# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1648 | 0 | 1.0000 | Molecular characterization of the multi-drug resistant Myroides odoratimimus isolates: a whole genome sequence-based study to confirm carbapenem resistance. The bacteria belonging to the Myroides genus are opportunistic pathogens causing community or hospital-acquired infections that result in treatment failure due to antibiotic resistance. This study aimed to investigate molecular mechanisms of antibiotic resistance, clonal relatedness, and the biofilm forming capacity of the 51 multi-drug resistant Myroides odoratimimus. All isolates were screened for bla(KPC), bla(OXA), bla(VIM), bla(IMP), bla(MUS), bla(TUS), bla(NDM), and bla(B) genes by using PCR amplification. Whole genome sequencing (WGS) was applied on three randomly selected isolates for further investigation of antibiotic resistance mechanisms. Clonal relatedness was analyzed by Pulsed-field gel electrophoresis (PFGE) and the microtiter plate method was used to demonstrate biofilm formation. All isolates were positive for biofilm formation. PCR analysis resulted in a positive for only the bla(MUS-1) gene. WGS identified bla(MUS-1), erm(F), ere(D), tet(X), and sul2 genes in all strains tested. Moreover, the genomic analyses of three strains revealed that genomes contained a large number of virulence factors (VFs). PFGE yielded a clustering rate of 96%. High clonal relatedness, biofilm formation, and multi-drug resistance properties may lead to the predominance of these opportunistic pathogens in hospital environments and make them cause nosocomial infections. | 2024 | 38127105 |
| 1647 | 1 | 0.9999 | Genomic and antimicrobial resistance genes diversity in multidrug-resistant CTX-M-positive isolates of Escherichia coli at a health care facility in Jeddah. BACKGROUND: Whole genome sequencing has revolutionized epidemiological investigations of multidrug-resistant pathogenic bacteria worldwide. Aim of this study was to perform comprehensive characterization of ESBL-positive isolates of Escherichia coli obtained from clinical samples at the King Abdulaziz University Hospital utilizing whole genome sequencing. METHODS: Isolates were identified by MALDI-TOF mass spectrometry. Genome sequencing was performed using a paired-end strategy on the MiSeq platform. RESULTS: Nineteen isolates were clustered into different clades in a phylogenetic tree based on single nucleotide polymorphisms in core genomes. Seventeen sequence types were identified in the extended-spectrum β-lactamase (ESBL)-positive isolates, and 11 subtypes were identified based on distinct types of fimH alleles. Forty-one acquired resistance genes were found in the 19 genomes. The bla(CTX-M-15) gene, which encodes ESBL, was found in 15 isolates and was the most predominant resistance gene. Other antimicrobial resistance genes (ARGs) found in the isolates were associated with resistance to tetracycline (tetA), aminoglycoside [aph(3″)-Ib, and aph(6)-Id], and sulfonamide (sul1, and sul2). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA were commonly found in several genomes. CONCLUSION: Several other ARGs were found in CTX-M-positive E. coli isolates confer resistance to clinically important antibiotics used to treat infections caused by Gram-negative bacteria. | 2020 | 31279801 |
| 1709 | 2 | 0.9999 | High prevalence of bla(VIM-1) gene in bacteria from Brazilian soil. This study investigated bacteria from soil samples to (i) determine the main bacterial genera and species having resistance to carbapenem and other β-lactams and (ii) establish if the mechanism of resistance was due to the production of metallo-β-lactamases. The isolates were characterized by PCR for metallo-β-lactamases and integrons, by antimicrobial susceptibility testing, and by sequencing. The antimicrobial profile of 40 imipenem-resistant Gram-positive soil isolates from all Brazilian regions demonstrated that 31 (77.5%) of them were multidrug resistant. Among the 40 isolates, 19 presented the bla(VIM) gene and class 1 integrons by PCR. Six of the 19 isolates were identified as Paenibacillus sp., 12 as Bacillus sp., and just 1 was classified as Staphylococcus sp., by sequencing of the 16S rRNA gene. These results suggest that bacteria from soil can act as a source of bla(VIM-1) genes, representing a threat to public health. | 2016 | 27392282 |
