# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 169 | 0 | 1.0000 | Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. The soil bacterium Cupriavidus metallidurans CH34 contains a high number of heavy metal resistance genes making it an interesting model organism to study microbial responses to heavy metals. In this study the transcriptional response of strain CH34 was measured when challenged to sub-lethal concentrations of various essential or toxic metals. Based on the global transcriptional responses for each challenge and the overlap in upregulated genes between different metal responses, the sixteen metals were clustered in three groups. In addition, the transcriptional response of already known metal resistance genes was assessed, and new metal response gene clusters were identified. The majority of the studied metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex interplay at transcriptional level between the different metal responses. The pronounced redundancy of these metal resistant regions-as illustrated by the large number of paralogous genes-combined with the phylogenetic distribution of these metal response regions within either evolutionary related or other metal resistant bacteria, provides important insights on the recent evolutionary forces shaping this naturally soil-dwelling bacterium into a highly metal-resistant strain well adapted to harsh and anthropogenic environments. | 2011 | 21706166 |
| 170 | 1 | 0.9998 | Effect of arsenite and growth in biofilm conditions on the evolution of Thiomonas sp. CB2. Thiomonas bacteria are ubiquitous at acid mine drainage sites and play key roles in the remediation of water at these locations by oxidizing arsenite to arsenate, favouring the sorption of arsenic by iron oxides and their coprecipitation. Understanding the adaptive capacities of these bacteria is crucial to revealing how they persist and remain active in such extreme conditions. Interestingly, it was previously observed that after exposure to arsenite, when grown in a biofilm, some strains of Thiomonas bacteria develop variants that are more resistant to arsenic. Here, we identified the mechanisms involved in the emergence of such variants in biofilms. We found that the percentage of variants generated increased in the presence of high concentrations of arsenite (5.33 mM), especially in the detached cells after growth under biofilm-forming conditions. Analysis of gene expression in the parent strain CB2 revealed that genes involved in DNA repair were upregulated in the conditions where variants were observed. Finally, we assessed the phenotypes and genomes of the subsequent variants generated to evaluate the number of mutations compared to the parent strain. We determined that multiple point mutations accumulated after exposure to arsenite when cells were grown under biofilm conditions. Some of these mutations were found in what is referred to as ICE19, a genomic island (GI) carrying arsenic-resistance genes, also harbouring characteristics of an integrative and conjugative element (ICE). The mutations likely favoured the excision and duplication of this GI. This research aids in understanding how Thiomonas bacteria adapt to highly toxic environments, and, more generally, provides a window to bacterial genome evolution in extreme environments. | 2020 | 33034553 |
| 9319 | 2 | 0.9998 | A role for copper in protozoan grazing - two billion years selecting for bacterial copper resistance. The Great Oxidation Event resulted in integration of soft metals in a wide range of biochemical processes including, in our opinion, killing of bacteria by protozoa. Compared to pressure from anthropologic copper contamination, little is known on impacts of protozoan predation on maintenance of copper resistance determinants in bacteria. To evaluate the role of copper and other soft metals in predatory mechanisms of protozoa, we examined survival of bacteria mutated in different transition metal efflux or uptake systems in the social amoeba Dictyostelium discoideum. Our data demonstrated a strong correlation between the presence of copper/zinc efflux as well as iron/manganese uptake, and bacterial survival in amoebae. The growth of protozoa, in turn, was dependent on bacterial copper sensitivity. The phagocytosis of bacteria induced upregulation of Dictyostelium genes encoding the copper uptake transporter p80 and a triad of Cu(I)-translocating P(IB) -type ATPases. Accumulated Cu(I) in Dictyostelium was monitored using a copper biosensor bacterial strain. Altogether, our data demonstrate that Cu(I) is ultimately involved in protozoan predation of bacteria, supporting our hypothesis that protozoan grazing selected for the presence of copper resistance determinants for about two billion years. | 2016 | 27528008 |
