Whole genome analysis and antimicrobial resistance assessment of Staphylococcus epidermidis isolated from food sources. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
164901.0000Whole genome analysis and antimicrobial resistance assessment of Staphylococcus epidermidis isolated from food sources. Coagulase-negative staphylococci (CoNS), including Staphylococcus epidermidis, are commonly occurrence in a variety of food products. Historically considered non-pathogenic, these microorganisms were excluded from routine food safety monitoring protocols. However, their increasing involvement in nosocomial infections underscores their pathogenic potential. Emerging evidence suggests that the food chain may serve as a reservoir and transmission route for antibiotic-resistant bacteria. In this study, 26 S. epidermidis isolates obtained from ready-to-eat food were subjected to whole-genome sequencing and comprehensive bioinformatics analyses. The antimicrobial susceptibility of the isolates was also evaluated against a broad spectrum of agents including aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, lincosamides, macrolides, nitrofurantoins, oxalidinones, phenicols, steroids, sulphonamides and tetracyclines. Sequence typing revealed the presence of 17 distinct sequence types (STs), with ST329 being the most frequently identified (8/26, 30.77 %), followed by ST88 and ST152 (each 2/26; 7.69 %). Notably, one isolate harbored a novel multi-locus sequence type. Phenotypically resistance to erythromycin was most prevalent (21/26, 80.77 %), followed by resistance to clindamycin (19/26, 73.08 %). Genomic analysis confirmed the presence of multiple antimicrobial resistance genes including norA/C, vanT, mecA, dfrC and multidrug resistance genes. The carrying of mobile genetic elements was demonstrated by 25/26 (96.15 %) strains. These findings indicate that S. epidermidis strains isolated from ready-to-eat foods not only exhibit multidrug resistance but also carry a diverse array of antimicrobial resistance genes. The potential for horizontal gene transfer to commensal or pathogenic bacteria highlights the need for increased surveillance and risk assessment concerning CoNS in the food supply.202540592212
164310.9998Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. The foodborne transfer of resistant genes from enterococci to humans and their tolerance to several commonly used antimicrobials are of growing concern worldwide. Linezolid is a last-line drug for managing complicated illnesses resulting from multidrug-resistant Gram-positive bacteria. The optrA gene has been reported in enterococci as one of the acquired linezolid resistance mechanisms. The present study uses whole-genome sequencing analysis to characterize the first reported isolates of linezolid-resistant E. faecium (n = 6) and E. faecalis (n = 10) harboring the optrA gene isolated from samples of supermarket broiler meat (n = 165) in the United Arab Emirates (UAE). The sequenced genomes were used to appraise the study isolates' genetic relatedness, antimicrobial resistance determinants, and virulence traits. All 16 isolates carrying the optrA gene demonstrated multidrug-resistance profiles. Genome-based relatedness classified the isolates into five clusters that were independent of the isolate sources. The most frequently known genotype among the isolates was the sequence type ST476 among E. faecalis (50% (5/10)). The study isolates revealed five novel sequence types. Antimicrobial resistance genes (ranging from 5 to 13) were found among all isolates that conferred resistance against 6 to 11 different classes of antimicrobials. Sixteen different virulence genes were found distributed across the optrA-carrying E. faecalis isolates. The virulence genes in E. faecalis included genes encoding invasion, cell adhesion, sex pheromones, aggregation, toxins production, the formation of biofilms, immunity, antiphagocytic activity, proteases, and the production of cytolysin. This study presented the first description and in-depth genomic characterization of the optrA-gene-carrying linezolid-resistant enterococci from retail broiler meat in the UAE and the Middle East. Our results call for further monitoring of the emergence of linezolid resistance at the retail and farm levels. These findings elaborate on the importance of adopting a One Health surveillance approach involving enterococci as a prospective bacterial indicator for antimicrobial resistance spread at the human-food interface.202237430937
