KPC and VIM producing Enterobacter cloacae strain from a hospital in northeastern Venezuela. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
167101.0000KPC and VIM producing Enterobacter cloacae strain from a hospital in northeastern Venezuela. An 83-year-old male patient is admitted to the central hospital in Cumana, Venezuela with severe urinary infection, history of hospitalizaions and prolonged antimicrobial treatments. A strain of Enterobacter cloacae was isolated showing resistance to multiple types of antibiotics (only sensitive to gentamicin), with phenotype of serine- and metallo-carbapenemases. Both, bla(VIM-2) and bla(KPC) genes were detected in the isolate. This is the first report of an Enterobacteriaceae species producing both KPC carbapenemase and VIM metallo carbapenemase in Venezuela. This finding has a great clinical and epidemiological impact in the region, because of the feasibility of transferring these genes, through mobile elements to other strains of Enterobacter and to other infection-causing species of bacteria.201526299058
167010.9998KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Carbapenemase-producing Gram-negative bacteria peak clinical interest due to their ability to hydrolyze most β-lactams, including carbapenems; moreover, their genes spread through bacterial populations by horizontal transfer. Bacteria with acquired carbapenemase have sporadically been reported in the Czech Republic, so far only in Enterobacteriaceae and Pseudomonas aeruginosa. In this study, we described the first finding of a KPC-2-producing strain of Klebsiella pneumoniae, which was isolated from a surgical wound swab, decubitus ulcer, and urine of a patient previously hospitalized in Greece. The patient underwent various antibiotic therapies including a colistin treatment. However, after approximately 20 days of the colistin therapy, the strain developed a high-level resistance to this drug. All the isolates were indistinguishable by pulsed field gel electrophoretic analysis and belonged to the international clone ST258, which is typical of KPC-producing K. pneumoniae isolates. The bla (KPC-2) gene was located on a Tn4401a transposon variant. The OmpK35 and OmpK36 genes analysis performed due to the high resistance level of the strains to β-lactams exhibited no changes in their sequence or in their expression when compared with carbapenem-susceptible isolates.201121818609
157520.9998Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. A transferable plasmid encoding SHV-12 extended-spectrum beta-lactamase, TEM-116, and aminoglycoside resistance was responsible for two sequential clonal outbreaks of Enterobacter cloacae and Acinetobacter baumannii bacteria. A similar plasmid was present among isolates of four different bacterial species. Recognition of plasmid transfer is crucial for control of outbreaks of multidrug-resistant nosocomial pathogens.200516145160
157430.9998Plethora of Resistance Genes in Carbapenem-Resistant Gram-Negative Bacteria in Greece: No End to a Continuous Genetic Evolution. Carbapenem-resistant Gram-negative bacteria are a public health threat that requires urgent action. The fact that these pathogens commonly also harbor resistance mechanisms for several other antimicrobial classes further reduces patient treatment options. The present study aimed to provide information regarding the multidrug resistance genetic background of carbapenem-resistant Gram-negative bacteria in Central Greece. Strains from a tertiary care hospital, collected during routine practice, were characterized using a DNA microarray-based assay. Various different resistance determinants for carbapenems, other beta-lactams, aminoglycosides, quinolones, trimethoprim, sulfonamides and macrolides were detected among isolates of the same sequence type. Eighteen different multidrug resistance genomic profiles were identified among the twenty-four K. pneumoniae ST258, seven different profiles among the eight K. pneumoniae ST11, four profiles among the six A. baumannii ST409 and two among the three K. oxytoca. This report describes the multidrug resistance genomic background of carbapenem-resistant Gram-negative bacteria from a tertiary care hospital in Central Greece, providing evidence of their continuous genetic evolution.202235056608
