First national study on genomic profiling of Escherichia coli in United Arab Emirates (UAE) aquatic environments shows diverse Quinolone and Cephalosporin resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
163801.0000First national study on genomic profiling of Escherichia coli in United Arab Emirates (UAE) aquatic environments shows diverse Quinolone and Cephalosporin resistance. Antimicrobial resistance (AMR) is a serious threat to human, animal and plant health, and over recent years the role of the aquatic environment as a hotspot and dissemination route for resistant bacteria has been increasingly recognised. The United Arab Emirates (UAE) has identified AMR as a critical area of concern; however, limited studies have been conducted regarding the presence of AMR in aquatic environments in the region. This study addresses this gap by conducting a national surveillance to better understand the prevalence of aquatic AMR. We investigated the phenotypic and genotypic resistances in Escherichia coli (E. coli) isolates (n= 256) from sewage impacted and unimpacted coastal waters and artificial lakes across the UAE. Multidrug resistance was observed in 34.2% of isolates, with 22.7% exhibiting resistance to 3(rd) and 4(th) generation cephalosporins, cefotaxime and ceftazidime, including 16.6% displaying an extended-spectrum β-lactamase (ESBL) phenotype. Resistance to fluoroquinolones, macrolides, and carbapenems was also detected. Whole-genome sequencing (n=92) revealed a high prevalence of the fimH virulence gene, as well as conjugative plasmids (IncF, IncA/C and IncY) carrying resistance determinants. Notably, qnrS1 and bla(CTX-M-15) resistance genes were identified in 39% of sequenced isolates, while the bla(NDM-5) gene was detected for the first time in a single isolate. These findings underscore the need for harmonised AMR surveillance and a regional monitoring framework to assess the environmental dissemination of AMR bacteria in a One Health context.202540969202
163710.9999Genomic surveillance of antimicrobial resistance in bovine fecal samples from Lebanon. Antimicrobial resistance (AMR) threatens human and animal health worldwide, driven by the spread of extended-spectrum β-lactamase (ESBL)-producing, and carbapenem-resistant Gram-negative bacteria. In Lebanon, inadequate surveillance and antibiotic misuse worsen the issue. Animal fecal material is an important reservoir of resistance genes and mobile elements. This study aims to address AMR in bovine feces. To achieve this, bovine fecal samples were collected from 24 farms in Lebanon. Sixty-two ESBL-producing bacteria were recovered on CHROMagar ESBL and whole-genome sequencing followed by in silico typing was used to determine the resistance genes, virulence factors, and mobile genetic elements. Disk diffusion assay revealed the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (33/62) with Escherichia coli being the most common (37/62). Resistance to amoxicillin, ceftriaxone, and cefotaxime was detected in all 37 E. coli isolates, with one also exhibiting resistance to colistin. β-lactam resistance was primarily associated with bla(CTX-M-15) and bla(TEM-1B), while colistin resistance was linked to mcr-1.1 on an IncHI2A/IncFIC multi-replicon plasmid. Plasmid typing identified 22 replicons, the most common being IncFIB and IncFII. Virulence factor analysis identified enterotoxin-encoding genes in one E. coli isolate, suggesting a potentially pathogenic strain with diarrheagenic properties among the recovered isolates. The findings of this study revealed highly resistant Gram-negative bacteria with plasmid-mediated resistance to critical antibiotics such as colistin, emphasizing the risks posed to human and livestock health. Comprehensive surveillance and responsible antibiotic use, guided by an integrated One Health approach, are essential steps to effectively tackle the interconnected challenges of AMR.202540482361
163620.9999Widespread high-risk clones of multidrug-resistant extended-spectrum β-lactamase-producing Escherichia coli B2-ST131 and F-ST648 in public aquatic environments. Aquatic environments are considered a reservoir for the dissemination of multidrug-resistant (MDR) bacteria, principally Escherichia coli, with the consequent spread of acquired antimicrobial resistance genes (ARGs). Widespread high-risk clones of MDR E. coli are responsible for human infections worldwide. This study aimed to characterise, through whole-genome sequencing (WGS), isolates of MDR E. coli harbouring ARGs obtained from public aquatic environments in Brazil. MDR E. coli isolates were obtained from rivers, streams and lakes that presented different Water Quality Index records and were submitted to WGS. The resistome, mobilome and virulome showed a great diversity of ARGs, plasmids and virulence