203720.9998Comparison of genotypic and phenotypic antimicrobial resistance profiles of Salmonella enterica isolates from poultry diagnostic specimens. The spread of antimicrobial-resistant bacteria is a significant concern, as it can lead to increased morbidity and mortality in both humans and animals. Whole-genome sequencing (WGS) is a powerful tool that can be used to conduct a comprehensive analysis of the genetic basis of antimicrobial resistance (AMR). We compared the phenotypic and genotypic AMR profiles of 97 Salmonella isolates derived from chicken and turkey diagnostic samples. We focused AMR analysis on 5 antimicrobial classes: aminoglycoside, beta-lactam, phenicol, tetracycline, and trimethoprim. The overall sensitivity and specificity of WGS in predicting phenotypic antimicrobial resistance in the Salmonella isolates were 93.4% and 99.8%, respectively. There were 16 disagreement instances, including 15 that were phenotypically resistant but genotypically susceptible; the other instance involved phenotypic susceptibility but genotypic resistance. Of the isolates examined, 67 of 97 (69%) carried at least 1 resistance gene, with 1 isolate carrying as many as 12 resistance genes. Of the 31 AMR genes analyzed, 16 were identified as aminoglycoside-resistance genes, followed by 4 beta-lactam-resistance, 3 tetracycline-resistance, 2 sulfonamide-resistance, and 1 each of fosfomycin-, quinolone-, phenicol-, trimethoprim-, bleomycin-, and colistin-resistance genes. Most of the resistance genes found were located on plasmids.202438571400
165230.9998Diversity of antimicrobial-resistant bacteria isolated from Australian chicken and pork meat. Antimicrobial-resistant bacteria are frequently isolated from retail meat and may infect humans. To determine the diversity of antimicrobial-resistant bacteria in Australian retail meat, bacteria were cultured on selective media from raw chicken (n = 244) and pork (n = 160) meat samples obtained from all four major supermarket chains in the ACT/NSW, Australia, between March and June 2021. Antimicrobial susceptibility testing (AST) was performed for 13 critically and 4 highly important antibiotics as categorised by the World Health Organization (WHO) for a wide range of species detected in the meat samples. A total of 288 isolates underwent whole-genome sequencing (WGS) to identify the presence of antimicrobial resistance (AMR) genes, virulence genes, and plasmids. AST testing revealed that 35/288 (12%) of the isolates were found to be multidrug-resistant (MDR). Using WGS data, 232/288 (81%) of the isolates were found to harbour resistance genes for critically or highly important antibiotics. This study reveals a greater diversity of AMR genes in bacteria isolated from retail meat in Australia than previous studies have shown, emphasising the importance of monitoring AMR in not only foodborne pathogenic bacteria, but other species that are capable of transferring AMR genes to pathogenic bacteria.202438440146
239940.9998Ready-to-eat dairy products as a source of multidrug-resistant Enterococcus strains: Phenotypic and genotypic characteristics. The enterococci are ubiquitous bacteria able to colonize the human and animal gastrointestinal tracts and fresh and fermented food products. Their highly plastic genome allows Enterococcus spp. to gain resistance to multiple antibiotics, making infections with these organisms difficult to treat. Food-borne enterococci could be carriers of antibiotic resistance determinants. The goal of this work was to study the characteristics of Enterococcus spp. in fermented milk products from Poland and their antibiotic resistance gene profiles. A total of 189 strains were isolated from 182 dairy products out of 320 samples tested. The predominant species were Enterococcus faecium (53.4%) and Enterococcus faecalis (34.4%). Isolates were resistant to streptomycin (29.1%), erythromycin (14.3%), tetracycline (11.6%), rifampicin (8.7%), and tigecycline (8.1%). We also detected 2 vancomycin-resistant and 3 linezolid-resistant strains; however, no vanA or vanB genes were identified. A total of 57 high-level aminoglycoside resistance strains (30.2%) were identified, most of which have the ant(6')-Ia gene, followed by the aac(6')-Ie-aph(2″)-Ia and aph(3″)-IIIa genes. Resistance to tetracycline was most often conferred by tetM and tetL genes. Macrolide resistance was most frequently encoded by ermB and ermA genes. Conjugative mobile genetic element (transposon Tn916-Tn1545) was identified in 15.3% of the strains, including 96.3% of strains harboring the tetM gene. This study found that enterococci are widely present in retail ready-to-eat dairy products in Poland. Many isolated strains are antibiotic resistant and carry transferable resistance genes, which represent a potential source of transmission of multidrug-resistant bacteria to humans.202032197843