| 8299 | 3 | 0.9998 | Regulatory cross-talk supports resistance to Zn intoxication in Streptococcus. Metals such as copper (Cu) and zinc (Zn) are important trace elements that can affect bacterial cell physiology but can also intoxicate bacteria at high concentrations. Discrete genetic systems for management of Cu and Zn efflux have been described in several bacterial pathogens, including streptococci. However, insight into molecular cross-talk between systems for Cu and Zn management in bacteria that drive metal detoxification, is limited. Here, we describe a biologically consequential cross-system effect of metal management in group B Streptococcus (GBS) governed by the Cu-responsive copY regulator in response to Zn. RNAseq analysis of wild-type (WT) and copY-deficient GBS subjected to metal stress revealed unique transcriptional links between the systems for Cu and Zn detoxification. We show that the Cu-sensing role of CopY extends beyond Cu and enables CopY to regulate Cu and Zn stress responses that effect changes in gene function for central cellular processes, including riboflavin synthesis. CopY also supported GBS intracellular survival in human macrophages and virulence during disseminated infection in mice. In addition, we show a novel role for CovR in modulating GBS resistance to Zn intoxication. Identification of the Zn resistome of GBS using TraDIS revealed a suite of genes essential for GBS growth in metal stress. Several of the genes identified are novel to systems that support bacterial survival in metal stress and represent a diverse set of mechanisms that underpin microbial metal homeostasis during cell stress. Overall, this study reveals a new and important mechanism of cross-system complexity driven by CopY in bacteria to regulate cellular management of metal stress and survival. | 2022 | 35862444 |
| 9320 | 4 | 0.9997 | Bacterial resistance to arsenic protects against protist killing. Protists kill their bacterial prey using toxic metals such as copper. Here we hypothesize that the metalloid arsenic has a similar role. To test this hypothesis, we examined intracellular survival of Escherichia coli (E. coli) in the amoeba Dictyostelium discoideum (D. discoideum). Deletion of the E. coli ars operon led to significantly lower intracellular survival compared to wild type E. coli. This suggests that protists use arsenic to poison bacterial cells in the phagosome, similar to their use of copper. In response to copper and arsenic poisoning by protists, there is selection for acquisition of arsenic and copper resistance genes in the bacterial prey to avoid killing. In agreement with this hypothesis, both copper and arsenic resistance determinants are widespread in many bacterial taxa and environments, and they are often found together on plasmids. A role for heavy metals and arsenic in the ancient predator-prey relationship between protists and bacteria could explain the widespread presence of metal resistance determinants in pristine environments. | 2017 | 28210928 |
| 172 | 5 | 0.9997 | Molecular characterization influencing metal resistance in the Cupriavidus/Ralstonia genomes. Our environment is stressed with a load of heavy and toxic metals. Microbes, abundant in our environment, are found to adapt well to this metal-stressed condition. A comparative study among five Cupriavidus/Ralstonia genomes can offer a better perception of their evolutionary mechanisms to adapt to these conditions. We have studied codon usage among 1051 genes common to all these organisms and identified 15 optimal codons frequently used in highly expressed genes present within 1051 genes. We found the core genes of Cupriavidus metallidurans CH34 have a different optimal codon choice for arginine, glycine and alanine in comparison with the other four bacteria. We also found that the synonymous codon usage bias within these 1051 core genes is highly correlated with their gene expression. This supports that translational selection drives synonymous codon usage in the core genes of these genomes. Synonymous codon usage is highly conserved in the core genes of these five genomes. The only exception among them is C. metallidurans CH34. This genomewide shift in synonymous codon choice in C. metallidurans CH34 may have taken place due to the insertion of new genes in its genomes facilitating them to survive in heavy metal containing environment and the co-evolution of the other genes in its genome to achieve a balance in gene expression. Structural studies indicated the presence of a longer N-terminal region containing a copper-binding domain in the cupC proteins of C. metallidurans CH3 that helps it to attain higher binding efficacy with copper in comparison with its orthologs. | 2015 | 26156561 |
| 171 | 6 | 0.9997 | Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium. The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine. | 2018 | 29742107 |