genes, respectively. In addition, mutations in the quinolone resistance-determining regions of GyrA, ParC and ParE as well as several metal resistance genes (MRGs) and antibacterial biocide resistance genes (ABGs) were detected. Typing and subtyping of MDR E. coli revealed different lineages, with two belonging to widespread high-risk clones (i.e. B2-ST131-fimH30 and F-ST648-fimH27), which are grouped by core genome multilocus sequence typing (cgMLST) in clusters with E. coli lineages obtained from different sources distributed worldwide. MDR bacteria carrying MRGs and ABGs have emerged as a global human and environmental health problem. Detection of widespread high-risk clones calls for attention to the dissemination of fluoroquinolone-resistant QnrS1- and CTX-M-producing E. coli lineages associated with human infections in public aquatic environments.202032479889
262730.9999High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Globally, urban water bodies have emerged as an environmental reservoir of antimicrobial resistance (AMR) genes because resistant bacteria residing here might easily disseminate these traits to other waterborne pathogens. In the present study, we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes, and integrons in commensal strains of Escherichia coli, the predominant fecal indicator bacteria isolated from a major urban river of northern India Yamuna. The genetic environment of bla (CTX-M-15) was also investigated. Our results indicated that 57.5% of the E. coli strains were resistant to at least two antibiotic classes and 20% strains were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple antibiotic resistance index of about one-third of the E. coli strains was quite high (>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to plasmid-mediated AMR genes, bla (TEM-1) was present in 95% of the strains, followed by qnrS1 and armA (17% each), bla (CTX-M-15) (15%), strA-strB (12%), and tetA (7%). Contrary to the earlier reports where bla (CTX-M-15) was mostly associated with pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and B1, also. The genetic organization of bla (CTX-M-15) was similar to that reported for E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of bla (CTX-M-15). The integrons of classes 2 and 3 were absent, but class 1 integron gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli of river Yamuna. These evidences indicate that due to high prevalence of plasmid-mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread dissemination of AMR in the environment. Thus, regular surveillance and management of urban rivers is necessary to curtail the spread of AMR and associated health risks.202133633708
262840.9998Occurrence and persistence of multidrug-resistant Enterobacterales isolated from urban, industrial and surface water in Monastir, Tunisia. The One Health approach of antimicrobial resistance highlighted the role of the aquatic environment as a reservoir and dissemination source of resistance genes and resistant bacteria, especially due to anthropogenic activities. Resistance to extended-spectrum cephalosporins (ESC) conferred by extended-spectrum beta-lactamases (ESBLs) in E. coli has been proposed as the major marker of the AMR burden in cross-sectoral approaches. In this study, we investigated wastewater, surface water and seawater that are subjected to official water quality monitoring in Monastir, Tunisia. While all but one sample were declared compliant according to the official tests, ESC-resistant bacteria were detected in 31 (19.1 %) samples. Thirty-nine isolates, coming from urban, industrial and surface water in Monastir, were collected and characterized using antibiograms and whole-genome sequencing. These isolates were identified as 27 Escherichia coli (69.3 %) belonging to 13 STs, 10 Klebsiella pneumoniae (25.6 %) belonging to six STs, and two Citrobacter freundii (5.1 %). We observed the persistence and dissemination of clones over time and in different sampling sites, and no typically human-associated pathogens could be identified apart from one ST131. All isolates presented a bla(CTX-M) gene - bla(CTX-M-15) (n = 22) and bla(CTX-M-55) (n = 8) being the most frequent variants - which were identified on plasmids (n = 20) or on the chromosome (n = 19). In conclusion, we observed ESC resistance in rather ubiquitous bacteria that are capable of surviving in the water environment. This suggests that including the total coliform count and the ESBL count as determined by bacterial growth on selective plates in the official monitoring would greatly improve water quality control in Tunisia.202438460700