222740.9998Prophylactic application of antibiotics selects extended-spectrum β-lactamase and carbapenemases producing Gram-negative bacteria in the oral cavity. Prophylactic administration of broad-spectrum antibiotics in surgery can change the oral microbiome and induce colonization of oral cavity with Gram-negative bacteria including multidrug (MDR) or extensively drug resistant (XDR) organisms which can lead to lower respiratory tract infections. The aim of the study was to analyse the Gram-negative isolates obtained from oral cavity of the mechanically ventilated patients in ICUs, after prophylactic application of antibiotics and their resistance mechanisms and to compare them with the isolates obtained from tracheal aspirates from the same patients. The antibiotic susceptibility was determined by broth dilution method. PCR was applied to detect genes encoding β-lactamases. Marked diversity of Gram-negative bacteria and resistance mechanisms was found. High resistance rates and high rate of bla(CTX-M) and carbapenemase encoding genes (bla(VIM-1) , bla(OXA-48) ) were found among Klebsiella pneumoniae. Pseudomonas aeruginosa was found to harbour bla(VIM) and in one strain bla(PER-1) gene, whereas Acinetobacter baumannii produced OXA-23-like and OXA-24/40-like oxacillinases and was XDR in all except one case. All XDR isolates belong to international clonal lineage II (IC II). The main finding of the study is that the prophlylactic application of antibiotics in surgery intensive care units (ICUs) is associated with the colonization of oral cavity and lower respiratory tract with Gram-negative bacteria. The identity of Gram-negative bacteria in oral cavity reflected those found in endotracheal aspirates leading to conclusion that oral swab as non-invasive specimen can predict the colonization of lower respiratory tract with resistant Gram-negative organisms and the risk for development of ventilator-associated pneumonia.202133896011
155150.9998Mechanisms of Resistance in Gram-Negative Urinary Pathogens: From Country-Specific Molecular Insights to Global Clinical Relevance. Urinary tract infections (UTIs) are the most frequent hospital infections and among the most commonly observed community acquired infections. Alongside their clinical importance, they are notorious because the pathogens that cause them are prone to acquiring various resistance determinants, including extended-spectrum beta-lactamases (ESBL); plasmid-encoded AmpC β-lactamases (p-AmpC); carbapenemases belonging to class A, B, and D; qnr genes encoding reduced susceptibility to fluoroquinolones; as well as genes encoding enzymes that hydrolyse aminoglycosides. In Escherichia coli and Klebsiella pneumoniae, the dominant resistance mechanisms are ESBLs belonging to the CTX-M, TEM, and SHV families; p-AmpC; and (more recently) carbapenemases belonging to classes A, B, and D. Urinary Pseudomonas aeruginosa isolates harbour metallo-beta-lactamases (MBLs) and ESBLs belonging to PER and GES families, while carbapenemases of class D are found in urinary Acinetobacter baumannii isolates. The identification of resistance mechanisms in routine diagnostic practice is primarily based on phenotypic tests for the detection of beta-lactamases, such as the double-disk synergy test or Hodge test, while polymerase chain reaction (PCR) for the detection of resistance genes is mostly pursued in reference laboratories for research purposes. As the emergence of drug-resistant bacterial strains poses serious challenges in the management of UTIs, this review aimed to appraise mechanisms of resistance in relevant Gram-negative urinary pathogens, to provide a detailed map of resistance determinants in Croatia and the world, and to discuss the implications of these resistance traits on diagnostic approaches. We summarized a sundry of different resistance mechanisms among urinary isolates and showed how their prevalence highly depends on the local epidemiological context, highlighting the need for tailored interventions in the field of antimicrobial stewardship.202133925181