| 9002 | 7 | 0.9997 | Bacterial strategies to inhabit acidic environments. Bacteria can inhabit a wide range of environmental conditions, including extremes in pH ranging from 1 to 11. The primary strategy employed by bacteria in acidic environments is to maintain a constant cytoplasmic pH value. However, many data demonstrate that bacteria can grow under conditions in which pH values are out of the range in which cytoplasmic pH is kept constant. Based on these observations, a novel notion was proposed that bacteria have strategies to survive even if the cytoplasm is acidified by low external pH. Under these conditions, bacteria are obliged to use acid-resistant systems, implying that multiple systems having the same physiological role are operating at different cytoplasmic pH values. If this is true, it is quite likely that bacteria have genes that are induced by environmental stimuli under different pH conditions. In fact, acid-inducible genes often respond to another factor(s) besides pH. Furthermore, distinct genes might be required for growth or survival at acid pH under different environmental conditions because functions of many systems are dependent on external conditions. Systems operating at acid pH have been described to date, but numerous genes remain to be identified that function to protect bacteria from an acid challenge. Identification and analysis of these genes is critical, not only to elucidate bacterial physiology, but also to increase the understanding of bacterial pathogenesis. | 2000 | 12483574 |
| 9322 | 8 | 0.9997 | Copper uptake and resistance in bacteria. Copper ions are essential for bacteria but can cause a number of toxic cellular effects if levels of free ions are not controlled. Investigations of copper-resistant bacteria have revealed several mechanisms, mostly plasmid-determined, that prevent cellular uptake of high levels of free copper ions. However, these studies have also revealed that bacteria apparently have efficient chromosomally encoded systems for uptake and management of trace levels of copper. This review will explore the relationship of copper uptake systems to resistance mechanisms and the possibility that copper resistance has evolved directly through modification of chromosomal copper uptake genes. | 1993 | 8437513 |
| 9004 | 9 | 0.9997 | Shedding light on the bacterial resistance to toxic UV filters: a comparative genomic study. UV filters are toxic to marine bacteria that dominate the marine biomass. Ecotoxicology often studies the organism response but rarely integrates the toxicity mechanisms at the molecular level. In this study, in silico comparative genomics between UV filters sensitive and resistant bacteria were conducted in order to unravel the genes responsible for a resistance phenotype. The genomes of two environmentally relevant Bacteroidetes and three Firmicutes species were compared through pairwise comparison. Larger genomes were carried by bacteria exhibiting a resistant phenotype, favoring their ability to adapt to environmental stresses. While the antitoxin and CRISPR systems were the only distinctive features in resistant Bacteroidetes, Firmicutes displayed multiple unique genes that could support the difference between sensitive and resistant phenotypes. Several genes involved in ROS response, vitamin biosynthesis, xenobiotic degradation, multidrug resistance, and lipophilic compound permeability were shown to be exclusive to resistant species. Our investigation contributes to a better understanding of UV filters resistance phenotypes, by identifying pivotal genes involved in key pathways. | 2021 | 34760358 |
| 6340 | 10 | 0.9997 | Identification and functional analysis of novel protein-encoding sequences related to stress-resistance. Currently, industrial bioproducts are less competitive than chemically produced goods due to the shortcomings of conventional microbial hosts. Thus, is essential developing robust bacteria for improved cell tolerance to process-specific parameters. In this context, metagenomic approaches from extreme environments can provide useful biological parts to improve bacterial robustness. Here, in order to build genetic constructs that increase bacterial resistance to diverse stress conditions, we recovered novel protein-encoding sequences related to stress-resistance from metagenomic databases using an in silico approach based on Hidden-Markov-Model profiles. For this purpose, we used metagenomic shotgun sequencing data from microbial communities of extreme environments to identify genes encoding chaperones and other proteins that confer resistance to stress conditions. We identified and characterized 10 novel protein-encoding sequences related to the DNA-binding protein HU, the ATP-dependent protease ClpP, and the chaperone protein DnaJ. By expressing these genes in Escherichia coli under several stress conditions (including high temperature, acidity, oxidative and osmotic stress, and UV radiation), we identified five genes conferring resistance to at least two stress conditions when expressed in E. coli. Moreover, one of the identified HU coding-genes which was retrieved from an acidic soil metagenome increased E. coli tolerance to four different stress conditions, implying its suitability for the construction of a synthetic circuit directed to expand broad bacterial resistance. | 2023 | 37840709 |