191350.9998Citrobacter spp. and Enterobacter spp. as reservoirs of carbapenemase bla(NDM) and bla(KPC) resistance genes in hospital wastewater. Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of β-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 β-lactamase genes; bla(TEM) in 33.1%, bla(CTX-M) in 25.4%, bla(KPC) in 25.4%, bla(NDM) 8.8%, bla(SHV) in 5.3%, and bla(OXA-48) in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase bla(KPC) was found in six Citrobacter spp. and E. coli, while bla(NDM) was detected in two distinct Enterobacter spp. and E. coli. Notably, bla(NDM-1) was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase bla(KPC) and bla(NDM). We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE: The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as bla(KPC) and bla(NDM) within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.202439012101
186360.9998Genomic surveillance of extended-spectrum cephalosporin-resistant Escherichia coli isolated from poultry in the UK from 2016 to 2020. INTRODUCTION: Surveillance is vital for monitoring the increasing risk of antimicrobial resistance (AMR) in bacteria leading to failures in humans and animals to treat infections. In a One Health context, AMR bacteria from livestock and food can transfer through the food chain to humans, and vice versa, which can be characterized in detail through genomics. We investigated the critical aspects of AMR and the dynamics of AMR in poultry in the UK. METHODS: In this study, we performed whole genome sequencing for genomic characterization of 761 extended-spectrum cephalosporinases (ESCs) harboring Escherichia coli isolated from poultry caeca and meat through EU harmonized monitoring of AMR in zoonotic and commensal bacteria from 2016 and 2018 and UK national monitoring in 2020. RESULTS: The most common ESC in 2016 and 2018 was blaCTX-M-1; however, 2020 had a greater diversity of ESCs with blaCTX-M-55 dominant in chickens and blaCTX-M-15 more prevalent in turkeys. Co-resistance to sulphonamides, tetracycline, and trimethoprim was widespread, and there were several positive correlations between the sequence types (STs) and ESC genes. We identified certain AMR genotypes and STs that were frequent each year but not as successful in subsequent years, e.g., ST350 harboring blaCTX-M-1, sul2, and tetA-v4.Phylogenetic comparison of isolates prevalent in our panel with global ones from the same STs available in public databases showed that isolates from the UK generally clustered together, suggesting greater within-country than between-country transmission. DISCUSSION: We conclude that future genomic surveillance of indicator organisms will be invaluable as it will enable detailed comparisons of AMR between and within neighboring countries, potentially identifying the most successful sequence types, plasmids, or emerging threats.202338352060
190170.9998Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that bla(CTX-M) is the dominant ESBL gene type found in South Korea. The spread of bla(CTX-M) appears to have been facilitated by both clonal spread between different host species and conjugation. Most bla(CTX-M) genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of bla(CTX-M)-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes.202438554973
158980.9998Clonal Complexes 23, 10, 131 and 38 as Genetic Markers of the Environmental Spread of Extended-Spectrum β-Lactamase (ESBL)-Producing E. coli. In accordance with the global action plan on antimicrobial resistance adopted by the World Health Assembly in 2015, there is a need to develop surveillance programs for antimicrobial resistant bacteria. In this context, we have analyzed the clonal diversity of Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from aquatic environments and human and food samples in Spain, with the aim of determining possible clonal complexes (CCs) that act as markers of the potential risk of transmission of these resistant bacteria. The phylogenetic groups, sequence types (STs) and CCs were determined by different Polymerase Chain Reaction (PCR) and Multilocus Sequence Typing (MLST) techniques. Phylogroup A was prevalent and was mainly present in food and water strains, while human strains were mostly associated with phylogroup B2. According to the observed prevalence in the different niches, CC23 and CC10 are proposed as markers of phylogroups A and C, related with the spread of bla(CTX-M1) and bla(CTX-M15) genes. Similarly, CC131 and CC38 could be associated to the dissemination of pathogenic strains (phylogroups B2 and D) carrying mainly bla(CTX-M14) and bla(CTX-M15) genes. Some strains isolated from wastewater treatment plants (WWTPs) showed identical profiles to those isolated from other environments, highlighting the importance that water acquires in the dissemination of bacterial resistance. In conclusion, the detection of these genetic markers in different environments could be considered as an alert in the spread of ESBL.202236358120
