# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1708 | 0 | 1.0000 | High-level of resistance to β-lactam and presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from soil. OBJECTIVES: Bacteria belonging to the genera Ochrobactrum and Achromobacter are bacteria considered opportunistic, causing infections mainly in immunocompromised patients. β-lactamases are the main cause of resistance to β-lactam antibiotics. This study aimed to investigate the antimicrobial resistance profile and the presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from Brazilian soils. METHODS: Soil samples from the five regions of Brazil were collected for the isolation of bacteria, which were identified molecularly and then, the minimum inhibitory concentration and detection of β-lactamases encoding genes were performed. RESULTS: High-level of resistance to β-lactam antibiotics and different β-lactamases encoding genes were found (bla(CTX-M-Gp1), bla(SHV), bla(OXA-1-like) and bla(KPC)), including the first report of the presence of bla(KPC) in bacteria belonging to the genera Ochrobactrum and Achromobacter. CONCLUSION: The results showed that the bacteria from this study, belonging to genera Ochrobactrum and Achromobacter isolated from soil, harbor different β-lactamases encoding genes and can act as a reservoir of these genes. | 2017 | 29111479 |
| 1709 | 1 | 0.9999 | High prevalence of bla(VIM-1) gene in bacteria from Brazilian soil. This study investigated bacteria from soil samples to (i) determine the main bacterial genera and species having resistance to carbapenem and other β-lactams and (ii) establish if the mechanism of resistance was due to the production of metallo-β-lactamases. The isolates were characterized by PCR for metallo-β-lactamases and integrons, by antimicrobial susceptibility testing, and by sequencing. The antimicrobial profile of 40 imipenem-resistant Gram-positive soil isolates from all Brazilian regions demonstrated that 31 (77.5%) of them were multidrug resistant. Among the 40 isolates, 19 presented the bla(VIM) gene and class 1 integrons by PCR. Six of the 19 isolates were identified as Paenibacillus sp., 12 as Bacillus sp., and just 1 was classified as Staphylococcus sp., by sequencing of the 16S rRNA gene. These results suggest that bacteria from soil can act as a source of bla(VIM-1) genes, representing a threat to public health. | 2016 | 27392282 |
| 1711 | 2 | 0.9999 | Detection of β-lactamase encoding genes in feces, soil and water from a Brazilian pig farm. β-lactam antibiotics are widely used for the treatment of different types of infections worldwide and the resistance to these antibiotics has grown sharply, which is of great concern. Resistance to β-lactams in gram-negative bacteria is mainly due to the production of β-lactamases, which are classified according to their functional activities. The aim of this study was to verify the presence of β-lactamases encoding genes in feces, soil, and water from a Brazilian pig farm. Different β-lactamases encoding genes were found, including bla(CTX-M-Gp1), bla(CTX-M-Gp9), bla(SHV), bla(OXA-1-like), bla(GES), and bla(VEB). The bla(SHV) and bla(CTX-M-Gp1) genes have been detected in all types of samples, indicating the spread of β-lactam resistant bacteria among farm pigs and the environment around them. These results indicate that β-lactamase encoding genes belonging to the cloxacillinase, ESBL, and carbapenemase and they have high potential to spread in different sources, due to the fact that genes are closely related to mobile genetic elements, especially plasmids. | 2018 | 29322334 |
| 1710 | 3 | 0.9999 | Carbapenem resistance in bacteria isolated from soil and water environments in Algeria. OBJECTIVES: Recent research has demonstrated that natural populations of bacteria carry large numbers of mobile genetic elements that may harbour antibiotic resistance determinants. This study aimed to investigate carbapenem resistance in Gram-negative bacteria isolated from natural environments in Béjaïa (Algeria) and to determine the horizontal gene transfer potential of a subset of these antibiotic resistance genes (ARGs). METHODS: Antibiotic-resistant bacteria were isolated and the host was identified using MALDI-TOF/MS and 16S rRNA sequencing. ARG carriage was investigated by the double-disk