240050.9998Antimicrobial susceptibility and distribution of antimicrobial-resistance genes among Enterococcus and coagulase-negative Staphylococcus isolates recovered from poultry litter. Data on the prevalence of antimicrobial resistant enterococci and staphylococci from the poultry production environment are sparse in the United States. This information is needed for science-based risk assessments of antimicrobial use in animal husbandry and potential public-health consequences. In this study, we assessed the susceptibility of staphylococci and enterococci isolated from poultry litter, recovered from 24 farms across Georgia, to several antimicrobials of veterinary and human health importance. Among the 90 Enterococcus isolates recovered, E. hirae (46%) was the most frequently encountered species, followed by E. faecium (27%), E. gallinarum (12%), and E. faecalis (10%). Antimicrobial resistance was most often observed to tetracycline (96%), followed by clindamycin (90%), quinupristin-dalfopristin (62%), penicillin (53%), erythromycin (50%), nitrofurantoin (49%), and clarithromycin (48%). Among the 110 staphylococci isolates recovered, only coagulase-negative staphylococci (CNS) were identified with the predominant Staphylococcus species being S. sciuri (38%), S. lentus (21%), S. xylosus (14%) and S. simulans (12%). Resistance was less-frequently observed among the Staphylococcus isolates for the majority of antimicrobials tested, as compared with Enterococcus isolates, and was primarily limited to clarithromycin (71%), erythromycin (71%), clindamycin (48%), and tetracycline (38%). Multidrug resistance (MDR) phenotypes were prevalent in both Enterococcus and Staphylococcus; however, Enterococcus exhibited a statistically significant difference in the median number of antimicrobials to which resistance was observed (median = 5.0) compared with Staphylococcus species (median = 3.0). Because resistance to several of these antimicrobials in gram-positive bacteria may be attributed to the shuttling of common drug-resistance genes, we also determined which common antimicrobial-resistance genes were present in both enterococci and staphylococci. The antimicrobial resistance genes vat(D) and erm(B) were present in enterococci, vgaB in staphylococci, and mobile genetic elements Tn916 and pheromone-inducible plasmids were only identified in enterococci. These data suggest that the disparity in antimicrobial-resistance phenotypes and genotypes between enterococci and staphylococci isolated from the same environment is, in part, because of barriers preventing exchange of mobile DNA elements.200718251398
88160.9998Genetic analysis of multidrug-resistant and AmpC-producing Citrobacter freundii. OBJECTIVE: During the last decade, antimicrobial resistance within pet animals has received worldwide concern owing to their close contact with humans and the possibility of animal-human co-transmission of multidrug-resistant bacteria. This study examined phenotypic as well as molecular mechanisms associated with antimicrobial resistance in a multidrug-resistant, and AmpC-producing Citrobacter freundii recovered from a dog suffering from kennel cough in. MATERIALS AND METHODS: The isolate was recovered from a two-year-old dog suffering from severe respiratory manifestations. Phenotypically, the isolate was resistant to a wide range of antimicrobial agents including, aztreonam, ciprofloxacin, levofloxacin, gentamicin, minocycline, piperacillin, sulfamethoxazole-trimethoprim, and tobramycin. PCR and sequencing confirmed that the isolate harbors multiple antibiotic resistance genes, such as blaCMY-48 and blaTEM-1B which mediate resistance to B-lactams, and qnrB6 which mediate resistance to quinolone antibiotics. RESULTS: Multilocus sequence typing confirmed that the isolate belongs to ST163. Due to the unique characteristics of this pathogen, the whole genome sequencing was performed. In addition to the previously confirmed antibiotic resistance genes by PCR, the isolate was also confirmed to harbor other resistance genes which mediate resistance to aminoglycoside (aac(3)-IId, aac(6')-Ib-cr, aadA16, aph(3'')-Ib, and aph(6)-Id), macrolides [mph(A)), phenicols (floR), rifampicin (ARR-3), sulphonamides (sul1 and sul2), trimethoprim (dfrA27), and tetracycline (tet(A) and tet(B)]. CONCLUSIONS: The results presented in this study confirm that pets are possible sources of highly pathogenic multidrug-resistant microbes with unique genetic characteristics taking into consideration the high potential for their dissemination to humans, which can undoubtedly develop of severe infections in these hosts.202336808363