168290.9998Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla (VIM-) (1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context.201931849911
2760100.9998Extended-spectrum β-lactamase-producing bacteria and their resistance determinants in different wastewaters and rivers in Nepal. Wastewaters serve as significant reservoirs of antibiotic resistant bacteria. Despite the evidence of antimicrobial resistance in wastewaters and river water in Kathmandu, direct linkage between them is not discussed yet. This study investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing bacteria and associated resistance genes in wastewaters and river water. Out of 246 bacteria from wastewaters, 57.72% were ESBL producers and 77.64% of them were multidrug resistant (MDR). ESBL producing E. coli was dominant in municipal and hospital wastewaters (HWW) as well as in river water while K. pneumoniae was common in pharmaceutical wastewater. The bla(SHV) and bla(TEM) genes were prevalent and commonly co-occurred with aac(6')-Ib-cr in K. pneumoniae isolated pharmaceutical wastewater. bla(CTX-M) carrying E. coli from hospital co-harbored aac(6')-Ib-cr while that from municipal influent and river water co-harbored qnrS. Whole genome sequencing data revealed the presence of diverse ARGs in bacterial isolates against multiple antibiotics. In average, an E. coli and a K. pneumoniae isolate contained 55.75 ± 0.96 and 40.2 ± 5.36 ARGs, respectively. Multi-locus sequence typing showed the presence of globally high-risk clones with wider host range such as E. coli ST10, and K. pneumoniae ST15 and ST307 in HWW and river indicating frequent dissemination of antimicrobial resistance in wastewater of Kathmandu. Whole genome sequence data aligned with phenotypic antibiograms and resistance genes detected by PCR in selected isolates. The presence of significant plasmid replicons (IncF, IncY) and mobile genetic elements (IS903, IS26) indicate high frequency of spreading antibiotic resistance. These findings indicate burden and dissemination of antimicrobial resistance in the environment and highlight the need for effective strategies to mitigate the antibiotic resistance.202438795483
1900110.9998The dissemination of antimicrobial resistance determinants in surface water sources in Lebanon. The prevalence of antibiotic-resistant bacteria in surface water in Lebanon is a growing concern and understanding the mechanisms of the spread of resistance determinants is essential. We aimed at studying the occurrence of resistant bacteria and determinants in surface water sources in Lebanon and understanding their mobilization and transmission. Water samples were collected from five major rivers in Lebanon. A total of 91 isolates were recovered by incubating at 37°C on Blood and MacConkey agar out of which 25 were multi-drug resistant (MDR) and accordingly were further characterized. Escherichia coli and Klebsiella pneumoniae were the most common identified MDR isolates. Conjugation assays coupled with in silico plasmid analysis were performed and validated using PCR-based replicon typing (PBRT) to identify and confirm incompatibility groups and the localization of β-lactamase encoding genes. Escherichia coli EC23 carried a blaNDM-5 gene on a conjugative, multireplicon plasmid, while blaCTX-M-15 and blaTEM-1B were detected in the majority of the MDR isolates. Different sequence types (STs)were identified including the highly virulent E. coli ST131. Our results showed a common occurrence of bacterial contaminants in surface water and an increase in the risk for the dissemination of resistance determinants exacerbated with the ongoing intensified population mobility in Lebanon and the widespread lack of wastewater treatment.202134329434
1591120.9998Influence of agricultural practice on mobile bla genes: IncI1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Many calls have been made to address antibiotic resistance in an environmental perspective. With this study, we showed the widespread presence of high-level antibiotic resistant isolates on a collection of non-susceptible Gram-negative bacteria (n = 232) recovered from soils. Bacteria were selected using amoxicillin, cefotaxime and imipenem, from sites representing different agricultural practices (extensive, intensive and organic). Striking levels of non-susceptibility were noticed in intensive soils for norfloxacin (74%), streptomycin (50.7%) and tetracycline (46.6%); indeed, the exposure to intensive agricultural practices constituted a risk factor for non-susceptibility to many antibiotics, multidrug resistance and production of extended-spectrum β-lactamases (ESBL). Analyses of non-susceptibility highlighted that environmental and clinical bacteria from the same species might not share the same intrinsic resistance patterns, raising concerns for therapy choices in environment-borne infections. The multiple sequence-type IncI1-driven spread of penicillinases (blaTEM-1, blaTEM-135), ESBL (blaSHV-12 and blaCTX-M-1) and plasmid-mediated AmpC β-lactamases (blaCMY-2), produced by isolates that share their molecular features with isolates from humans and animals, suggests contamination of agricultural soils. This is also the first appearance of IncI1/ST28-harbouring blaCTX-M-1, which should be monitored to prevent their establishment as successfully dispersed plasmids. This research may help disclose paths of contamination by mobile antibiotic resistance determinants and the risks for their dissemination.201626279315