synergy test, metallo-β-lactamase (MBL) production test and PCR screening for carbapenemase genes. Conjugation experiments were performed to determine potential ARG mobility. To identify ARGs, genomic libraries were constructed and functionally screened and inserts were sequenced. RESULTS: A total of 62 antibiotic-resistant strains isolated from soil and water samples were classified as belonging to the Enterobacteriaceae, Pseudomonadaceae, Xanthomonadaceae and Aeromonadaceae families. Four highly imipenem-resistant (MIC>64μg/mL) and cefotaxime-resistant (MIC>8μg/mL) clinically-relevant strains were selected for further characterisation. All four strains produced extended-spectrum β-lactamases, but MBL production was not confirmed. Imipenem and cefotaxime resistance was transferable to Escherichia coli but was not conferred by bla(AmpC), bla(IMP), bla(NDM), bla(KPC), bla(OXA-48) or bla(GES) genes. Novel putative resistance mechanisms were identified, including a novel DHA β-lactamase conferring clinical resistance to cefotaxime. CONCLUSIONS: The environment is a reservoir of carbapenem-resistant bacteria. Further investigation of the evolution and dissemination of antibiotic resistance in environmental bacteria is required in order to understand and prevent the emergence of resistance in the clinical environment. | 2018 | 30071355 |
| 1682 | 4 | 0.9998 | Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla (VIM-) (1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context. | 2019 | 31849911 |
| 1714 | 5 | 0.9998 | Carbapenemase-producing enterobacteriaceae recovered from a Spanish river ecosystem. The increasing resistance to carbapenems is an alarming threat in the fight against multiresistant bacteria. The dissemination properties of antimicrobial resistance genes are supported by their detection in a diverse population of bacteria, including strains isolated from the environment. The objective of this study was to investigate the presence of carbapenemase-producing Enterobacteriaceae (CPE) collected from a river ecosystem in the Barcelona metropolitan area (Spain). Identification of β-lactamases and other resistance determinants was determined as was the antimicrobial susceptibility profile. Moreover, screening of virulence factors, plasmid addiction systems, plasmid partition systems and replicon typing was performed. The results identified 8 isolates belonging to different species (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica). The most prevalent enzyme was KPC-2 (n = 6), followed by VIM-1 (n = 2) and IMI-2 (n = 1), whereas no OXA-48-type was detected. In addition, one strain was positive for both KPC-2 and VIM-1 enzymes. All the carbapenemase-encoding plasmids carried at least one plasmid addiction or partition system, being vagCD and parAB the most frequently detected, respectively. E. coli and K. pneumoniae isolates carried a low number of virulence-associated factors and none of the detected clones has previously been identified in the clinical setting. These findings support the high dissemination potential of the carbapanemase-encoding genes and reinforce the idea that the environment is another reservoir that may play an important role in the capture, selection and dissemination of carbapenem resistance genes. | 2017 | 28380016 |
| 1037 | 6 | 0.9998 | Genetic Background of β-Lactamases in Enterobacteriaceae Isolates from Environmental Samples. The prevalence of β-lactamase-producing Enterobacteriaceae has increased worldwide. Although antibiotic-resistant bacteria are usually associated with hospitals, there are a growing number of reports of resistant bacteria in other environments. Concern about resistant microorganisms outside the hospital setting highlights the need to investigate mechanisms of antibiotic resistance in isolates collected from the environment. The present study evaluated the resistance mechanism to β-lactam antibiotics in 40 isolates from hospital sewage and surface water from the Dilúvio Stream, Porto Alegre City, Southern Brazil. The multiplex PCR technique was used to detect several resistance genes of β-lactamases: extended-spectrum β-lactamases (ESBLs), carbapenemases, and β-lactamase AmpC. After genes, detection amplicons were sequenced to confirm their identification. The clonal relationship was