterobacter sp. isolates. The results highlight the potential of these resistance genes to spread in the polluted environment and to present a health risk to communities. This report is the first description of these resistance genes present in environmental samples other than a hospital in the city of Porto Alegre/RS.201728378066
909150.9998First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin.201830404152
869160.9998The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. The heterogenicity of antimicrobial resistance genes described in clinically significant bacterial isolates and their potential role in reducing the efficacy of classically effective antibiotics pose a major challenge for global healthcare, especially in infections caused by Gram-negative bacteria. We analyzed 112 multidrug-resistant (MDR) isolates from clinical samples in order to detect high resistance profiles, both phenotypically and genotypically, among four Gram-negative genera (Acinetobacter, Escherichia, Klebsiella, and Pseudomonas). We found that 9.8% of the total selected isolates were classified as extensively drug-resistant (XDR) (six isolates identified as A. baumannii and five among P. pneumoniae isolates). All other isolates were classified as MDR. Almost 100% of the isolates showed positive results for bla(OXA-23) and bla(NDM-1) genes among the A. baumannii samples, one resistance gene (bla(CTX-M)) among E. coli, and two genetic determinants (bla(CTX-M) and aac(6')-Ib) among Klebsiella. In contrast, P. aeruginosa showed just one high-frequency antibiotic resistance gene (dfrA), which was present in 68.42% of the isolates studied. We also describe positive associations between ampicillin and cefotaxime resistance in A. baumannii and the presence of bla(VEB) and bla(GES) genes, as well as between the aztreonam resistance phenotype and the presence of bla(GES) gene in E. coli. These data may be useful in achieving a better control of infection strategies and antibiotic management in clinical scenarios where these multidrug-resistant Gram-negative pathogens cause higher morbidity and mortality.202438786157
929170.9998Prevalence, antibiotic susceptibility and characterization of antibiotic resistant genes among carbapenem-resistant Gram-negative bacilli and yeast in intestinal flora of cancer patients in North Lebanon. The emergence and spread of carbapenem-resistant bacteria are a significant clinical and public health concern. The aim of the study is to determine the prevalence of intestinal carriage of carbapenem-resistant bacteria and yeasts in cancer patients under chemotherapy. 41 stool samples collected from cancer patients in Nini hospital in Tripoli, North Lebanon have been analyzed. After isolating yeasts and carbapenem-resistant bacteria, a biochemical identification and antimicrobial susceptibility profile were determined. The mechanism of enzymatic carbapenem-resistance was detected by searching for carbapenemases by both Hodge test and PCR assays. The association of several mechanisms of resistance was also searched. 46.3% (19/41) of patients were colonized by yeast. Candida glabrata (6/19) was the major species. The prevalence of carbapenem-resistant bacteria was 24.4% (10/41) including Escherichia coli (5/10), Enterobacter cloacae (1/10), Enterobacter aerogenes (1/10) Edwardsiella hoshinae (1/10) Pantoea agglomerans (1/10) and Pseudomonas stutzeri (1/10). PCR and sequencing of the amplified fragments revealed that Pseudomonas stutzeri (1/1) carried VIM gene and Enterobacter aerogenes (1/1) and E. coli (1/5) carried OXA-48 gene. The other Enterobacteriaceae were resistant to carbapenems by mechanisms other than a carbapenemase including hyperproduction of cephalosporinase (4/10), extended spectrum beta-lactamases (1/10) and both cephalosporinase and extended spectrum beta-lactamases (2/10). High prevalence of intestinal carriage of carbapenem-resistant bacteria and yeasts were detected in cancer patients under chemotherapy. In order to prevent the development of endogenous infection and the dissemination of antimicrobial resistance, an implementation of antibiotic stewardship programs and infection control measures is required in hospitals particularly in the department of chemotherapy.201728216021
932180.9998Emergence of armA and rmtB genes among VIM, NDM, and IMP metallo-β-lactamase-producing multidrug-resistant Gram-negative pathogens. In the recent years, it has been noted that microorganisms with acquired resistance to almost all available potent antibiotics are increasing worldwide. Hence, the use of antibiotics in every clinical setup has to be organized to avoid irrational use of antibiotics. This study was aimed to establish the pattern of antibiotic sensitivity and relevance of antimicrobial resistance in aerobic Gram-negative bacilli. A total of 103 aerobic Gram-negative bacteria namely Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Citrobacter koserii, Proteus spp., and Pseudomonas aeruginosa were collected from tertiary care centers around Chennai. Kirby-Bauer Disk Diffusion test and study for genes of cephalosporin, carbapenem, and aminoglycoside resistance were done. A descriptive analysis of the data on altogether 103 clinical urine isolates was performed. All strains showed susceptibility to colistin. The frequency of genes encoding 16S rRNA methylases armA and rmtB were 7.8% and 6.8%, respectively. Among metallo-β-lactamases, bla(VIM), bla(IMP), and bla(NDM-1) were detected in 6.8%, 3.8%, and 3.8%, respectively. One E. coli strain harbored bla(SIM-1) gene. Cumulative analysis of data suggested that 30% of the strains carried more than one resistance gene. The current research evidenced the increasing frequency of resistance mechanisms in India. Combined approach of antibiotic restriction, effective surveillance, and good infection control practices are essential to overcome antibiotic resistance.201828870092
928190.9998Phenotypic and genotypic characterization of carbapenem encoding genes among carbapenem-resistant Gram-negative bacteria isolated from North Casablanca, Morocco. Carbapenem resistance genes in Gram-negative bacteria (CR-GNB) are a major cause of critical infections and are considered an urgent public health concern. The present study aimed to describe the prevalence of CR-GNB and the dissemination of extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in clinical isolates from Casablanca, Morocco. Firstly, the strains were collected and identified using phenotypic and biochemical methods, then the antibiotic susceptibility was evaluated by the disc diffusion assay to screen isolates resistant to carbapenems. Secondly, three traditional methods, the carbapenem inactivation method, the modified Hodge, and the in-house carba-NP, were performed to predict the carbapenemase production by the included strains. Finally, conventional PCR was utilized to validate and detect the carbapenemase- and ESBL-related genes. Concerning the results, out of the identified 122 strains, 48 were CR isolates, including 30 Klebsiella pneumoniae, 13 Escherichia coli, and 5 Pseudomonas aeruginosa. Furthermore, these strains presented a high level of resistance. Moreover, the prediction of carbapenemase production by the phenotypic methods showed variable results. Also, the PCR analysis revealed a high occurrence of β-lactamase (ESBL and carbapenemase) genes in the included clinical strains, and most strains harbored multiple resistance genes. Our findings suggest that the three existing methods have some limitations, and a validation study is still necessary for the carbapenemase diagnostics.202540857960