# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1636 | 0 | 1.0000 | Widespread high-risk clones of multidrug-resistant extended-spectrum β-lactamase-producing Escherichia coli B2-ST131 and F-ST648 in public aquatic environments. Aquatic environments are considered a reservoir for the dissemination of multidrug-resistant (MDR) bacteria, principally Escherichia coli, with the consequent spread of acquired antimicrobial resistance genes (ARGs). Widespread high-risk clones of MDR E. coli are responsible for human infections worldwide. This study aimed to characterise, through whole-genome sequencing (WGS), isolates of MDR E. coli harbouring ARGs obtained from public aquatic environments in Brazil. MDR E. coli isolates were obtained from rivers, streams and lakes that presented different Water Quality Index records and were submitted to WGS. The resistome, mobilome and virulome showed a great diversity of ARGs, plasmids and virulence genes, respectively. In addition, mutations in the quinolone resistance-determining regions of GyrA, ParC and ParE as well as several metal resistance genes (MRGs) and antibacterial biocide resistance genes (ABGs) were detected. Typing and subtyping of MDR E. coli revealed different lineages, with two belonging to widespread high-risk clones (i.e. B2-ST131-fimH30 and F-ST648-fimH27), which are grouped by core genome multilocus sequence typing (cgMLST) in clusters with E. coli lineages obtained from different sources distributed worldwide. MDR bacteria carrying MRGs and ABGs have emerged as a global human and environmental health problem. Detection of widespread high-risk clones calls for attention to the dissemination of fluoroquinolone-resistant QnrS1- and CTX-M-producing E. coli lineages associated with human infections in public aquatic environments. | 2020 | 32479889 |
| 1638 | 1 | 0.9999 | First national study on genomic profiling of Escherichia coli in United Arab Emirates (UAE) aquatic environments shows diverse Quinolone and Cephalosporin resistance. Antimicrobial resistance (AMR) is a serious threat to human, animal and plant health, and over recent years the role of the aquatic environment as a hotspot and dissemination route for resistant bacteria has been increasingly recognised. The United Arab Emirates (UAE) has identified AMR as a critical area of concern; however, limited studies have been conducted regarding the presence of AMR in aquatic environments in the region. This study addresses this gap by conducting a national surveillance to better understand the prevalence of aquatic AMR. We investigated the phenotypic and genotypic resistances in Escherichia coli (E. coli) isolates (n= 256) from sewage impacted and unimpacted coastal waters and artificial lakes across the UAE. Multidrug resistance was observed in 34.2% of isolates, with 22.7% exhibiting resistance to 3(rd) and 4(th) generation cephalosporins, cefotaxime and ceftazidime, including 16.6% displaying an extended-spectrum β-lactamase (ESBL) phenotype. Resistance to fluoroquinolones, macrolides, and carbapenems was also detected. Whole-genome sequencing (n=92) revealed a high prevalence of the fimH virulence gene, as well as conjugative plasmids (IncF, IncA/C and IncY) carrying resistance determinants. Notably, qnrS1 and bla(CTX-M-15) resistance genes were identified in 39% of sequenced isolates, while the bla(NDM-5) gene was detected for the first time in a single isolate. These findings underscore the need for harmonised AMR surveillance and a regional monitoring framework to assess the environmental dissemination of AMR bacteria in a One Health context. | 2025 | 40969202 |
| 1901 | 2 | 0.9999 | Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that bla(CTX-M) is the dominant ESBL gene type found in South Korea. The spread of bla(CTX-M) appears to have been facilitated by both clonal spread between different host species and conjugation. Most bla(CTX-M) genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of bla(CTX-M)-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes. | 2024 | 38554973 |
| 2627 | 3 | 0.9999 | High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Globally, urban water bodies have emerged as an environmental reservoir of antimicrobial resistance (AMR) genes because resistant bacteria residing here might easily disseminate these traits to other waterborne pathogens. In the present study, we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes, and integrons in commensal strains of Escherichia coli, the predominant fecal indicator bacteria isolated from a major urban river of northern India Yamuna. The genetic environment of bla (CTX-M-15) was also investigated. Our results indicated that 57.5% of the E. coli strains were resistant to at least two antibiotic classes and 20% strains were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple antibiotic resistance index of about one-third of the E. coli strains was quite high (>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to plasmid-mediated AMR genes, bla (TEM-1) was present in 95% of the strains, followed by qnrS1 and armA (17% each), bla (CTX-M-15) (15%), strA-strB (12%), and tetA (7%). Contrary to the earlier reports where bla (CTX-M-15) was mostly associated with pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and B1, also. The genetic organization of bla (CTX-M-15) was similar to that reported for E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of bla (CTX-M-15). The integrons of classes 2 and 3 were absent, but class 1 integron gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli of river Yamuna. These evidences indicate that due to high prevalence of plasmid-mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread dissemination of AMR in the environment. Thus, regular surveillance and management of urban rivers is necessary to curtail the spread of AMR and associated health risks. | 2021 | 33633708 |
| 1902 | 4 | 0.9998 | Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. INTRODUCTION: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. METHODS: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. RESULTS: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the bla(KPC-2), bla(NDM-5), bla(OXA-1), bla(OXA-48), and bla(OXA-181) β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. DISCUSSION: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance. | 2023 | 37323902 |
| 1894 | 5 | 0.9998 | Phenotypic and Genotypic Characterization of Multidrug-Resistant Enterobacter hormaechei Carrying qnrS Gene Isolated from Chicken Feed in China. Multidrug resistance (MDR) in Enterobacteriaceae including resistance to quinolones is rising worldwide. The plasmid-mediated quinolone resistance (PMQR) gene qnrS is prevalent in Enterobacteriaceae. However, the qnrS gene is rarely found in Enterobacter hormaechei (E. hormaechei). Here, we reported one multidrug resistant E. hormaechei strain M1 carrying the qnrS1 and bla(TEM-1) genes. This study was to analyze the characteristics of MDR E. hormaechei strain M1. The E. hormaechei strain M1 was identified as Enterobacter cloacae complex by biochemical assay and 16S rRNA sequencing. The whole genome was sequenced by the Oxford Nanopore method. Taxonomy of the E. hormaechei was based on multilocus sequence typing (MLST). The qnrS with the other antibiotic resistance genes were coexisted on IncF plasmid (pM1). Besides, the virulence factors associated with pathogenicity were also located on pM1. The qnrS1 gene was located between insertion element IS2A (upstream) and transposition element ISKra4 (downstream). The comparison result of IncF plasmids revealed that they had a common plasmid backbone. Susceptibility experiment revealed that the E. hormaechei M1 showed extensive resistance to the clinical antimicrobials. The conjugation transfer was performed by filter membrane incubation method. The competition and plasmid stability assays suggested the host bacteria carrying qnrS had an energy burden. As far as we know, this is the first report that E. hormaechei carrying qnrS was isolated from chicken feed. The chicken feed and poultry products could serve as a vehicle for these MDR bacteria, which could transfer between animals and humans through the food chain. We need to pay close attention to the epidemiology of E. hormaechei and prevent their further dissemination. IMPORTANCE Enterobacter hormaechei is an opportunistic pathogen. It can cause infections in humans and animals. Plasmid-mediated quinolone resistance (PMQR) gene qnrS can be transferred intergenus, which is leading to increase the quinolone resistance levels in Enterobacteriaceae. Chicken feed could serve as a vehicle for the MDR E. hormaechei. Therefore, antibiotic-resistance genes (ARGs) might be transferred to the intestinal flora after entering the gastrointestinal tract with the feed. Furthermore, antibiotic-resistant bacteria (ARB) were also excreted into environment with feces, posing a huge threat to public health. This requires us to monitor the ARB and antibiotic-resistant plasmids in the feed. Here, we demonstrated the characteristics of one MDR E. hormaechei isolate from chicken feed. The plasmid carrying the qnrS gene is a conjugative plasmid with transferability. The presence of plasmid carrying antibiotic-resistance genes requires the maintenance of antibiotic pressure. In addition, the E. hormaechei M1 belonged to new sequence type (ST). These data show the MDR E. hormaechei M1 is a novel strain that requires our further research. | 2022 | 35467399 |