established by DNA macrorestriction using the XbaI enzyme, followed by pulsed-field gel electrophoresis (PFGE). The results indicated that resistance genes were present in 85% of the isolates. The most prevalent genes encoded narrow-spectrum β-lactamase, such as TEM-1 and SHV-1 with 70% of the strains, followed by carbapenemase KPC and GES (45%), ESBL types SHV-5 and CTX-M-8 (27.5%), and AmpC (ACT-1/MIR-1) (2.5%). Twelve isolates contained only one resistance gene, 14 contained two, and eight isolates had three resistance genes. PFGE indicated a clonal relationship among K. pneumoniae isolates. It was not possible to establish a clonal relationship between Enterobacter sp. isolates. The results highlight the potential of these resistance genes to spread in the polluted environment and to present a health risk to communities. This report is the first description of these resistance genes present in environmental samples other than a hospital in the city of Porto Alegre/RS. | 2017 | 28378066 |
| 1032 | 7 | 0.9998 | Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. Antibiotic resistance is a global public health issue and it is even more daunting in developing countries. The main objective of present study was to investigate molecular responses of antibiotic-resistant bacteria. The 48 bacterial strains, which were previously isolated and identified were subjected to disc diffusion and MIC (minimum inhibitory concentration) determination, followed by investigating the production of the three beta-lactamases (ESBLs (Extended-spectrum Beta-lactamases), MBLs (Metallo Beta-lactamases), AmpCs) and exploring prevalence of the two antibiotic-resistant genes (ARGs); blaTEM and qnrS. Higher MIC values were observed for penicillin(s) than that for fluoroquinolones (ampicillin > amoxicillin > ofloxacin > ciprofloxacin > levofloxacin). Resistance rates were high (58-89%) for all of the tested beta-lactams. Among the tested strains, 5 were ESBL producers (4 Aeromonas spp. and 1 Escherichia sp.), 2 were MBL producers (1 Stenotrophomonas sp. and 1 Citrobacter sp.) and 3 were AmpC producers (2 Pseudomonas spp. and 1 Morganella sp.). The ARGs qnrS2 and blaTEM were detected in Aeromonas spp. and Escherichia sp. The results highlighted the role of Aeromonas as a vector. The study reports bacteria of multidrug resistance nature in the wastewater environment of Pakistan, which harbor ARGs of clinical relevance and could present a public health concern. | 2020 | 32802720 |
| 2040 | 8 | 0.9998 | Multidrug-resistant bacteria as intestinal colonizers and evolution of intestinal colonization in healthy university students in Portugal. Multidrug-resistant bacteria have been increasingly described in healthcare institutions, however community resistance also seems to be emerging. Escherichia coli an intestinal commensal bacteria, is also a pathogen and represents an important intestinal reservoir of resistance. Our aim was the study of the intestinal colonization and of the persistence of antibiotic resistant intestinal bacteria in healthy university students of Porto, in the north of Portugal. Samples from 30 university students were collected and analysed. Two E. coli isolates were randomly obtained from each student and Gram-negative bacilli resistant to antibiotics were studied. In addition, we evaluated changes in the Gram-negative intestinal colonization of ten university students in a short period of time. Molecular characterization showed a high presence of bla (TEM) in commensal E. coli . Gram-negative bacteria with intrinsic and extrinsic resistance were isolated, namely Pseudomonas spp., Enterobacter spp. and Pantoea spp. We isolated three ESBL-producing E. coli from two students. These isolates showed bla (CTX-M) group 1 (n=1), bla (CTX-M) group 9 (n=2), bla (TEM) (n=2), bla (SHV) (n=1) and tetA (n=2) genes. Additionally, they showed specific virulence factors and conjugational transfer of antibiotic resistance and virulence genes. One Pseudomonas spp. isolate resistant to carbapenems was detected colonizing one student. Our results confirm that healthy young adults may be colonized with commensals showing clinically relevant antibiotic resistance mechanisms, creating a risk of silent spread of these bacteria in the community. | 2021 | 33997613 |