203870.9998Salmonella enterica Serotype 4,[5],12:i:- in Swine in the United States Midwest: An Emerging Multidrug-Resistant Clade. BACKGROUND: Salmonella 4,[5],12:i:-, a worldwide emerging pathogen that causes many food-borne outbreaks mostly attributed to pig and pig products, is expanding in the United States. METHODS: Whole-genome sequencing was applied to conduct multiple comparisons of 659 S. 4,[5],12:i:- and 325 Salmonella Typhimurium from different sources and locations (ie, the United States and Europe) to assess their genetic heterogeneity, with a focus on strains recovered from swine in the US Midwest. In addition, the presence of resistance genes and other virulence factors was detected and the antimicrobial resistance phenotypes of 50 and 22 isolates of livestock and human origin, respectively, was determined. RESULTS: The S. 4,5,12:i:- strains formed two main clades regardless of their source and geographic origin. Most (84%) of the US isolates recovered in 2014-2016, including those (48 of 51) recovered from swine in the US Midwest, were part of an emerging clade. In this clade, multiple genotypic resistance determinants were predominant, including resistance against ampicillin, streptomycin, sulfonamides, and tetracyclines. Phenotypic resistance to enrofloxacin (11 of 50) and ceftiofur (9 of 50) was found in conjunction with the presence of plasmid-mediated resistance genes (qnrB19/qnrB2/qnrS1 and blaCMY-2/blaSHV-12, respectively). Higher similarity was also found between S. 4,[5],12:i:- from the emerging clade and S. Typhimurium from Europe than with S. Typhimurium from the United States. CONCLUSIONS: Salmonella 4,[5],12:i:- currently circulating in swine in the US Midwest are likely to be part of an emerging multidrug-resistant clade first reported in Europe, and can carry plasmid-mediated resistance genes that may be transmitted horizontally to other bacteria, and thus may represent a public health concern.201829069323
266280.9998Nasal Carriage of Methicillin-Resistant Staphylococcus Sciuri Group by Residents of an Urban Informal Settlement in Kenya. BACKGROUND: The Staphylococcus sciuri group constitutes animal-associated bacteria but can comprise up to 4% of coagulase-negative staphylococci isolated from human clinical samples. They are reservoirs of resistance genes that are transferable to Staphylococcus aureus but their distribution in communities in sub-Saharan Africa is unknown despite the clinical importance of methicillin-resistant S. aureus. OBJECTIVES: We characterised methicillin-resistant S. sciuri group isolates from nasal swabs of presumably healthy people living in an informal settlement in Nairobi to identify their resistance patterns, and carriage of two methicillin resistance genes. METHOD: Presumptive methicillin-resistant S. sciuri group were isolated from HardyCHROM™ methicillin-resistant S. aureus media. Isolate identification and antibiotic susceptibility testing were done using the VITEK(®)2 Compact. DNA was extracted using the ISOLATE II genomic kit and polymerase chain reaction used to detect mecA and mecC genes. Results: Of 37 presumptive isolates, 43% (16/37) were methicillin-resistant including - S. sciuri (50%; 8/16), S. lentus (31%; 5/16) and S. vitulinus (19%; 3/16). All isolates were susceptible to ciprofloxacin, gentamycin, levofloxacin, moxifloxacin, nitrofurantoin and tigecycline. Resistance was observed to clindamycin (63%), tetracycline (56%), erythromycin (56%), sulfamethoxazole/trimethoprim (25%), daptomycin (19%), rifampicin (13%), doxycycline, linezolid, and vancomycin (each 6%). Most isolates (88%; 14/16) were resistant to at least 2 antibiotic combinations, including methicillin. The mecA and mecC genes were identified in 75% and 50% of isolates, respectively. CONCLUSION: Colonizing S. sciuri group bacteria can carry resistance to methicillin and other therapeutic antibiotics. This highlights their potential to facilitate antimicrobial resistance transmission in community and hospital settings. Surveillance for emerging multidrug resistant strains should be considered in high transmission settings where human-animal interactions are prevalent. Our study scope precluded identifying other molecular determinants for all the observed resistance phenotypes. Larger studies that address the prevalence and risk factors for colonization with S. sciuri group and adopt a one health approach can complement the surveillance efforts.202337529492