| 1637 | 6 | 0.9998 | Genomic surveillance of antimicrobial resistance in bovine fecal samples from Lebanon. Antimicrobial resistance (AMR) threatens human and animal health worldwide, driven by the spread of extended-spectrum β-lactamase (ESBL)-producing, and carbapenem-resistant Gram-negative bacteria. In Lebanon, inadequate surveillance and antibiotic misuse worsen the issue. Animal fecal material is an important reservoir of resistance genes and mobile elements. This study aims to address AMR in bovine feces. To achieve this, bovine fecal samples were collected from 24 farms in Lebanon. Sixty-two ESBL-producing bacteria were recovered on CHROMagar ESBL and whole-genome sequencing followed by in silico typing was used to determine the resistance genes, virulence factors, and mobile genetic elements. Disk diffusion assay revealed the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (33/62) with Escherichia coli being the most common (37/62). Resistance to amoxicillin, ceftriaxone, and cefotaxime was detected in all 37 E. coli isolates, with one also exhibiting resistance to colistin. β-lactam resistance was primarily associated with bla(CTX-M-15) and bla(TEM-1B), while colistin resistance was linked to mcr-1.1 on an IncHI2A/IncFIC multi-replicon plasmid. Plasmid typing identified 22 replicons, the most common being IncFIB and IncFII. Virulence factor analysis identified enterotoxin-encoding genes in one E. coli isolate, suggesting a potentially pathogenic strain with diarrheagenic properties among the recovered isolates. The findings of this study revealed highly resistant Gram-negative bacteria with plasmid-mediated resistance to critical antibiotics such as colistin, emphasizing the risks posed to human and livestock health. Comprehensive surveillance and responsible antibiotic use, guided by an integrated One Health approach, are essential steps to effectively tackle the interconnected challenges of AMR. | 2025 | 40482361 |
| 1589 | 7 | 0.9998 | Clonal Complexes 23, 10, 131 and 38 as Genetic Markers of the Environmental Spread of Extended-Spectrum β-Lactamase (ESBL)-Producing E. coli. In accordance with the global action plan on antimicrobial resistance adopted by the World Health Assembly in 2015, there is a need to develop surveillance programs for antimicrobial resistant bacteria. In this context, we have analyzed the clonal diversity of Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from aquatic environments and human and food samples in Spain, with the aim of determining possible clonal complexes (CCs) that act as markers of the potential risk of transmission of these resistant bacteria. The phylogenetic groups, sequence types (STs) and CCs were determined by different Polymerase Chain Reaction (PCR) and Multilocus Sequence Typing (MLST) techniques. Phylogroup A was prevalent and was mainly present in food and water strains, while human strains were mostly associated with phylogroup B2. According to the observed prevalence in the different niches, CC23 and CC10 are proposed as markers of phylogroups A and C, related with the spread of bla(CTX-M1) and bla(CTX-M15) genes. Similarly, CC131 and CC38 could be associated to the dissemination of pathogenic strains (phylogroups B2 and D) carrying mainly bla(CTX-M14) and bla(CTX-M15) genes. Some strains isolated from wastewater treatment plants (WWTPs) showed identical profiles to those isolated from other environments, highlighting the importance that water acquires in the dissemination of bacterial resistance. In conclusion, the detection of these genetic markers in different environments could be considered as an alert in the spread of ESBL. | 2022 | 36358120 |
| 1596 | 8 | 0.9998 | Distribution of bla(CTX-M-)gene variants in E. coli from different origins in Ecuador. The increasing abundance of extended spectrum (β-lactamase (ESBL) genes in E. coli, and other commensal and pathogenic bacteria, endangers the utility of third or more recent generation cephalosporins, which are major tools for fighting deadly infections. The role of domestic animals in the transmission of ESBL carrying bacteria has been recognized, especially in low- and middle-income countries, however the horizontal gene transfer of these genes is difficult to assess. Here we investigate bla(CTX-M) gene diversity (and flanking nucleotide sequences) in E. coli from chicken and humans, in an Ecuadorian rural community and from chickens in another location in Ecuador. The bla(CTX-M) associated sequences in isolates from humans and chickens in the same remote community showed greater similarity than those found in E. coli in a chicken industrial operation 200 km away. Our study may provide evidence of bla(CTX-M) transfer between chickens and humans in the community. | 2023 | 38148908 |