| 1648 | 9 | 0.9998 | Molecular characterization of the multi-drug resistant Myroides odoratimimus isolates: a whole genome sequence-based study to confirm carbapenem resistance. The bacteria belonging to the Myroides genus are opportunistic pathogens causing community or hospital-acquired infections that result in treatment failure due to antibiotic resistance. This study aimed to investigate molecular mechanisms of antibiotic resistance, clonal relatedness, and the biofilm forming capacity of the 51 multi-drug resistant Myroides odoratimimus. All isolates were screened for bla(KPC), bla(OXA), bla(VIM), bla(IMP), bla(MUS), bla(TUS), bla(NDM), and bla(B) genes by using PCR amplification. Whole genome sequencing (WGS) was applied on three randomly selected isolates for further investigation of antibiotic resistance mechanisms. Clonal relatedness was analyzed by Pulsed-field gel electrophoresis (PFGE) and the microtiter plate method was used to demonstrate biofilm formation. All isolates were positive for biofilm formation. PCR analysis resulted in a positive for only the bla(MUS-1) gene. WGS identified bla(MUS-1), erm(F), ere(D), tet(X), and sul2 genes in all strains tested. Moreover, the genomic analyses of three strains revealed that genomes contained a large number of virulence factors (VFs). PFGE yielded a clustering rate of 96%. High clonal relatedness, biofilm formation, and multi-drug resistance properties may lead to the predominance of these opportunistic pathogens in hospital environments and make them cause nosocomial infections. | 2024 | 38127105 |
| 2255 | 10 | 0.9998 | Diversity and metallo-β-lactamase-producing genes in Pseudomonas aeruginosa strains isolated from filters of household water treatment systems. The microbiological quality of drinking water has long been a critical element in public health. Considering the high clinical relevance of Pseudomonas aeruginosa, we examined the filters of household water treatment systems for its presence and characteristics to determine the systems' efficiency in eliminating the bacteria. In total, filters of 50 household water treatment systems were examined. Microbiological and molecular methods were used for the detection and confirmation of P. aeruginosa isolates. Random Amplification of Polymorphic DNA-polymerase chain reaction (RAPD-PCR) was performed to detect similarities and differences among P. aeruginosa isolates. Combined disk (CD) method and double disk synergy test (DDST) were performed to detect metallo-beta-lactamase (MBL)-producing P. aeruginosa isolates. Finally, PCR was performed to detect MBL genes in MBL-producing strains. From the 50 analyzed systems, 76 colonies of P. aeruginosa were identified. In some systems, isolated bacteria from different filters harbored similar genetic profiles, indicating that these isolates may be able to pass through the filter and reach higher filters of the system. Phenotypic tests revealed 7 (9.2%) MBL-producing strains. Two isolates were positive for bla(VIM-1), whereas one isolate was positive for bla(NDM) and bla(IMP-1). The wide distribution of resistant phenotypes and genetic plasticity of these bacteria in household water treatment systems indicate that resistance mechanisms circulate among P. aeruginosa isolates in the environment of the filtration systems. The presence of MBL-producing genes in these systems and P. aeruginosa as a potential reservoir of these resistance genes can be a major concern for public health. | 2019 | 30368151 |
| 1692 | 11 | 0.9998 | Phenotypic and genotypic detection of antibiotic-resistant bacteria in fresh fruit juices from a public hospital in Rio de Janeiro. Gram-negative bacteria are worrisome because they are becoming resistant to many antibiotic available options, mainly in hospital environment. Several studies have noted the presence of bacteria producing extended-spectrum beta-lactamase, with the presence of antibiotic-resistance genes in fresh vegetables and fruits. This study aimed to detect the presence of phenotypic and genotypic resistance in eight samples of fresh fruit juices served to patients admitted to a hospital in Rio de Janeiro. The growth of microorganisms on MacConkey and XLD agar was carried out to obtain a "pool" of Gram-negative bacteria. The disk diffusion test and the polymerase chain reaction were performed to detect the phenotypic and genotypic resistance of Gram-negative bacteria to the tested antibiotics. The multidrug resistance was detected in all samples and the shv, tem, ctx, tetA, tetB and oxa- 48 genes were found in the samples, including the presence of class 2 and 3 integrons. We can conclude that the selection methodology allows the detection of a greater number of genes and this found warns about the risk of making these foods available to patients in hospitals. | 2021 | 33398401 |