| 9325 | 11 | 0.9997 | Dissemination and conservation of cadmium and arsenic resistance determinants in Listeria and other Gram-positive bacteria. Metal homeostasis in bacteria is a complex and delicate balance. While some metals such as iron and copper are essential for cellular functions, others such as cadmium and arsenic are inherently cytotoxic. While bacteria regularly encounter essential metals, exposure to high levels of toxic metals such as cadmium and arsenic is only experienced in a handful of special habitats. Nonetheless, Listeria and other Gram-positive bacteria have evolved an impressively diverse array of genetic tools for acquiring enhanced tolerance to such metals. Here, we summarize this fascinating collection of resistance determinants in Listeria, with special focus on resistance to cadmium and arsenic, as well as to biocides and antibiotics. We also provide a comparative description of such resistance determinants and adaptations in other Gram-positive bacteria. The complex coselection of heavy metal resistance and other types of resistance seems to be universal across the Gram-positive bacteria, while the type of coselected traits reflects the lifestyle of the specific microbe. The roles of heavy metal resistance genes in environmental adaptation and virulence appear to vary by genus, highlighting the need for further functional studies to explain the mystery behind the array of heavy metal resistance determinants dispersed and maintained among Gram-positive bacteria. | 2020 | 31972871 |
| 9001 | 12 | 0.9997 | Bacterial Methionine Metabolism Genes Influence Drosophila melanogaster Starvation Resistance. Animal-associated microorganisms (microbiota) dramatically influence the nutritional and physiological traits of their hosts. To expand our understanding of such influences, we predicted bacterial genes that influence a quantitative animal trait by a comparative genomic approach, and we extended these predictions via mutant analysis. We focused on Drosophila melanogaster starvation resistance (SR). We first confirmed that D. melanogaster SR responds to the microbiota by demonstrating that bacterium-free flies have greater SR than flies bearing a standard 5-species microbial community, and we extended this analysis by revealing the species-specific influences of 38 genome-sequenced bacterial species on D. melanogaster SR. A subsequent metagenome-wide association analysis predicted bacterial genes with potential influence on D. melanogaster SR, among which were significant enrichments in bacterial genes for the metabolism of sulfur-containing amino acids and B vitamins. Dietary supplementation experiments established that the addition of methionine, but not B vitamins, to the diets significantly lowered D. melanogaster SR in a way that was additive, but not interactive, with the microbiota. A direct role for bacterial methionine metabolism genes in D. melanogaster SR was subsequently confirmed by analysis of flies that were reared individually with distinct methionine cycle Escherichia coli mutants. The correlated responses of D. melanogaster SR to bacterial methionine metabolism mutants and dietary modification are consistent with the established finding that bacteria can influence fly phenotypes through dietary modification, although we do not provide explicit evidence of this conclusion. Taken together, this work reveals that D. melanogaster SR is a microbiota-responsive trait, and specific bacterial genes underlie these influences.IMPORTANCE Extending descriptive studies of animal-associated microorganisms (microbiota) to define causal mechanistic bases for their influence on animal traits is an emerging imperative. In this study, we reveal that D. melanogaster starvation resistance (SR), a model quantitative trait in animal genetics, responds to the presence and identity of the microbiota. Using a predictive analysis, we reveal that the amino acid methionine has a key influence on D. melanogaster SR and show that bacterial methionine metabolism mutants alter normal patterns of SR in flies bearing the bacteria. Our data further suggest that these effects are additive, and we propose the untested hypothesis that, similar to bacterial effects on fruit fly triacylglyceride deposition, the bacterial influence may be through dietary modification. Together, these findings expand our understanding of the bacterial genetic basis for influence on a nutritionally relevant trait of a model animal host. | 2018 | 29934334 |