| 1856 | 3 | 0.9999 | Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China. Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clinical ECC isolates between 2019 and 2020 from three hospitals in Zhejiang, China and performed a retrospective whole-genome sequencing to analyze their population structure and drug resistance mechanisms. Of the 172 ECC isolates, 160 belonged to 9 classified species, and 12 belonged to unclassified species based on ANI analysis. Most isolates belonged to E. hormaechei (45.14%) followed by E. kobei (13.71%), which contained 126 STs, including 62 novel STs, as determined by multilocus sequence typing (MLST) analysis. Pan-genome analysis of the two ECC species showed that they have an "open" tendency, which indicated that their Pan-genome increased considerably with the addition of new genomes. A total of 80 resistance genes associated with 11 antimicrobial agent categories were identified in the genomes of all the isolates. The most prevailing resistance genes (12/29, 41.38%) were related to β-lactams followed by aminoglycosides. A total of 247 β-lactamase genes were identified, of which the bla(ACT) genes were the most dominant (145/247, 58.70%), followed by the bla(TEM) genes (21/247, 8.50%). The inherent ACT type β-lactamase genes differed among different species. bla(ACT-2) and bla(ACT-3) were only present in E. asburiae, while bla(ACT-9), bla(ACT-12), and bla(ACT-6) exclusively appeared in E. kobei, E. ludwigii, and E. mori. Among the six carbapenemase-encoding genes (bla(NDM-1), bla(NDM-5), bla(IMP-1), bla(IMP-4), bla(IMP-26), and bla(KPC-2)) identified, two (bla(NDM-1) and bla(IMP-1)) were identified in an ST78 E. hormaechei isolate. Comparative genomic analysis of the carbapenemase gene-related sequences was performed, and the corresponding genetic structure of these resistance genes was analyzed. Genome-wide molecular characterization of the ECC population and resistance mechanism would offer valuable insights into the effective management of ECC infection in clinical settings. IMPORTANCE The presence and emergence of multiple species/subspecies of ECC have led to diversity and complications at the taxonomic level, which impedes our further understanding of the epidemiology and clinical significance of species/subspecies of ECC. Accurate identification of ECC species is extremely important. Also, it is of great importance to study the carbapenem-resistant genes in ECC and to further understand the mechanism of horizontal transfer of the resistance genes by analyzing the surrounding environment around the genes. The occurrence of ECC carrying two MBL genes also indicates that the selection pressure of bacteria is further increased, suggesting that we need to pay special attention to the emergence of such bacteria in the clinic. | 2022 | 36350178 |
| 871 | 4 | 0.9999 | Comparative De Novo and Pan-Genome Analysis of MDR Nosocomial Bacteria Isolated from Hospitals in Jeddah, Saudi Arabia. Multidrug-resistant (MDR) bacteria are one of the most serious threats to public health, and one of the most important types of MDR bacteria are those that are acquired in a hospital, known as nosocomial. This study aimed to isolate and identify MDR bacteria from selected hospitals in Jeddah and analyze their antibiotic-resistant genes. Bacteria were collected from different sources and wards of hospitals in Jeddah City. Phoenix BD was used to identify the strains and perform susceptibility testing. Identification of selected isolates showing MDR to more than three classes on antibiotics was based on 16S rRNA gene and whole genome sequencing. Genes conferring resistance were characterized using de novo and pan-genome analyses. In total, we isolated 108 bacterial strains, of which 75 (69.44%) were found to be MDR. Taxonomic identification revealed that 24 (32%) isolates were identified as Escherichia coli, 19 (25.3%) corresponded to Klebsiella pneumoniae, and 17 (22.67%) were methicillin-resistant Staphylococcus aureus (MRSA). Among the Gram-negative bacteria, K. pneumoniae isolates showed the highest resistance levels to most antibiotics. Of the Gram-positive bacteria, S. aureus (MRSA) strains were noticed to exhibit the uppermost degree of resistance to the tested antibiotics, which is higher than that observed for K. pneumoniae isolates. Taken together, our results illustrated that MDR Gram-negative bacteria are the most common cause of nosocomial infections, while MDR Gram-positive bacteria are characterized by a wider antibiotic resistance spectrum. Whole genome sequencing found the appearance of antibiotic resistance genes, including SHV, OXA, CTX-M, TEM-1, NDM-1, VIM-1, ere(A), ermA, ermB, ermC, msrA, qacA, qacB, and qacC. | 2023 | 37894090 |