| 1899 | 12 | 0.9998 | Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance. | 2012 | 22808141 |
| 1619 | 13 | 0.9998 | Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. BACKGROUND: Antimicrobial resistance has become one of the most severe global threats to human and veterinary Medicine. colistin is an effective therapeutic agent against multi-drug-resistant pathogens. However, the discovery of transferable plasmids that confer resistance to colistin (mcr-1) has led to challenges in medical science. This study describes the role of wild birds in the harbouring and environmental spread of colistin-resistant bacteria, which could pose a potential hazard to human and animal health. METHODS: In total, 140 faecal samples from wild birds (migratory and resident birds) were tested. Twenty surface water samples were collected from the area in which wild bird trapping was conducted, and 50 human stool samples were collected from individuals residing near the surface water sources and farm buildings. Isolation and identification of Enterobacteriaceae and Pseudomonas aeruginosa from the different samples were performed using conventional culture techniques and biochemical identification. PCR amplification of the mcr genes was performed in all positive isolates. Sequencing of mcr-1 genes from three randomly selected E. coli carrying mcr-1 isolates; wild birds, water and humans was performed. RESULT: The bacteriological examination of the samples showing isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and P. aeruginosa. The results of multiplex PCR of the mcr genes revealed that E. coli was the most prevalent gram-negative bacterium harbouring the mcr genes, whereas a low prevalence was observed for K. pneumoniae. The prevalence of mcr-1 in resident birds, migratory birds, water sources and humans were 10.4, 20,16.6 and 9.6% while the prevalence of mcr-2 were 1.4, 3.6, 11.1 and 9.6%, respectively. Sequencing of the mcr-1 gene from the three E. coli carrying mcr-1 isolates indicated a possible correlation between the wild bird and surface water isolates. CONCLUSION: The detection of mcr-1-positive bacteria in wild birds in Egypt indicates the possible environmental dissemination of this gene through bird activity. The impact of the interaction between domestic and wild animals on public health cannot be overlooked. | 2019 | 31827778 |
| 869 | 14 | 0.9998 | The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. The heterogenicity of antimicrobial resistance genes described in clinically significant bacterial isolates and their potential role in reducing the efficacy of classically effective antibiotics pose a major challenge for global healthcare, especially in infections caused by Gram-negative bacteria. We analyzed 112 multidrug-resistant (MDR) isolates from clinical samples in order to detect high resistance profiles, both phenotypically and genotypically, among four Gram-negative genera (Acinetobacter, Escherichia, Klebsiella, and Pseudomonas). We found that 9.8% of the total selected isolates were classified as extensively drug-resistant (XDR) (six isolates identified as A. baumannii and five among P. pneumoniae isolates). All other isolates were classified as MDR. Almost 100% of the isolates showed positive results for bla(OXA-23) and bla(NDM-1) genes among the A. baumannii samples, one resistance gene (bla(CTX-M)) among E. coli, and two genetic determinants (bla(CTX-M) and aac(6')-Ib) among Klebsiella. In contrast, P. aeruginosa showed just one high-frequency antibiotic resistance gene (dfrA), which was present in 68.42% of the isolates studied. We also describe positive associations between ampicillin and cefotaxime resistance in A. baumannii and the presence of bla(VEB) and bla(GES) genes, as well as between the aztreonam resistance phenotype and the presence of bla(GES) gene in E. coli. These data may be useful in achieving a better control of infection strategies and antibiotic management in clinical scenarios where these multidrug-resistant Gram-negative pathogens cause higher morbidity and mortality. | 2024 | 38786157 |