1618130.9998Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (bla(CTX-M-65), bla(CTX-M-55), and bla(EC-1982)). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use.202439453061
2626140.9998Antibiotic Resistance in an Indian Rural Community: A 'One-Health' Observational Study on Commensal Coliform from Humans, Animals, and Water. Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a 'one-health' approach. The samples were collected from a village belonging to demographic surveillance site of Ruxmaniben Deepchand (R.D.) Gardi Medical College Ujjain, Central India. Commensal coliforms from stool samples from children aged 1-3 years and their environment (animals, drinking water from children's households, common source- and waste-water) were studied for antibiotic susceptibility and plasmid-encoded resistance genes. E. coli isolates from human (n = 127), animal (n = 21), waste- (n = 12), source- (n = 10), and household drinking water (n = 122) carried 70%, 29%, 41%, 30%, and 30% multi-drug resistance, respectively. Extended spectrum beta-lactamase (ESBL) producers were 57% in human and 23% in environmental isolates. Co-resistance was frequent in penicillin, cephalosporin, and quinolone. Antibiotic-resistance genes bla(CTX-M-9) and qnrS were most frequent. Group D-type isolates with resistance genes were mainly from humans and wastewater. Colistin resistance, or the mcr-1 gene, was not detected. The frequency of resistance, co-resistance, and resistant genes are high and similar in coliforms from humans and their environment. This emphasizes the need to mitigate antibiotic resistance with a 'one-health' approach.201728383517
1902150.9998Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. INTRODUCTION: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. METHODS: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. RESULTS: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the bla(KPC-2), bla(NDM-5), bla(OXA-1), bla(OXA-48), and bla(OXA-181) β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. DISCUSSION: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance.202337323902
2752160.9998Antibiotic Resistance in Enterobacteriaceae from Surface Waters in Urban Brazil Highlights the Risks of Poor Sanitation. Surface waters are an unappreciated reservoir of antimicrobial resistance (AMR). Poor sanitation brings different species of environmental bacteria into contact, facilitating horizontal gene transfer. To investigate the role of surface waters as potential reservoirs of AMR, we studied the point prevalence of fecal contamination, AMR genes, and Enterobacteriaceae in an urban lake and rural river system in Northeast Brazil in comparison with a lake and sewer system in Northeast Ohio in the United States. Surface water samples were examined for evidence of human fecal contamination using microbial source tracking and screened for plasmid-mediated fluoroquinolone resistance and carbapenemase genes. Enterobacteriaceae were detected using selective agar followed by antimicrobial susceptibility testing and detection of AMR genes by microarray, and classified by repetitive sequence-based polymerase chain reaction and multilocus sequence typing. Concentrations of human fecal bacteria in the Brazilian urban lake and sewage in Northeast Ohio were similarly high. Filtered water samples from the Brazilian urban lake, however, showed the presence of bla (OXA-48), bla (KPC), bla (VIM-2), qnrS, and aac(6')-lb-cr, whereas only bla (VIM-2) was identified in raw sewage from Northeast Ohio. From the Brazilian urban lake, 85% of the Enterobacteriaceae (n = 40) cultured were resistant to at least one clinically important antibiotic, including ST131 Escherichia coli harboring the extended-spectrum beta-lactamase CTX-M. Although two isolates demonstrated polymyxin resistance, mcr-1/2 was not detected. Our findings indicate that surface waters in an urban Brazilian site can serve as an environmental reservoir of AMR and that improving wastewater treatment and sanitation generally may ameliorate AMR dissemination.201930994094