| 5613 | 9 | 0.9998 | Characterizing Antimicrobial Resistance in Clinically Relevant Bacteria Isolated at the Human/Animal/Environment Interface Using Whole-Genome Sequencing in Austria. Antimicrobial resistance (AMR) is a public health issue attributed to the misuse of antibiotics in human and veterinary medicine. Since AMR surveillance requires a One Health approach, we sampled nine interconnected compartments at a hydrological open-air lab (HOAL) in Austria to obtain six bacterial species included in the WHO priority list of antibiotic-resistant bacteria (ARB). Whole genome sequencing-based typing included core genome multilocus sequence typing (cgMLST). Genetic and phenotypic characterization of AMR was performed for all isolates. Eighty-nine clinically-relevant bacteria were obtained from eight compartments including 49 E. coli, 27 E. faecalis, 7 K. pneumoniae and 6 E. faecium. Clusters of isolates from the same species obtained in different sample collection dates were detected. Of the isolates, 29.2% were resistant to at least one antimicrobial. E. coli and E. faecalis isolates from different compartments had acquired antimicrobial resistance genes (ARGs) associated with veterinary drugs such as aminoglycosides and tetracyclines, some of which were carried in conjugative and mobilizable plasmids. Three multidrug resistant (MDR) E. coli isolates were found in samples from field drainage and wastewater. Early detection of ARGs and ARB in natural and farm-related environments can identify hotspots of AMR and help prevent its emergence and dissemination along the food/feed chain. | 2022 | 36232576 |
| 1682 | 10 | 0.9998 | Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla (VIM-) (1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context. | 2019 | 31849911 |
| 1988 | 11 | 0.9998 | Different fosA genes were found on mobile genetic elements in Escherichia coli from wastewaters of hospitals and municipals in Turkey. AIMS: The increasing number of globally established fosfomycin-resistant (Fos(R)) Gram-negative bacteria inspired us to investigate the occurrence of Fos(R)Enterobacterales populations (esp. E. coli) in samples of city wastewater treatment plants (WWTPs) and hospital sewage in Hatay, Turkey. Fos(R) target bacteria were further characterized for their clonal relatedness, resistomes and mobile genetic elements (MGEs) to evaluate their impact on fosfomycin resistance dissemination. METHODS: A total of 44 samples from raw and treated waters of WWTPs as well as of two hospitals in the Hatay province were subjected to selective cultivation for recovering Fos(R)Enterobacterales. The presence of fosA was verified by PCR and Sanger amplicon sequencing. Detected E. coli were further evaluated against antimicrobial susceptibility-testing, macrorestriction profiling (PFGE) and whole-genome sequencing (WGS). Bioinformatics analysis was performed for genome subtyping (i.e., MLST, serotype), resistome/virulome determination and dissection of the genetic determinants of plasmidic fosA3/4 resistances. RESULTS: Besides ten non-E. coli Enterobacterales, 29 E. coli were collected within this study. In silico-based subtyping revealed that E. coli isolates were assigned to six different serovars and 14 sequence types (ST), while O8:H21 and ST410 represented the major prevalent types, respectively. Fosfomycin resistance in the isolates was found to be mediated by the fosA4 (n = 18), fosA3 (n = 10) and fosA (n = 1), which are frequently associated with transmissible MGEs. Reconstruction of plasmid-associated fosA gene context revealed a linkage between the resistance cassette and IS6 (IS26 family) transposases, which might represent a major driver for the distribution of the genes and the generation of novel fosA-carrying plasmids. CONCLUSIONS: The occurrence of plasmid-mediated, transmissible Fos(R) in E. coli from wastewater pose a foreseeable threat to "One-Health". To minimize further spread of the resistances in bacterial populations associated with environmental, animal and human health further resistance monitoring and management strategies must be developed. | 2022 | 35182630 |
| 1870 | 12 | 0.9998 | Novel Insights into bla(GES) Mobilome Reveal Extensive Genetic Variation in Hospital Effluents. Mobile genetic elements contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance among different bacterial species and genera. This study characterizes the genetic backbone of bla(GES) in Aeromonas spp. and Klebsiella spp. isolated from untreated hospital effluents. Plasmids ranging in size from 9 to 244 kb, sequenced using Illumina and Nanopore platforms, revealed representatives of plasmid incompatibility groups IncP6, IncQ1, IncL/M1, IncFII, and IncFII-FIA. Different GES enzymes (GES-1, GES-7, and GES-16) were located in novel class 1 integrons in Aeromonas spp. and GES-5 in previously reported class 1 integrons in Klebsiella spp. Furthermore, in Klebsiella quasipneumoniae, bla(GES-5) was found in tandem as a coding sequence