165390.9998Resistance Genes, Plasmids, Multilocus Sequence Typing (MLST), and Phenotypic Resistance of Non-Typhoidal Salmonella (NTS) Isolated from Slaughtered Chickens in Burkina Faso. The emergence of antimicrobial-resistant bacteria in developing countries increases risks to the health of both such countries' residents and the global community due to international travel. It is consequently necessary to investigate antimicrobial-resistant pathogens in countries such as Burkina Faso, where surveillance data are not available. To study the epidemiology of antibiotic resistance in Salmonella, 102 Salmonella strains isolated from slaughtered chickens were subjected to whole-genome sequencing (WGS) to obtain information on antimicrobial resistance (AMR) genes and other genetic factors. Twenty-two different serotypes were identified using WGS, the most prevalent of which were Hato (28/102, 27.5%) and Derby (23/102, 22.5%). All strains analyzed possessed at least one and up to nine AMR genes, with the most prevalent being the non-functional aac(6')-Iaa gene, followed by aph(6)-Id. Multi-drug resistance was found genotypically in 36.2% of the isolates for different classes of antibiotics, such as fosfomycin and β-lactams, among others. Plasmids were identified in 43.1% of isolates (44/102), and 25 plasmids were confirmed to carry AMR genes. The results show that chicken can be considered as a reservoir of antibiotic-resistant Salmonella strains. Due to the prevalence of these drug-resistant pathogens and the potential for foodborne illnesses, poultry processing and cooking should be performed with attention to prescribed safe handling methods to avoid cross-contamination with chicken products.202235740187
5505100.9997Concordance between Antimicrobial Resistance Phenotype and Genotype of Staphylococcus pseudintermedius from Healthy Dogs. Staphylococcus pseudintermedius, a common commensal canine bacterium, is the main cause of skin infections in dogs and is a potential zoonotic pathogen. The emergence of methicillin-resistant S. pseudintermedius (MRSP) has compromised the treatment of infections caused by these bacteria. In this study, we compared the phenotypic results obtained by minimum inhibitory concentration (MICs) for 67 S. pseudintermedius isolates from the skin of nine healthy dogs versus the genotypic data obtained with Nanopore sequencing. A total of 17 antibiotic resistance genes (ARGs) were detected among the isolates. A good correlation between phenotype and genotype was observed for some antimicrobial classes, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline. However, for oxacillin (beta-lactam) or aminoglycosides the correlation was low. Two antibiotic resistance genes were located on plasmids integrated in the chromosome, and a third one was in a circular plasmid. To our knowledge, this is the first study assessing the correlation between phenotype and genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs using Nanopore sequencing technology.202236421269
853110.9997Nosocomial Pneumonia in Georgia: A Focus on Gram-Positive Bacteria and Antimicrobial Resistance. Nosocomial pneumonia represents a significant clinical challenge worldwide, and in Georgia, the burden of this healthcare-associated infection is a growing concern. This study investigates the role of gram-positive bacteria in nosocomial pneumonia cases, focusing on their prevalence, antimicrobial resistance patterns, and associated risk factors. A retrospective analysis of 484 clinical samples collected from 397 patients between May 2022 and September 2024 highlights the distribution of pathogens, with a particular emphasis on Staphylococcus aureus and Streptococcus pneumoniae. Among gram-positive pathogens, Staphylococcus aureus was the most prevalent, accounting for 103 cases (21.3%), followed by Streptococcus pneumoniae with 45 cases (9.3%). The study identifies alarming rates of antimicrobial resistance among gram-positive pathogens. Staphylococcus aureus isolates demonstrated universal penicillinase production (103/103, 100%) and high levels of mecA-mediated methicillin resistance (89/103, 86.4%) and erm-mediated macrolide resistance (74/103, 71.8%). Additionally, notable resistance was observed to tetracycline (93/103, 90.3%), aminoglycosides (31/103, 30.1%), and fluoroquinolones (41/103, 39.8%). Streptococcus pneumoniae isolates exhibited universal penicillinase production (45/45, 100%), with complete beta-lactam resistance found in 42 isolates (42/45, 93.3%), mediated through mutations in the pbp1a, pbp2x, and pbp2b genes. Furthermore, erm(B)-mediated macrolide resistance was observed in 37 isolates (37/45, 82.2%), tetM-mediated tetracycline resistance in 37 isolates (37/45, 82.2%), and fluoroquinolone resistance in 13 isolates (13/45, 28.9%). One isolate of each pathogen demonstrated vancomycin resistance, underscoring the emergence of multidrug-resistant (MDR) strains. The study underscores the need for stringent infection control measures and rational antibiotic stewardship to mitigate the impact of resistant gram-positive pathogens in Georgian healthcare settings. The findings also stress the importance of continuous surveillance to monitor resistance trends and guide empirical therapy. By exploring the resistance mechanisms and prevalence of gram-positive bacteria in nosocomial pneumonia, this research contributes to a deeper understanding of the local epidemiology and highlights actionable insights for improving patient outcomes.202539974234