155260.9998Evolution of β-Lactam Antibiotic Resistance in Proteus Species: From Extended-Spectrum and Plasmid-Mediated AmpC β-Lactamases to Carbapenemases. The management of infectious diseases has proven to be a daunting task for clinicians worldwide, and the rapid development of antibiotic resistance among Gram-negative bacteria is making it even more challenging. The first-line therapy is empirical, and it most often comprises β-lactam antibiotics. Among Gram-negative bacteria, Proteus mirabilis, an important community and hospital pathogen associated primarily with urinary tract and wound infection, holds a special place. This review's aim was to collate and examine recent studies investigating β-lactam resistance phenotypes and mechanisms of Proteus species and the global significance of its β-lactam resistance evolution. Moreover, the genetic background of resistance traits and the role of mobile genetic elements in the dissemination of resistance genes were evaluated. P. mirabilis as the dominant pathogen develops resistance to expanded-spectrum cephalosporins (ESC) by producing extended-spectrum β-lactamases (ESBL) and plasmid-mediated AmpC β-lactamases (p-AmpC). β-lactamase-mediated resistance to carbapenems in Enterobacterales, including Proteus spp., is mostly due to expression of carbapenemases of class A (KPC); class B (metallo-β-lactamases or MBLs of IMP, VIM, or NDM series); or class D or carbapenem-hydrolyzing oxacillinases (CHDL). Previously, a dominant ESBL type in P. mirabilis was TEM-52; yet, lately, it has been replaced by CTX-M variants, particularly CTX-M-14. ESC resistance can also be mediated by p-AmpC, with CMY-16 as the dominant variant. Carbapenem resistance in Proteus spp. is a challenge due to its intrinsic resistance to colistin and tigecyclin. The first carbapenemases reported belonged to class B, most frequently VIM-1 and NDM-5. In Europe, predominantly France and Belgium, a clonal lineage positive for OXA-23 CHDL spreads rapidly undetected, due to its low-level resistance to carbapenems. The amazing capacity of Proteus spp. to accumulate a plethora of various resistance traits is leading to multidrug or extensively drug-resistant phenotypes.202540142401
166870.9998Detection of OXA-181 Carbapenemase in Shigella flexneri. We report the detection of OXA-181 carbapenemase in an azithromycin-resistant Shigella spp. bacteria in an immunocompromised patient. The emergence of OXA-181 in Shigella spp. bacteria raises concerns about the global dissemination of carbapenem resistance in Enterobacterales and its implications for the treatment of infections caused by Shigella bacteria.202438666725
166980.9998Antimicrobial Resistance and Comparative Genome Analysis of Klebsiella pneumoniae Strains Isolated in Egypt. Klebsiella pneumoniae is an important human pathogen in both developing and industrialised countries that can causes a variety of human infections, such as pneumonia, urinary tract infections and bacteremia. Like many Gram-negative bacteria, it is becoming resistant to many frontline antibiotics, such as carbapenem and cephalosporin antibiotics. In Egypt, K. pneumoniae is increasingly recognised as an emerging pathogen, with high levels of antibiotic resistance. However, few Egyptian K. pneumoniae strains have been sequenced and characterised. Hence, here, we present the genome sequence of a multidrug resistant K. pneumoniae strain, KPE16, which was isolated from a child in Assiut, Egypt. We report that it carries multiple antimicrobial resistance genes, including a bla(NDM-1) carbapenemase and extended spectrum β-lactamase genes (i.e., bla(SHV-40), bla(TEM-1B), bla(OXA-9) and bla(CTX-M-15)). By comparing this strain with other Egyptian isolates, we identified common plasmids, resistance genes and virulence determinants. Our analysis suggests that some of the resistance plasmids that we have identified are circulating in K. pneumoniae strains in Egypt, and are likely a source of antibiotic resistance throughout the world.202134576775
168990.9997Occurrence and Characteristics of Mcrs among Gram-Negative Bacteria Causing Bloodstream Infections of Infant Inpatients between 2006 and 2019 in China. The aim of this study was to determine the occurrence of mobilized colistin resistance (mcr) genes in Gram-negative bacteria causing bloodstream infections of child inpatients in China. Bacteria were collected between 2006 and 2019 in a maternal and child health hospital, and mcr genes were screened by PCR. Five of 252 isolates were mcr-positive, including one mcr-1-positive colistin-resistant Escherichia coli isolate, two mcr-9-positive colistin-susceptible Salmonella enterica isolates, and two mcr-9-positive colistin-susceptible Enterobacter hormaechei isolates. These were obtained from two neonate and three infant patients admitted between 2009 and 2018. The E. coli isolate was obtained from a neonate aged 20 min, suggestive of a possible mother-to-neonate transmission. The five mcr-positive isolates were multidrug resistant, and two S. enterica and one E. hormaechei isolate showed a hypervirulent phenotype compared to a hypervirulent Klebsiella pneumoniae