| 8685 | 13 | 0.9997 | Transcriptome analysis of an arsenite-/antimonite-oxidizer, Bosea sp. AS-1 reveals the importance of the type 4 secretion system in antimony resistance. Bosea sp. AS-1 is an arsenite [As(III)] and antimonite [Sb(III)] oxidizer previously isolated by our group from the Xikuangshan Antimony (Sb) Mine area. Our previous study showed that Bosea sp. AS-1 had a preference for oxidizing As(III) or Sb(III) with different carbon sources, which suggested that different metabolic mechanisms may be utilized by the bacteria to survive in As(III)- or Sb(III)-contaminated environments. Here, we conducted whole-genome and transcriptome sequencing to reveal the molecular mechanisms utilized by Bosea sp. AS-1 to resist As(III) or Sb(III). We discovered that AS-1 acquired various As- and Sb-resistant genes in its genome and might resist As(III) or Sb(III) through the regulation of multiple pathways, such as As and Sb metabolism, the bacterial secretion system, oxidative phosphorylation, the TCA cycle and bacterial flagellar motility. Interestingly, we discovered that genes of the type IV secretion system (T4SS) were activated in response to Sb(III), and inhibiting T4SS activity in AS-1 dramatically reduced its oxidation efficiency and tolerance to Sb(III). To our knowledge, this is the first study showing the activation of T4SS genes by Sb and a direct involvement of T4SS in bacterial Sb resistance. Our findings establish the T4SS as an important Sb resistance factor in bacteria and may help us understand the spread of Sb resistance genes in the environment. | 2022 | 35231521 |
| 9005 | 14 | 0.9997 | Insights into the Vibrio Genus: A One Health Perspective from Host Adaptability and Antibiotic Resistance to In Silico Identification of Drug Targets. The genus Vibrio comprises an important group of ubiquitous bacteria of marine systems with a high infectious capacity for humans and fish, which can lead to death or cause economic losses in aquaculture. However, little is known about the evolutionary process that led to the adaptation and colonization of humans and also about the consequences of the uncontrollable use of antibiotics in aquaculture. Here, comparative genomics analysis and functional gene annotation showed that the species more related to humans presented a significantly higher amount of proteins associated with colonization processes, such as transcriptional factors, signal transduction mechanisms, and iron uptake. In comparison, those aquaculture-associated species possess a much higher amount of resistance-associated genes, as with those of the tetracycline class. Finally, through subtractive genomics, we propose seven new drug targets such as: UMP Kinase, required to catalyze the phosphorylation of UMP into UDP, essential for the survival of bacteria of this genus; and, new natural molecules, which have demonstrated high affinity for the active sites of these targets. These data also suggest that the species most adaptable to fish and humans have a distinct natural evolution and probably undergo changes due to anthropogenic action in aquaculture or indiscriminate/irregular use of antibiotics. | 2022 | 36290057 |
| 8922 | 15 | 0.9997 | Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis. | 2023 | 36856434 |
| 9289 | 16 | 0.9997 | Artificial Gene Amplification in Escherichia coli Reveals Numerous Determinants for Resistance to Metal Toxicity. When organisms are subjected to environmental challenges, including growth inhibitors and toxins, evolution often selects for the duplication of endogenous genes, whose overexpression can provide a selective advantage. Such events occur both in natural environments and in clinical settings. Microbial cells-with their large populations and short generation times-frequently evolve resistance to a range of antimicrobials. While microbial resistance to antibiotic drugs is well documented, less attention has been given to the genetic elements responsible for resistance to metal toxicity. To assess which overexpressed genes can endow gram-negative bacteria with resistance to metal toxicity, we transformed a collection of plasmids overexpressing all E. coli open reading frames (ORFs) into naive cells, and selected for survival in toxic concentrations of six transition metals: Cd, Co, Cu, Ni, Ag, Zn. These selections identified 48 hits. In each of these hits, the overexpression of an endogenous E. coli gene provided a selective advantage in the presence of at least one of the toxic metals. Surprisingly, the majority of these cases (28/48) were not previously known to function in metal resistance or homeostasis. These findings highlight the diverse mechanisms that biological systems can deploy to adapt to environments containing toxic concentrations of metals. | 2018 | 29356848 |
| 8691 | 17 | 0.9997 | Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites. | 2016 | 26860944 |
| 9288 | 18 | 0.9997 | Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach. | 1995 | 7766205 |
| 8923 | 19 | 0.9997 | The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli. Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. IMPORTANCE: With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress. | 2016 | 27879333 |