1964120.9997Antimicrobial resistance of pet-derived bacteria in China, 2000-2020. With the rapid growth of the pet industry in China, bacterial infectious diseases in pets have increased, highlighting the need to monitor antimicrobial resistance (AMR) in pet-derived bacteria to improve the diagnosis and treatment. Before the establishment of the China Antimicrobial Resistance Surveillance Network for Pets (CARPet) in 2021, a comprehensive analysis of such data in China was lacking. Our review of 38 point-prevalence surveys conducted between 2000 and 2020 revealed increasing trends in AMR among pet-derived Escherichia coli, Klebsiella pneumoniae, Staphylococcus spp., Enterococcus spp., and other bacterial pathogens in China. Notable resistance to β-lactams and fluoroquinolones, which are largely used in both pets and livestock animals, was observed. For example, resistance rates for ampicillin and ciprofloxacin in E. coli frequently exceeded 50.0%, with up to 41.3% of the isolates producing extended-spectrum β-lactamases. The emergence of carbapenem-resistant K. pneumoniae and E. coli, carrying bla(NDM) and bla(OXA) genes, highlighted the need for vigilant monitoring. The detection rate of SCCmec (Staphylococcal Cassette Chromosome mec), a genetic element associated with methicillin resistance, in Staphylococcus pseudintermedius isolated from pets in China was found to be over 40.0%. The resistance rate of E. faecalis to vancomycin was 2.1% (5/223) in East China, which was higher than the detection rate of human-derived vancomycin-resistant Enterococcus (0.1%, 12/11,215). Establishing the national AMR surveillance network CARPet was crucial, focusing on representative cities, diverse clinical samples, and including both commonly used antimicrobial agents in veterinary practice and critically important antimicrobial agents for human medicine, such as carbapenems, tigecycline, and vancomycin.202540135877
2392130.9997Characterization of the resistome and predominant genetic lineages of Gram-positive bacteria causing keratitis. Bacterial keratitis is a vision-threatening infection mainly caused by Gram-positive bacteria (GPB). Antimicrobial therapy is commonly empirical using broad-spectrum agents with efficacy increasingly compromised by the emergence of antimicrobial resistance. We used a combination of phenotypic tests and genome sequencing to identify the predominant lineages of GPB causing keratitis and to characterize their antimicrobial resistance patterns. A total of 161 isolates, including Staphylococcus aureus (n = 86), coagulase-negative staphylococci (CoNS; n = 34), Streptococcus spp. (n = 34), and Enterococcus faecalis (n = 7), were included. The population of S. aureus isolates consisted mainly of clonal complex 5 (CC5) (30.2%). Similarly, the population of Staphylococcus epidermidis was homogenous with most of them belonging to CC2 (78.3%). Conversely, the genetic population of Streptococcus pneumoniae was highly diverse. Resistance to first-line antibiotics was common among staphylococci, especially among CC5 S. aureus. Methicillin-resistant S. aureus was commonly resistant to fluoroquinolones and azithromycin (78.6%) and tobramycin (57%). One-third of the CoNS were resistant to fluoroquinolones and 53% to azithromycin. Macrolide resistance was commonly caused by erm genes in S. aureus, mphC and msrA in CoNS, and mefA and msr(D) in streptococci. Aminoglycoside resistance in staphylococci was mainly associated with genes commonly found in mobile genetic elements and that encode for nucleotidyltransferases like ant(4')-Ib and ant(9)-Ia. Fluroquinolone-resistant staphylococci carried from 1 to 4 quinolone resistance-determining region mutations, mainly in the gyrA and parC genes. We found that GPB causing keratitis are associated with strains commonly resistant to first-line topical therapies, especially staphylococcal isolates that are frequently multidrug-resistant and associated with major hospital-adapted epidemic lineages.202438289077
1622140.9997Antimicrobial Susceptibility and Frequency of bla and qnr Genes in Salmonella enterica Isolated from Slaughtered Pigs. Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the bla(TEM) antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of bla(TEM) and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of bla(TEM) and bla(CTX-M) was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria.202134943653