| 1950 | 15 | 0.9998 | In treacherous waters: detection of colistin-resistant bacteria in water and plastic litter from a recreational estuary. Colistin resistance poses a major therapeutic challenge and resistant strains have now been reported worldwide. However, the occurrence of such bacteria in aquatic environments is considerably less understood. This study aimed to isolate and characterize colistin-resistant strains from water and plastic litter collected in an urban recreational estuary. Altogether, 64 strains with acquired colistin resistance were identified, mainly Acinetobacter spp. and Enterobacter spp. From these, 40.6% were positive for at least one mcr variant (1-9), 26.5% harbored, extended-spectrum beta-lactamases, 23.4% harbored, sulfonamide resistance genes, and 9.3% harbored, quinolone resistance genes. merA, encoding mercury resistance, was detected in 10.5% of these strains, most of which were also strong biofilm producers. The minimum inhibitory concentration toward colistin was determined for the mcr-positive strains and ranged from 2 to ≥512 µg ml-1. Our findings suggest that Gram-negative bacteria highly resistant to a last-resort antimicrobial can be found in recreational waters and plastic litter, thereby evidencing the urgency of the One Health approach to mitigate the antimicrobial resistance crisis. | 2024 | 39227173 |
| 1593 | 16 | 0.9998 | Epidemiological Description and Detection of Antimicrobial Resistance in Various Aquatic Sites in Marseille, France. Antibiotic resistance is a worldwide public health concern and has been associated with reports of elevated mortality. According to the One Health concept, antibiotic resistance genes are transferrable to organisms, and organisms are shared among humans, animals, and the environment. Consequently, aquatic environments are a possible reservoir of bacteria harboring antibiotic resistance genes. In our study, we screened water and wastewater samples for antibiotic resistance genes by culturing samples on different types of agar media. Then, we performed real-time PCR to detect the presence of genes conferring resistance to beta lactams and colistin, followed by standard PCR and gene sequencing for verification. We mainly isolated Enterobacteriaceae from all samples. In water samples, 36 Gram-negative bacterial strains were isolated and identified. We found three extended-spectrum β-lactamase (ESBL)-producing bacteria-Escherichia coli and Enterobacter cloacae strains-harboring the CTX-M and TEM groups. In wastewater samples, we isolated 114 Gram-negative bacterial strains, mainly E. coli, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis strains. Forty-two bacterial strains were ESBL-producing bacteria, and they harbored at least one gene belonging to the CTX-M, SHV, and TEM groups. We also detected carbapenem-resistant genes, including NDM, KPC, and OXA-48, in four isolates of E. coli. This short epidemiological study allowed us to identify new antibiotic resistance genes present in bacterial strains isolated from water in Marseille. This type of surveillance shows the importance of tracking bacterial resistance in aquatic environments. IMPORTANCE Antibiotic-resistant bacteria are involved in serious infections in humans. The dissemination of these bacteria in water, which is in close contact with human activities, is a serious problem, especially under the concept of One Health. This study was done to survey and localize the circulation of bacterial strains, along with their antibiotic resistance genes, in the aquatic environment in Marseille, France. The importance of this study is to monitor the frequency of these circulating bacteria by creating and surveying water treatments. | 2023 | 36976002 |