1596170.9998Distribution of bla(CTX-M-)gene variants in E. coli from different origins in Ecuador. The increasing abundance of extended spectrum (β-lactamase (ESBL) genes in E. coli, and other commensal and pathogenic bacteria, endangers the utility of third or more recent generation cephalosporins, which are major tools for fighting deadly infections. The role of domestic animals in the transmission of ESBL carrying bacteria has been recognized, especially in low- and middle-income countries, however the horizontal gene transfer of these genes is difficult to assess. Here we investigate bla(CTX-M) gene diversity (and flanking nucleotide sequences) in E. coli from chicken and humans, in an Ecuadorian rural community and from chickens in another location in Ecuador. The bla(CTX-M) associated sequences in isolates from humans and chickens in the same remote community showed greater similarity than those found in E. coli in a chicken industrial operation 200 km away. Our study may provide evidence of bla(CTX-M) transfer between chickens and humans in the community.202338148908
1862180.9998Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin - A Systematic Review and Meta-Analysis. Third generation cephalosporins and carbapenems are considered critically important antimicrobials in human medicine. Food animals such as swine can act as reservoirs of antimicrobial resistance (AMR) genes/bacteria resistant to these antimicrobial classes, and potential dissemination of AMR genes or resistant bacteria from pigs to humans is an ongoing public health threat. The objectives of this systematic review and meta-analysis were to: (1) estimate global proportion and animal-level prevalence of swine E. coli phenotypically resistant to third generation cephalosporins (3GCs) and carbapenems at a country level; and (2) measure abundances and global distribution of the genetic mechanisms that confer resistance to these antimicrobial classes in these E. coli isolates. Articles from four databases (CAB Abstracts, PubMed/MEDLINE, PubAg, and Web of Science) were screened to extract relevant data. Overall, proportion of E. coli resistant to 3GCs was lower in Australia, Europe, and North America compared to Asian countries. Globally, <5% of all E. coli were carbapenem-resistant. Fecal carriage rates (animal-level prevalence) were consistently manifold higher as compared to pooled proportion of resistance in E. coli isolates. bla (CTX-M) were the most common 3GC resistance genes globally, with the exception of North America where bla (CMY) were the predominant 3GC resistance genes. There was not a single dominant bla (CTX-M) gene subtype globally and several bla (CTX-M) subtypes were dominant depending on the continent. A wide variety of carbapenem-resistance genes (bla (NDM-, VIM-, IMP-, OXA-48), (and) (KPC-)) were identified to be circulating in pig populations globally, albeit at very-low frequencies. However, great statistical heterogeneity and a critical lack of metadata hinders the true estimation of prevalence of phenotypic and genotypic resistance to these antimicrobials. Comparatively frequent occurrence of 3GC resistance and emergence of carbapenem resistance in certain countries underline the urgent need for improved AMR surveillance in swine production systems in these countries.202235620091
5613190.9998Characterizing Antimicrobial Resistance in Clinically Relevant Bacteria Isolated at the Human/Animal/Environment Interface Using Whole-Genome Sequencing in Austria. Antimicrobial resistance (AMR) is a public health issue attributed to the misuse of antibiotics in human and veterinary medicine. Since AMR surveillance requires a One Health approach, we sampled nine interconnected compartments at a hydrological open-air lab (HOAL) in Austria to obtain six bacterial species included in the WHO priority list of antibiotic-resistant bacteria (ARB). Whole genome sequencing-based typing included core genome multilocus sequence typing (cgMLST). Genetic and phenotypic characterization of AMR was performed for all isolates. Eighty-nine clinically-relevant bacteria were obtained from eight compartments including 49 E. coli, 27 E. faecalis, 7 K. pneumoniae and 6 E. faecium. Clusters of isolates from the same species obtained in different sample collection dates were detected. Of the isolates, 29.2% were resistant to at least one antimicrobial. E. coli and E. faecalis isolates from different compartments had acquired antimicrobial resistance genes (ARGs) associated with veterinary drugs such as aminoglycosides and tetracyclines, some of which were carried in conjugative and mobilizable plasmids. Three multidrug resistant (MDR) E. coli isolates were found in samples from field drainage and wastewater. Early detection of ARGs and ARB in natural and farm-related environments can identify hotspots of AMR and help prevent its emergence and dissemination along the food/feed chain.202236232576