1644150.9997Emergence of plasmid-mediated tigecycline resistance tet(X4) gene in Enterobacterales isolated from wild animals in captivity. BACKGROUND: Over the past few decades, antimicrobial resistance (AMR) has emerged as a global health challenge in human and veterinary medicine. Research on AMR genes in captive wild animals has increased. However, the presence and molecular characteristics of tet(X)-carrying bacteria in these animals remain unknown. METHODS: Eighty-four samples were collected from captive wild animals. tet(X) variants were detected using polymerase chain reaction and the isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. All isolated strains were subjected to antimicrobial susceptibility testing and whole-genome sequencing. The virulence of an Escherichia coli strain carrying enterotoxin genes was assessed using a Galleria mellonella larval model. RESULTS: We isolated two tet(X4)-positive E. coli strains and one tet(X4)-positive Raoultella ornithinolytica strain. Antimicrobial susceptibility tests revealed that all three tet(X4)-carrying bacteria were sensitive to the 13 tested antimicrobial agents, but exhibited resistance to tigecycline. Notably, one tet(X4)-carrying E. coli strain producing an enterotoxin had a toxic effect on G. mellonella larvae. Whole-genome sequencing analysis showed that the two tet(X4)-carrying E. coli strains had more than 95% similarity to tet(X4)-containing E. coli strains isolated from pigs and humans in China. CONCLUSION: The genetic environment of tet(X4) closely resembled that of the plasmid described in previous studies. Our study identified tet(X4)-positive strains in wildlife and provided valuable epidemiological data for monitoring drug resistance. The identification of enterotoxin-producing E. coli strains also highlights the potential risks posed by virulence genes.202439077391
1965160.9997Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents.202438393089
2715170.9997From the Farms to the Dining Table: The Distribution and Molecular Characteristics of Antibiotic-Resistant Enterococcus spp. in Intensive Pig Farming in South Africa. Foodborne pathogens, including antibiotic-resistant species, constitute a severe menace to food safety globally, especially food animals. Identifying points of concern that need immediate mitigation measures to prevent these bacteria from reaching households requires a broad understanding of these pathogens' spread along the food production chain. We investigated the distribution, antibiotic susceptibility, molecular characterization and clonality of Enterococcus spp. in an intensive pig production continuum in South Africa, using the farm-to-fork approach. Enterococcus spp. were isolated from 452 samples obtained along the pig farm-to-fork continuum (farm, transport, abattoir, and retail meat) using the IDEXX Enterolert(®)/Quanti-Tray(®) 2000 system. Pure colonies were obtained on selective media and confirmed by real-time PCR, targeting genus- and species-specific genes. The susceptibility to antibiotics was determined by the Kirby-Bauer disk diffusion method against 16 antibiotics recommended by the WHO-AGISAR using EUCAST guidelines. Selected antibiotic resistance and virulence genes were detected by real-time PCR. Clonal relatedness between isolates across the continuum was evaluated by REP-PCR. A total of 284 isolates, consisting of 79.2% E. faecalis, 6.7% E. faecium, 2.5% E. casseliflavus, 0.4% E. gallinarum, and 11.2% other Enterococcus spp., were collected along the farm-to-fork continuum. The isolates were most resistant to sulfamethoxazole-trimethoprim (78.8%) and least resistant to levofloxacin (5.6%). No resistance was observed to vancomycin, teicoplanin, tigecycline and linezolid. E. faecium displayed 44.4% resistance to quinupristin-dalfopristin. Also, 78% of the isolates were multidrug-resistant. Phenotypic resistance to tetracycline, aminoglycosides, and macrolides was corroborated by the presence of the tetM, aph(3')-IIIa, and ermB genes in 99.1%, 96.1%, and 88.3% of the isolates, respectively. The most detected virulence gene was gelE. Clonality revealed that E. faecalis isolates belonged to diverse clones along the continuum with major REP-types, mainly isolates from the same sampling source but different sampling rounds (on the farm). E. faecium isolates revealed a less diverse profile. The results suggest that intensive pig farming could serve as a reservoir of antibiotic-resistant bacteria that could be transmitted to occupationally exposed workers via direct contact with animals or consumers through animal products/food. This highlights the need for more robust guidelines for antibiotic use in intensive farming practices and the necessity of including Enterococcus spp. as an indicator in antibiotic resistance surveillance systems in food animals.202133918989