type strain in a Galleria mellonella infection model. The mcr-1 gene was carried by an IncX4-type pA1-like epidemic plasmid, and the mcr-9 gene was detected on IncHI2/2A-type novel plasmids co-carrying multiple resistance genes. The four IncHI2/2A-type plasmids shared a backbone and a high similarity (≥77% coverage and ≥ 90% nucleotide identity), suggesting that they were derived from a common ancestor with cross-species transmission and have circulated locally over a long period. The conjugation assay showed that the mcr-1-encoding plasmid and one mcr-9-encoding plasmid were self-transmissible to E. coli with high conjugation frequencies. Our findings demonstrate that mcr genes have disseminated in the community and/or hospitals, mediated by epidemic/endemic plasmids over a long period. The study shows that continuous monitoring of mcr genes is imperative for understanding and tackling their dissemination. IMPORTANCE Antimicrobial resistance, especially the spread of carbapenemase-producing Enterobacteriaceae (CPE), represents one of the largest challenges to One Health coverage of environmental, animal, and human sectors. Colistin is one of the last-line antibiotics for clinical treatment of CPE. However, the emergence of the mobilized colistin resistance (mcr) gene largely threatens the usage of colistin in the clinical setting. In this study, we investigated the existence of mcr genes in 252 Gram-negative bacteria collected between 2006 and 2019 which caused bloodstream infections of child inpatients in China. We found a high prevalence of mcr carriage among children inpatients in the absence of professional exposure, and mcr might have widely disseminated in the community via different routes. This study emphasizes the importance of rational use of colistin in the One Health frame, and highlights both the urgent need for understanding the prevalence and dissemination of mcr genes in different populations and the importance of effective measures to control their spread.202235138190
1679100.9997Analysis of ESKAPE pathogens in clinical isolates in a tertiary care hospital in China from 2018 to 2023. The widespread use of antimicrobial agents correlated with the increasing incidence of nosocomial infections and bacterial antibiotic resistance. These have become major challenges in the prevention and control of hospital-acquired infections worldwide. The aims of this study were to analyze the distribution and characteristics of ESKAPE pathogenic bacteria and their antibiotic resistance profile among clinical isolates from a tertiary hospital in China from 2018 to 2023. The results showed that a total of 20,472 non-duplicated pathogenic bacteria were isolated from clinical specimens in this hospital between 2018 and 2023, of which the top five pathogenic bacteria were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii. In case of E. coli the main detected resistance genes were blaCTX-M, blaTEM and blaOXA. K. pneumoniae mainly carried blaOXA, blaKPC and blaNDM genes. P. aeruginosa was mainly positive for blaOXA, AmpC type beta-lactamases and blaVIM genes. A. baumannii mainly carried ArmA, blaTEM and cas3 genes. S. aureus was mainly positive for mecA, erm(C) and erm(A) genes. In this study, we have found that the antibiotic resistance of common pathogens from clinical isolates in a tertiary hospital in China in the past 6 years is severe, and A. baumannii was particularly a prominent pathogen. There is an urgent need to strengthen the prevention and control of nosocomial infections and antimicrobial drug management in order to curb the spread of multidrug-resistant bacteria.202540522743
928110.9997Phenotypic and genotypic characterization of carbapenem encoding genes among carbapenem-resistant Gram-negative bacteria isolated from North Casablanca, Morocco. Carbapenem resistance genes in Gram-negative bacteria (CR-GNB) are a major cause of critical infections and are considered an urgent public health concern. The present study aimed to describe the prevalence of CR-GNB and the dissemination of extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in clinical isolates from Casablanca, Morocco. Firstly, the strains were collected and identified using phenotypic and biochemical methods, then the antibiotic susceptibility was evaluated by the disc diffusion assay to screen isolates resistant to carbapenems. Secondly, three traditional methods, the carbapenem inactivation method, the modified Hodge, and the in-house carba-NP, were performed to