| 1631 | 17 | 0.9998 | Surveillance of antimicrobial resistant bacteria in flies (Diptera) in Rio de Janeiro city. Antimicrobial-resistant bacteria were isolated from muscoid dipterans collected at five different areas of Rio de Janeiro city, in proximity to hospitals. Extracts obtained by maceration of flies were diluted and used as inocula for different culture media, with or without antibiotic (ceftriaxone 1 mg/L) supplementation. Purified isolates were submitted to antimicrobial susceptibility testing (AST). Bacterial identification was performed by MALDI TOF Microflex LT (Bruker Daltonics). A total of 197 bacterial strains were obtained from 117 dipterous muscoids. Forty-two flies (35.9%) carried bacteria resistant to at least one antimicrobial, while 7 insects (5.9%) carried multidrug-resistant bacteria (MDR), which were all members of the family Enterobacteriaceae. Among 10 MDR bacteria (5%), 5 strains (2,5%) were positive by PCR for one or more of the following antibiotic resistance genes: aac(6')-Ib, bla(TEM-1), bla(CTX-M-15), bla(KPC-2) and bla(NDM-1). Analysis of variance (ANOVA) and cluster analysis compared the number of resistant isolates per collection point and showed that a single location was statistically different from the others with regard to resistance. Although there are still no criteria to determine the environmental contamination by resistant bacteria the fact that they have been isolated from flies is an indication of a disseminated contamination. As such, these insects may be useful in monitoring programs of antibiotic resistance in non-hospital environments, where they could function as sentinels. | 2021 | 34029528 |
| 1900 | 18 | 0.9998 | The dissemination of antimicrobial resistance determinants in surface water sources in Lebanon. The prevalence of antibiotic-resistant bacteria in surface water in Lebanon is a growing concern and understanding the mechanisms of the spread of resistance determinants is essential. We aimed at studying the occurrence of resistant bacteria and determinants in surface water sources in Lebanon and understanding their mobilization and transmission. Water samples were collected from five major rivers in Lebanon. A total of 91 isolates were recovered by incubating at 37°C on Blood and MacConkey agar out of which 25 were multi-drug resistant (MDR) and accordingly were further characterized. Escherichia coli and Klebsiella pneumoniae were the most common identified MDR isolates. Conjugation assays coupled with in silico plasmid analysis were performed and validated using PCR-based replicon typing (PBRT) to identify and confirm incompatibility groups and the localization of β-lactamase encoding genes. Escherichia coli EC23 carried a blaNDM-5 gene on a conjugative, multireplicon plasmid, while blaCTX-M-15 and blaTEM-1B were detected in the majority of the MDR isolates. Different sequence types (STs)were identified including the highly virulent E. coli ST131. Our results showed a common occurrence of bacterial contaminants in surface water and an increase in the risk for the dissemination of resistance determinants exacerbated with the ongoing intensified population mobility in Lebanon and the widespread lack of wastewater treatment. | 2021 | 34329434 |
| 1716 | 19 | 0.9998 | Detection of clinically important β-lactamases by using PCR. Increasing antimicrobial resistance of nosocomial pathogens is becoming a serious threat to public health. To control the spread of this resistance, it is necessary to detect β-lactamase-producing organisms in the clinical setting. The aims of the study were to design a PCR assay for rapid detection of clinically encountered β-lactamase genes described in Enterobacteriaceae and Gram-negative non-fermenting bacteria. The functionality of proposed primers was verified using eight reference strains and 17 strains from our collection, which contained 29 different β-lactamase genes. PCR products of the test strains were confirmed by Sanger sequencing. Sequence analysis was performed using bioinformatics software Geneious. Overall, 67 pairs of primers for detecting 12 members of the class C β-lactamase family, 15 members of class A β-lactamases, six gene families of subclass B1, one member each of subclasses B2, B3 and class D β-lactamases were designed, of which 43 pairs were experimentally tested in vitro. All 29 β-lactamase genes, including 10 oxacillinase subgroups, were correctly identified by PCR. The proposed set of primers should be able to specifically detect 99.7% of analyzed β-lactamase subtypes and more than 79.8% of all described β-lactamase genes. | 2021 | 34100944 |