| 908 | 5 | 0.9998 | Multidrug-resistant Raoultella ornithinolytica misidentified as Klebsiella oxytoca carrying blaOXA β-lactamases: antimicrobial profile and genomic characterization. Class D β-lactamases OXA-232 and OXA-48 hydrolyze penicillin, cephalosporins and carbapenems, limiting the pharmacological therapeutics in bacteraemia. OXA producer microorganisms are considered a great emergent threat, especially in nosocomial environments. To determine the resistance profile and genomic characterization of two isolates initially identified as potential carbapenemase-producer Klebsiella oxytoca in a third level hospital. Automated platform BD Phoenix-100 System was used to identify and to biochemically characterize both isolates. Furthermore, the resistance profile was determined through CLSI methods and the whole genome sequences were obtained using Next-Generation Sequencing. Resistance genes were analyzed, and the virtual fingerprinting was determined to corroborate the similarity with related bacteria. Both strains correspond to Raoultella ornithinolytica carrying OXA 232 and OXA-48 genes, confirming the class D β-lactamases assay results. Here, we present the genetic and phenotypic analysis of multidrug resistance R. ornithinolytica, representing the first report in Mexico. | 2021 | 34499216 |
| 1685 | 6 | 0.9998 | Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were bla(OXA-48) and bla(NDM-1), which frequently occurred together, while bla(KPC-2) together with bla(NDM-1) was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics. | 2024 | 38479059 |
| 869 | 7 | 0.9998 | The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. The heterogenicity of antimicrobial resistance genes described in clinically significant bacterial isolates and their potential role in reducing the efficacy of classically effective antibiotics pose a major challenge for global healthcare, especially in infections caused by Gram-negative bacteria. We analyzed 112 multidrug-resistant (MDR) isolates from clinical samples in order to detect high resistance profiles, both phenotypically and genotypically, among four Gram-negative genera (Acinetobacter, Escherichia, Klebsiella, and Pseudomonas). We found that 9.8% of the total selected isolates were classified as extensively drug-resistant (XDR) (six isolates identified as A. baumannii and five among P. pneumoniae isolates). All other isolates were classified as MDR. Almost 100% of the isolates showed positive results for bla(OXA-23) and bla(NDM-1) genes among the A. baumannii samples, one resistance gene (bla(CTX-M)) among E. coli, and two genetic determinants (bla(CTX-M) and aac(6')-Ib) among Klebsiella. In contrast, P. aeruginosa showed just one high-frequency antibiotic resistance gene (dfrA), which was present in 68.42% of the isolates studied. We also describe positive associations between ampicillin and cefotaxime resistance in A. baumannii and the presence of bla(VEB) and bla(GES) genes, as well as between the aztreonam resistance phenotype and the presence of bla(GES) gene in E. coli. These data may be useful in achieving a better control of infection strategies and antibiotic management in clinical scenarios where these multidrug-resistant Gram-negative pathogens cause higher morbidity and mortality. | 2024 | 38786157 |
| 1899 | 8 | 0.9998 | Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance. | 2012 | 22808141 |
| 892 | 9 | 0.9998 | Sequencing analysis of tigecycline resistance among tigecycline non-susceptible in three species of G-ve bacteria isolated from clinical specimens in Baghdad. BACKGROUND: Recent emergence of high-level tigecycline resistance is mediated by tet(X) genes in Gram-negative bacteria, which undoubtedly constitutes a serious threat for public health worldwide. This study aims to identify tigecycline non-susceptible isolates and detect the presence of genes that are responsible for tigecycline resistance among local isolates in Iraq for the first time. METHODS: Thirteen clinical isolates of Klebsiella pneumonia, Acinetobacter baumannii and Pseudomonas aeruginosa tigecycline non-susceptible were investigated from blood, sputum and burns specimens. The susceptibility of different antibiotics was tested by the VITEK-2 system. To detect tigecycline resistance genes, PCR was employed. RESULTS: Strains studied in this work were extremely drug-resistant and they were resistant to most antibiotic classes that were studied. The plasmid-encoded tet(X), tet(X1), tet(X2), tet(X3), tet(X4), tet(X5), tet(M) and tet(O) genes were not detected in the 13 isolates. The results showed that there is a clear presence of tet(A) and tet(B) genes in tigecycline non-susceptible isolates. All 13 (100%) tigecycline non-susceptible K. pneumoniae, A. baumannii and P. aeruginosa isolates harbored the tet(B) gene. In contrast, 4 (30.77%) tigecycline non-susceptible P. aeruginosa isolates harbored the tet(A) gene and there was no tigecycline non-susceptible A. baumannii isolate harboring the tet(A) gene (0%), but one (7.69%) tigecycline non-susceptible K. pneumoniae isolate harbored the tet(A) gene. A phylogenetic tree, which is based on the nucleotide sequences of the tet(A) gene, showed that the sequence of the local isolate was 87% similar to the nucleotide sequences for all the isolates used for comparison from GenBank and the local isolate displayed genetic diversity. CONCLUSIONS: According to this study, tet(B) and tet(A) play an important role in the appearance of tigecycline non-susceptible Gram-negative isolates. | 2022 | 36207501 |