predict the carbapenemase production by the included strains. Finally, conventional PCR was utilized to validate and detect the carbapenemase- and ESBL-related genes. Concerning the results, out of the identified 122 strains, 48 were CR isolates, including 30 Klebsiella pneumoniae, 13 Escherichia coli, and 5 Pseudomonas aeruginosa. Furthermore, these strains presented a high level of resistance. Moreover, the prediction of carbapenemase production by the phenotypic methods showed variable results. Also, the PCR analysis revealed a high occurrence of β-lactamase (ESBL and carbapenemase) genes in the included clinical strains, and most strains harbored multiple resistance genes. Our findings suggest that the three existing methods have some limitations, and a validation study is still necessary for the carbapenemase diagnostics.202540857960
1676120.9997Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. BACKGROUND: Bacterial resistance to antibiotics is increasing worldwide. Antibiotic-resistant strains can lead to serious problems regarding treatment of infection. Carbapenem antibiotics are the final treatment option for infections caused by serious and life-threatening multidrug-resistant gram-negative bacteria. Therefore, an understanding of carbapenem resistance is important for infection control. In the study described herein, the phenotypic and genotypic features of carbapenem-resistant Enterobacteriaceae strains isolated in our hospital were evaluated. METHODS: In total, 43 carbapenem-resistant strains were included in this study. Sensitivity to antibiotics was determined using the VITEK(®)2 system. The modified Hodge test (MHT) and metallo-β-lactamase (MBL) antimicrobial gradient test were performed for phenotypic identification. Resistance genes IMP, VIM, KPC, NDM-1, and OXA-48 were amplified by multiplex PCR. RESULTS: The OXA-48 gene was detected in seven strains, and the NDM-1 gene in one strain. No resistance genes were detected in the remainder of strains. A significant correlation was observed between the MHT test and OXA-48 positivity, and between the MBL antimicrobial gradient test and positivity for resistance genes (p < 0.05). CONCLUSION: The finding of one NDM-1-positive isolate in this study indicates that carbapenem resistance is spreading in Turkey. Carbapenem resistance spreads rapidly and causes challenges in treatment, and results in high mortality/morbidity rates. Therefore, is necessary to determine carbapenem resistance in Enterobacteriaceae isolates and to take essential infection control precautions to avoid spread of this resistance.201526444537
1571130.9997Klebsiella pneumoniae ST147 harboring bla(NDM-1), multidrug resistance and hypervirulence plasmids. The spread of hypervirulent (hv) and carbapenem-/multidrug-resistant Klebsiella pneumoniae is an emerging problem in healthcare settings. The New Delhi metallo-β-lactamase-1 (bla(NDM-1)) is found in Enterobacteriaceae including K. pneumoniae. The bla(NDM-1) is capable of hydrolyzing β-lactam antibiotics which are used for treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. This is associated with the unacceptably high mortality rate in immunocompromised burn injury patients. This study reports on the characterization of bla(NDM-1) gene and virulence factors in hv carbapenem-/multidrug-resistant K. pneumoniae ST147 in the burns unit of a tertiary teaching hospital during routine surveillance. Two K. pneumoniae strains were obtained from wounds of burn-infected patients from May 2020 to July 2021. The hypervirulence genes and genetic context of the bla(NDM-1) gene and mobile genetic elements potentially involved in the transposition of the gene were analyzed. We identified a conserved genetic background and an IS26 and open reading frame flanking the bla(NDM-1) gene that could suggest its involvement in the mobilization of the gene. The plasmid harbored additional antibiotic resistance predicted regions that were responsible for resistance to almost all the routinely used antibiotics. To ensure the identification of potential outbreak strains during routine surveillance, investigations on resistance genes and their environment in relation to evolution are necessary for molecular epidemiology.IMPORTANCEData obtained from this study will aid in the prompt identification of disease outbreaks including evolving resistance and virulence of the outbreak bacteria. This will help establish and implement antimicrobial stewardship programs and infection prevention protocols in fragile health systems in countries with limited resources. Integration of molecular surveillance and translation of whole-genome sequencing in routine diagnosis will provide valuable data for control of infection. This study reports for the first time a high-risk clone K. pneumoniae ST147 with hypervirulence and multidrug-resistance features in Ghana.202438315028