2971180.9997Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. Foodborne pathogens are a leading cause of illness and death, especially in developing countries. The problem is exacerbated if bacteria attain multidrug resistance. Little is currently known about the extent of antibiotic resistance in foodborne pathogens and the molecular mechanisms underlying this resistance in Africa. Therefore, the current study was carried out to characterize, at the molecular level, the mechanism of multidrug resistance in Salmonella enterica isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets and slaughterhouses in Egypt. Forty-seven out of 69 isolates (68.1%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The incidence of multidrug-resistant isolates was higher in meat products (37, 69.8%) than in dairy products (10, 62.5%). The multidrug-resistant serovars included, S. enterica serovar Typhimurium (24 isolates, 34.8%), S. enterica serovar Enteritidis, (15 isolates, 21.8%), S. enterica serovar Infantis (7 isolates, 10.1%) and S. enterica non-typable serovar (1 isolate, 1.4%). The highest resistance was to ampicillin (95.7%), then to kanamycin (93.6%), spectinomycin (93.6%), streptomycin (91.5%) and sulfamethoxazole/trimethoprim (91.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes and 39.1% and 8.7% of isolates were positive for class 1 and class 2 integrons, respectively. β-lactamase-encoding genes were identified in 75.4% of isolates and plasmid-mediated quinolone resistance genes were identified in 27.5% of isolates. Finally, the florphenicol resistance gene, floR, was identified in 18.8% of isolates. PCR screening identified S. enterica serovar Typhimurium DT104 in both meat and dairy products. This is the first study to report many of these resistance genes in dairy products. This study highlights the high incidence of multidrug-resistant S. enterica in meat and dairy products in Egypt, with the possibility of their transfer to humans leading to therapeutic failure. Therefore, the overuse of antibiotics in animals should be drastically reduced in developing countries.201425113044
2976190.9997Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated From Cattle and Swine in Chile. Non-O157 Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes bloody diarrhea and hemolytic-uremic syndrome in humans, and a major cause of foodborne disease. Despite antibiotic treatment of STEC infections in humans is not recommended, the presence of antimicrobial-resistant bacteria in animals and food constitutes a risk to public health, as the pool of genes from which pathogenic bacteria can acquire antibiotic resistance has increased. Additionally, in Chile there is no information on the antimicrobial resistance of this pathogen in livestock. Thus, the aim of this study was to characterize the phenotypic and genotypic antimicrobial resistance of STEC strains isolated from cattle and swine in the Metropolitan region, Chile, to contribute relevant data to antimicrobial resistance surveillance programs at national and international level. We assessed the minimal inhibitory concentration of 18 antimicrobials, and the distribution of 12 antimicrobial resistance genes and class 1 and 2 integrons in 54 STEC strains. All strains were phenotypically resistant to at least one antimicrobial drug, with a 100% of resistance to cefalexin, followed by colistin (81.5%), chloramphenicol (14.8%), ampicillin and enrofloxacin (5.6% each), doxycycline (3.7%), and cefovecin (1.9%). Most detected antibiotic resistance genes were dfrA1 and tetA (100%), followed by tetB (94.4%), bla (TEM-1) (90.7%), aac(6)-Ib (88.9%), bla (AmpC) (81.5%), cat1 (61.1%), and aac(3)-IIa (11.1%). Integrons were detected only in strains of swine origin. Therefore, this study provides further evidence that non-O157 STEC strains present in livestock in the Metropolitan region of Chile exhibit phenotypic and genotypic resistance against antimicrobials that are critical for human and veterinary medicine, representing a major threat for public health. Additionally, these strains could have a competitive advantage in the presence of antimicrobial selective pressure, leading to an increase in food contamination. This study highlights the need for coordinated local and global actions regarding the use of antimicrobials in animal food production.202032754621