| 1708 | 10 | 0.9998 | High-level of resistance to β-lactam and presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from soil. OBJECTIVES: Bacteria belonging to the genera Ochrobactrum and Achromobacter are bacteria considered opportunistic, causing infections mainly in immunocompromised patients. β-lactamases are the main cause of resistance to β-lactam antibiotics. This study aimed to investigate the antimicrobial resistance profile and the presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from Brazilian soils. METHODS: Soil samples from the five regions of Brazil were collected for the isolation of bacteria, which were identified molecularly and then, the minimum inhibitory concentration and detection of β-lactamases encoding genes were performed. RESULTS: High-level of resistance to β-lactam antibiotics and different β-lactamases encoding genes were found (bla(CTX-M-Gp1), bla(SHV), bla(OXA-1-like) and bla(KPC)), including the first report of the presence of bla(KPC) in bacteria belonging to the genera Ochrobactrum and Achromobacter. CONCLUSION: The results showed that the bacteria from this study, belonging to genera Ochrobactrum and Achromobacter isolated from soil, harbor different β-lactamases encoding genes and can act as a reservoir of these genes. | 2017 | 29111479 |
| 1682 | 11 | 0.9998 | Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla (VIM-) (1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context. | 2019 | 31849911 |
| 870 | 12 | 0.9998 | Dissemination of multiple carbapenem-resistant clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia. It has previously been shown that carbapenem-resistant Acinetobacter baumannii are frequently detected in Saudi Arabia. The present study aimed to identify the epidemiology and distribution of antibiotic resistance determinants in these bacteria. A total of 83 A. baumannii isolates were typed by pulsed-field gel electrophoresis (PFGE), and screened by PCR for carbapenemase genes and insertion sequences. Antibiotic sensitivity to imipenem, meropenem, tigecycline, and colistin were determined. Eight different PFGE groups were identified, and were spread across multiple hospitals. Many of the PFGE groups contained isolates belonging to World-wide clone 2. Carbapenem resistance or intermediate resistance was detected in 69% of isolates. The bla VIM gene was detected in 94% of isolates, while bla OXA-23-like genes were detected in 58%. The data demonstrate the co-existence and wide distribution of a number of clones of carbapenem-resistant A. baumannii carrying multiple carbapenem-resistance determinants within hospitals in the Eastern Region of Saudi Arabia. | 2015 | 26191044 |
| 1681 | 13 | 0.9998 | Molecular Analyses of Biofilm-Producing Clinical Acinetobacter baumannii Isolates from a South Indian Tertiary Care Hospital. OBJECTIVES: The aim of the study was to determine the presence of antimicrobial-resistance (AMR) genes, virulence genes, and mobile genetic elements (MGEs) in 14 biofilm-producing clinical isolates of Acinetobacter baumannii. MATERIALS AND METHODS: PCR amplification was performed to analyse the prevalence of genes associated with antibiotic resistance (extended-spectrum β-lactamases [ESBLs] and metallo-β-lactamases [MBLs]), virulence factors, MGEs (class 1 integron, Tn1213, and A. baumannii antibiotic resistance [AbaR]), and comM among the study isolates. Random amplified polymorphic DNA (RAPD) PCR was then deployed to understand their phylogenetic relationship. All the isolates were investigated for biofilm production. RESULTS: Two isolates were antibiotic-sensitive (AS), 3 were multi-drug-resistant (MDR), and the remaining 9 were extensively drug-resistant (XDR). The majority of the isolates were found to be positive for biofilm production and were sensitive against tetracycline and colistin only. Ab14 and Ab11 were found to be resistant to minocycline and colistin, respectively. blaTEM, blaOXA, blaNDM, blaVIM, blaSIM, and blaPER-1; class 1 integron; composite transposon Tn1213; AbaR island, and virulence factor genes were detected among the isolates. These pathogens were found to have originated from multiple clonal lineages. CONCLUSION: Biofilm-producing A. baumannii with multiple virulence and AMR genes pose serious clinical challenges. The presence of MGEs further compounds the situation as these isolates serve as potential reservoirs of AMR and virulence genes. Together with their capacity for natural competence, A. baumannii, if left unchecked, will lead to the spread of resistance determinants to previously sensitive bacteria and may aid in the emergence of untreatable pan-drug-resistant phenotypes. | 2020 | 32380504 |