1674140.9997Bloodstream infections caused by multidrug-resistant gram-negative bacteria: epidemiological, clinical and microbiological features. BACKGROUND: Bloodstream infections (BSI) are associated with high morbidity and mortality. This scenario worsens with the emergence of drug-resistant pathogens, resulting in infections which are difficult to treat or even untreatable with conventional antimicrobials. The aim of this study is to describe the epidemiological aspects of BSI caused by multiresistant gram-negative bacilli (MDR-GNB). METHODS: We conducted a laboratory-based surveillance for gram-negative bacteremia over a 1-year period. The bacterial isolates were identified by MALDI-TOF/MS and the antimicrobial susceptibility testing was performed by VITEK®2. Resistance genes were identified through PCR assays. RESULTS: Of the 143 patients, 28.7% had infections caused by MDR-GNB. The risk factors for MDR bacteremia were male sex, age ≥ 60, previous antimicrobial use, liver disease and bacteremia caused by K. pneumoniae. K. pneumoniae was the most frequently observed causative agent and had the highest resistance level. Regarding the resistance determinants, SHV, TEM, OXA-1-like and CTX-M-gp1 were predominant enzymatic variants, whereas CTX-M-gp9, CTX-M-gp2, KPC, VIM, GES, OXA-48-like, NDM and OXA-23-like were considered emerging enzymes. CONCLUSIONS: Here we demonstrate that clinically relevant antibiotic resistance genes are prevalent in this setting. We hope our findings support the development of intervention measures by policy makers and healthcare professionals to face antibiotic resistance.201931296179
1688150.9997Carriage of colistin-resistant Gram-negative bacteria in children from communities in Cape Town (Tuberculosis child multidrug-resistant preventive therapy trial sub-study). Colistin is a last-resort antibiotic against multidrug-resistant, Gram-negative bacteria. Colistin resistance has been described in the clinical settings in South Africa. However, information on carriage of these bacteria in communities is limited. This study investigated gastrointestinal carriage of colistin-resistant Escherichia coli and Klebsiella spp. and mcr genes in children from communities in Cape Town. Colistin-resistant E. coli was isolated from two participants (4%, 2/50), and mcr-1-mcr-9 genes were not detected. Gastrointestinal carriage of colistin-resistant Enterobacterales was rare; however, continuous extensive surveillance is necessary to determine the extent of carriage and its contribution to resistance observed in clinical settings.202134485500
1687160.9997Multiple NDM-5-Expressing Escherichia Coli Isolates From an Immunocompromised Pediatric Host. BACKGROUND: Genes conferring carbapenem resistance have disseminated worldwide among Gram-negative bacteria. Here we present longitudinal changes in clinically obtained Escherichia coli isolates from 1 immunocompromised pediatric patient. This report demonstrates potential for antibiotic resistance genes and plasmids to emerge over time in clinical isolates from patients receiving intensive anticancer chemotherapy and broad-spectrum antibiotics. METHODS: Thirty-three isolates obtained over 7 months from 1 patient were included. Clinical data were abstracted from the medical record. For each isolate, studies included phenotypic antibacterial resistance patterns, sequence typing, bacterial isolate sequencing, plasmid identification, and antibiotic resistance gene identification. RESULTS: Sites of isolation included blood, wound culture, and culture for surveillance purposes from the perianal area. Isolates were of 5 sequence types (STs). All were resistant to multiple classes of antibiotics; 23 (69.6%) were phenotypically resistant to all carbapenems. The blaNDM-5 gene was identified in 22 (67%) isolates, all of ST-167 and ST-940, and appeared to coincide with the presence of the IncFII and IncX3 plasmid. CONCLUSIONS: We present unique microbiologic data from 33 multidrug-resistant E. coli isolates obtained over the course of 7 months from an individual patient in the United States. Two E. coli sequence types causing invasive infection in the same patient and harboring the blaNDM-5 gene, encoded on the IncX3 plasmid and the IncFII plasmid, were identified. This study highlights the emergence of multidrug-resistant bacteria on antibiotic therapy and the necessity of adequate neutrophil number and function in the clearance of bacteremia.202032047833