| 1703 | 14 | 0.9998 | Acinetobacter baumannii clinical isolates from outbreaks in Erbil hospitals after the COVID-19 pandemic. INTRODUCTION: Acinetobacter baumannii is endemic in hospital environments, and since the coronavirus disease 2019 (COVID-19) pandemic, multidrug-resistant A. baumannii has become more potent. This potential evolution is driven by the undetectable numbers of gene resistances it has acquired. We evaluated the antibiotic-resistance genes in isolates from patients in Erbil hospitals. METHODOLOGY: This is the first study to demonstrate the antimicrobial resistance epidemic in Erbil, Iraq. A total of 570 patients, including 100 COVID-19 patients were tested. Isolate identification, characterization, antibiotics susceptibility test, polymerase chain reaction (PCR) amplification of the antibiotic resistance genes in both bacterial chromosome and plasmid, 16S-23S rRNA gene intergenic spacer (ITS) sequencing using the Sanger DNA sequencing, and phylogenetic analysis were used in this study. RESULTS: Only 13% of A. baumannii isolates were from COVID-19 patients. All isolates were multi-drug resistant due because of 24 resistance genes located in both the bacterial chromosome or the plasmid. blaTEM gene was detected in the isolates; however, aadB was not detected in the isolated bacteria. New carbapenemase genes were identified by Sanger sequencing and resistance genes were acquired by plasmids. CONCLUSIONS: The study identified metabolic differences in the isolates; although all the strains used the coumarate pathway to survive. Several resistance genes were present in the isolates' plasmids and chromosome. There were no strong biofilm producers. The role of the plasmid in A. baumannii resistance development was described based on the results. | 2024 | 39499748 |
| 1716 | 15 | 0.9998 | Detection of clinically important β-lactamases by using PCR. Increasing antimicrobial resistance of nosocomial pathogens is becoming a serious threat to public health. To control the spread of this resistance, it is necessary to detect β-lactamase-producing organisms in the clinical setting. The aims of the study were to design a PCR assay for rapid detection of clinically encountered β-lactamase genes described in Enterobacteriaceae and Gram-negative non-fermenting bacteria. The functionality of proposed primers was verified using eight reference strains and 17 strains from our collection, which contained 29 different β-lactamase genes. PCR products of the test strains were confirmed by Sanger sequencing. Sequence analysis was performed using bioinformatics software Geneious. Overall, 67 pairs of primers for detecting 12 members of the class C β-lactamase family, 15 members of class A β-lactamases, six gene families of subclass B1, one member each of subclasses B2, B3 and class D β-lactamases were designed, of which 43 pairs were experimentally tested in vitro. All 29 β-lactamase genes, including 10 oxacillinase subgroups, were correctly identified by PCR. The proposed set of primers should be able to specifically detect 99.7% of analyzed β-lactamase subtypes and more than 79.8% of all described β-lactamase genes. | 2021 | 34100944 |
| 1704 | 16 | 0.9998 | Exploring virulence characteristics of Klebsiella pneumoniae isolates recovered from a Greek hospital. The objective of this study was to characterize the virulence characteristics of a collection of Klebsiella pneumoniae isolates collected from different clinical sources. A collection of 60 non-repetitive K. pneumoniae isolates, was studied. In vitro, virulence was analyzed by testing the survival of bacteria in pooled human serum. Isolates were typed by MLST. The genomes of 23 K. pneumoniae isolates, representatives of different STs and virulence profiles, were completely sequenced using the Illumina platform. Of note, 26/60 of K. pneumoniae isolates were resistant to killing by complement. Serum-resistant isolates belonged to distinct STs. Analysis of WGS data with VFDB showed the presence of several virulence genes related various virulence functions. Specifically, serum-resistant isolates carried a higher number of ORFs, which were associated with serum resistance, compared to serum-sensitive isolates. Additionally, analysis of WGS data showed the presence of multiple plasmid replicons that could be involved with the spread and acquisition of resistance and virulence genes. In conclusion, analysis of virulence characteristics showed that an important percentage (31.6%) of K. pneumoniae isolates were in vitro virulent by exhibiting resistance to serum. Thus, the presence of several virulence factors, in combination with the presence of multidrug resistance, could challenge antimicrobial therapy of infections caused by such bacteria. | 2025 | 40415138 |
| 1700 | 17 | 0.9998 | The Prevalence of Multidrug-Resistant Enterobacteriaceae among Neonates in Kuwait. Increasing numbers of neonates with serious bacterial infections, due to resistant bacteria, are associated with considerable morbidity and mortality rates. The aim of this study was to evaluate the prevalence of drug-resistant Enterobacteriaceae in the neonatal population and their mothers in Farwaniya Hospital in Kuwait and to determine the basis of resistance. Rectal screening swabs were taken from 242 mothers and 242 neonates in labor rooms and wards. Identification and sensitivity testing were performed using the VITEK(®) 2 system. Each isolate flagged with any resistance was subjected to the E-test susceptibility method. The detection of resistance genes was performed by PCR, and the Sanger sequencing method was used to identify mutations. Among 168 samples tested by the E-test method, no MDR Enterobacteriaceae were detected among the neonates, while 12 (13.6%) isolates from the mothers' samples were MDR. ESBL, aminoglycosides, fluoroquinolones, and folate pathway inhibitor resistance genes were detected, while beta-lactam-beta-lactamase inhibitor combinations, carbapenems, and tigecycline resistance genes were not. Our results showed that the prevalence of antibiotic resistance in Enterobacteriaceae obtained from neonates in Kuwait is low, and this is encouraging. Furthermore, it is possible to conclude that neonates are acquiring resistance mostly from the environment and after birth but not from their mothers. | 2023 | 37189605 |
| 868 | 18 | 0.9998 | Antimicrobial susceptibility and genetic characteristics of multi-drug resistant Acinetobacter baumannii isolates in Northwest China. INTRODUCTION: In recent decades, widespread multi-drug resistant (MDR) bacteria have become a serious problem in healthcare facilities. METHODS: To systematically summarize and investigate the prevalence and genomic features of clinical MDR Acinetobacter baumannii (A. baumannii) clinical isolates recovered from the first hospital of Lanzhou University, we collected 50 MDR A. baumannii isolates isolated in the first quarter of 2022 and using whole-genome sequencing investigate the genotypic characteristics. RESULTS: All of these isolates were generally resistant to the common β-lactamase antibiotics. Resistance to cefoperazone-sulbactam varies greatly between different clones. The proportion of CC208 isolates resistant and mediated to cefoperazone-sulbactam is as high as 84.6%. There were no isolates resistant to tigecycline and colistin. The presence of bla(OXA - 23) (94.0%) and bla(OXA - 66) (98.0%) were the most frequent determinants for carbapenem resistance. Two main endemic clones were identified, one (ST469(oxf)) was predominantly circulating in ICUs and carried the same resistance genes, virulence genes and transposons, and the other clone (CC208) carried more resistance genes and had more widely disseminated. DISCUSSION: Our study showed that clinical MDR A. baumannii isolates circulating in our hospital exhibited highly similar genetic features. We should take timely and effective measures to control the further epidemic of these isolates. | 2024 | 38746749 |
| 866 | 19 | 0.9998 | Opening Pandora's box: High-level resistance to antibiotics of last resort in Gram-negative bacteria from Nigeria. OBJECTIVES: The aim of this study was to determine the percentage of antimicrobial-resistant isolates and the associated resistance mechanisms in Gram-negative bacteria from South Western Nigeria. METHODS: A total of 306 non-duplicate unbiased Gram-negative isolates were recovered from patients admitted to three teaching hospitals in South Western Nigeria in 2011 and 2013. Isolates were from clinical samples as well as from stool samples of inpatients without infection to assess antimicrobial resistance patterns in carriage isolates. Antimicrobial susceptibility testing was performed, and PCR and sequencing were used to identify genes encoding various known β-lactamases. Based on phenotypic and genotypic results, 10 isolates representing the diversity of phenotypes present were selected for whole-genome sequencing (WGS). RESULTS: Antimicrobial susceptibility testing revealed the following resistance rates: fluoroquinolones, 78.1%; third-generation cephalosporins, 92.2%; and carbapenems, 52.6%. More resistant isolates were isolated from stools of uninfected patients compared with clinical infection specimens. Klebsiella (10%) and Escherichia coli (7%) isolates produced a carbapenemase. WGS of selected isolates identified the presence of globally disseminated clones. CONCLUSION: This study illustrates a crisis for the use of first-line antimicrobial therapy in Nigerian patients. It is likely that Nigeria is playing a significant role in the spread of antimicrobial resistance owing to its large population with considerable global mobility. | 2020 | 31654790 |