1680170.9997Emergence of carbapenem resistant gram-negative pathogens with high rate of colistin resistance in Egypt: A cross sectional study to assess resistance trends during the COVID-19 pandemic. The current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi-drug resistant and carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem-resistant isolates, bla(NDM) and bla(OXA-48)-like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co-produced these two carbapenemase genes. The plasmid-mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last-resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing-based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR.202438494251
1686180.9997Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. The emergence and dissemination of carbapenemases, bacterial enzymes able to inactivate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concurrent spread of resistance against colistin, an antibiotic of last resort, further compounds this challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid and accurate detection/characterization of existing and emergent resistance determinants, an essential aspect of public health surveillance and response activities to combat the spread of antimicrobial resistant bacteria. In the current study, WGS data was used to characterize the genomic content of antimicrobial resistance genes, including those encoding carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan. These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-relevant antimicrobials were determined by broth microdilution; resistant phenotypes were observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically, 8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates, respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromosomal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive isolates. The application of WGS to molecular epidemiology and surveillance studies, as exemplified here, will provide both a more complete understanding of the global distribution of MDR isolates and a robust surveillance tool useful for detecting emerging threats to public health.201829883490
1713190.9997Conjugative plasmidic AmpC detected in Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae human clinical isolates from Portugal. AmpC is a type of β-lactamase enzyme produced by bacteria; these enzymes are classified in Class C and Group 1, and these confer resistance to cephamycin. Enterobacterales producing AmpC are reported worldwide and have great clinical importance due to therapeutic restriction and epidemiological importance once the easy dissemination by plasmidic genes to other bacteria is a real threat. These genes are naturally found in some enterobacteria as Enterobacter cloacae, Morganella morganii, and Citrobacter freundii, but other species have demonstrated similar resistance phenotype of AmpC production. Genes carried in plasmids have been described in these species conferring resistance to cefoxitin and causing therapeutic failure in some bacterial infections. This work detected and described five clinical strains of Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae that presented plasmid ampC (pAmpC) isolated from the north of Portugal collected in 2009. AmpC production was confirmed by inhibition of the enzyme by cloxacillin and boronic acid in agar diffusion tests. Also, PCR (polymerase chain reaction) was performed for the detection of gene universal to AmpC, bla(ampC), and others to AmpC group: bla(ACC), bla(CIT), bla(CMY), bla(DHA), and bla(EBC). The conjugation in liquid medium for 24 h was realized to determine if gene is localized in chromosome or plasmid. The isolates and their conjugants showed phenotypic characteristics and bla(CMY) and bla(CIT) were detected by PCR corroborating the AmpC characteristics observed in these bacteria. Confirmation of transfer of plasmid containing genes encoding AmpC is of high epidemiological relevance to the hospital studied and demonstrated the importance of AmpC surveillance and studies in hospital and community environments in order to choose the appropriate therapy for bacterial infections.202032740783