that disrupted the 3' conserved segment (CS). In Klebsiella grimontii, bla(GES-5) was observed in two different plasmids, and one of them carried multiple IncF replicons. Three Aeromonas caviae isolates presented bla(GES-1), one Aeromonas veronii isolate presented bla(GES-7), and another A. veronii isolate presented bla(GES-16). Multilocus sequence typing (MLST) analysis revealed novel sequence types for Aeromonas and Klebsiella species. The current findings highlight the large genetic diversity of these species, emphasizing their great adaptability to the environment. The results also indicate a public health risk because these antimicrobial-resistant genes have the potential to reach wastewater treatment plants and larger water bodies. Considering that they are major interfaces between humans and the environment, they could spread throughout the community to clinical settings. IMPORTANCE In the "One Health" approach, which encompasses human, animal, and environmental health, emerging issues of antimicrobial resistance are associated with hospital effluents that contain clinically relevant antibiotic-resistant bacteria along with a wide range of antibiotic concentrations, and lack regulatory status for mandatory prior and effective treatment. bla(GES) genes have been reported in aquatic environments despite the low detection of these genes among clinical isolates within the studied hospitals. Carbapenemase enzymes, which are relatively unusual globally, such as GES type inserted into new integrons on plasmids, are worrisome. Notably, K. grimontii, a newly identified species, carried two plasmids with bla(GES-5), and K. quasipneumoniae carried two copies of bla(GES-5) at the same plasmid. These kinds of plasmids are primarily responsible for multidrug resistance among bacteria in both clinical and natural environments, and they harbor resistant genes against antibiotics of key importance in clinical therapy, possibly leading to a public health problem of large proportion. | 2022 | 35880869 |
| 1900 | 13 | 0.9998 | The dissemination of antimicrobial resistance determinants in surface water sources in Lebanon. The prevalence of antibiotic-resistant bacteria in surface water in Lebanon is a growing concern and understanding the mechanisms of the spread of resistance determinants is essential. We aimed at studying the occurrence of resistant bacteria and determinants in surface water sources in Lebanon and understanding their mobilization and transmission. Water samples were collected from five major rivers in Lebanon. A total of 91 isolates were recovered by incubating at 37°C on Blood and MacConkey agar out of which 25 were multi-drug resistant (MDR) and accordingly were further characterized. Escherichia coli and Klebsiella pneumoniae were the most common identified MDR isolates. Conjugation assays coupled with in silico plasmid analysis were performed and validated using PCR-based replicon typing (PBRT) to identify and confirm incompatibility groups and the localization of β-lactamase encoding genes. Escherichia coli EC23 carried a blaNDM-5 gene on a conjugative, multireplicon plasmid, while blaCTX-M-15 and blaTEM-1B were detected in the majority of the MDR isolates. Different sequence types (STs)were identified including the highly virulent E. coli ST131. Our results showed a common occurrence of bacterial contaminants in surface water and an increase in the risk for the dissemination of resistance determinants exacerbated with the ongoing intensified population mobility in Lebanon and the widespread lack of wastewater treatment. | 2021 | 34329434 |
| 2628 | 14 | 0.9998 | Occurrence and persistence of multidrug-resistant Enterobacterales isolated from urban, industrial and surface water in Monastir, Tunisia. The One Health approach of antimicrobial resistance highlighted the role of the aquatic environment as a reservoir and dissemination source of resistance genes and resistant bacteria, especially due to anthropogenic activities. Resistance to extended-spectrum cephalosporins (ESC) conferred by extended-spectrum beta-lactamases (ESBLs) in E. coli has been proposed as the major marker of the AMR burden in cross-sectoral approaches. In this study, we investigated wastewater, surface water and seawater that are subjected to official water quality monitoring in Monastir, Tunisia. While all but one sample were declared compliant according to the official tests, ESC-resistant bacteria were detected in 31 (19.1 %) samples. Thirty-nine isolates, coming from urban, industrial and surface water in Monastir, were collected and characterized using antibiograms and whole-genome sequencing. These isolates were identified as 27 Escherichia coli (69.3 %) belonging to 13 STs, 10 Klebsiella pneumoniae (25.6 %) belonging to six STs, and two Citrobacter freundii (5.1 %). We observed the persistence and dissemination of clones over time and in different sampling sites, and no typically human-associated pathogens could be identified apart from one ST131. All isolates presented a bla(CTX-M) gene - bla(CTX-M-15) (n = 22) and bla(CTX-M-55) (n = 8) being the most frequent variants - which were identified on plasmids (n = 20) or on the chromosome (n = 19). In conclusion, we observed ESC resistance in rather ubiquitous bacteria that are capable of surviving in the water environment. This suggests that including the total coliform count and the ESBL count as determined by bacterial growth on selective plates in the official monitoring would greatly improve water quality control in Tunisia. | 2024 | 38460700 |
| 1593 | 15 | 0.9998 | Epidemiological Description and Detection of Antimicrobial Resistance in Various Aquatic Sites in Marseille, France. Antibiotic resistance is a worldwide public health concern and has been associated with reports of elevated mortality. According to the One Health concept, antibiotic resistance genes are transferrable to organisms, and organisms are shared among humans, animals, and the environment. Consequently, aquatic environments are a possible reservoir of bacteria harboring antibiotic resistance genes. In our study, we screened water and wastewater samples for antibiotic resistance genes by culturing samples on different types of agar media. Then, we performed real-time PCR to detect the presence of genes conferring resistance to beta lactams and colistin, followed by standard PCR and gene sequencing for verification. We mainly isolated Enterobacteriaceae from all samples. In water samples, 36 Gram-negative bacterial strains were isolated and identified. We found three extended-spectrum β-lactamase (ESBL)-producing bacteria-Escherichia coli and Enterobacter cloacae strains-harboring the CTX-M and TEM groups. In wastewater samples, we isolated 114 Gram-negative bacterial strains, mainly E. coli, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis strains. Forty-two bacterial strains were ESBL-producing bacteria, and they harbored at least one gene belonging to the CTX-M, SHV, and TEM groups. We also detected carbapenem-resistant genes, including NDM, KPC, and OXA-48, in four isolates of E. coli. This short epidemiological study allowed us to identify new antibiotic resistance genes present in bacterial strains isolated from water in Marseille. This type of surveillance shows the importance of tracking bacterial resistance in aquatic environments. IMPORTANCE Antibiotic-resistant bacteria are involved in serious infections in humans. The dissemination of these bacteria in water, which is in close contact with human activities, is a serious problem, especially under the concept of One Health. This study was done to survey and localize the circulation of bacterial strains, along with their antibiotic resistance genes, in the aquatic environment in Marseille, France. The importance of this study is to monitor the frequency of these circulating bacteria by creating and surveying water treatments. | 2023 | 36976002 |
| 2625 | 16 | 0.9998 | Spread of extended-spectrum beta-lactamase-producing Escherichia coli from a swine farm to the receiving river. The dissemination of drug-resistant bacteria into different environments has posed a grave threat to public health, but data on the spread of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) from animal farms to the receiving river are limited. Here, 57 ESBL-producing E. coli isolated from a pig farm and the receiving river were analyzed in terms of drug resistance, ESBL genes, and enterobacterial repetitive intergenic consensus (ERIC). The results showed that ESBL-producing E. coli from swine feces and downstream water of the pig farm outfall overlapped substantially in drug resistance and ESBL genes. Additionally, six ESBL-producing E. coli from the downstream water exhibited 100 % genetic similarity with strains from the swine feces. In conclusion, effluents of animal farms are a likely contributor to the presence of ESBL-producing E. coli in aquatic environments. | 2015 | 25921760 |
| 2043 | 17 | 0.9998 | Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States. The presence of antibiotic resistance in commensal bacteria may be an influential factor in the persistence of resistance in pathogens. This is especially critical for Escherichia coli that consumers may be exposed to through the consumption of uncooked meat. In this study, E. coli isolates previously recovered from poultry in the US between 2001 and 2012 were whole-genome sequenced to identify their antibiotic resistance genes and mobile genetic elements. The genomes of 98 E. coli isolates from poultry carcass rinsates and 2 isolates from poultry diagnostic samples with multidrug resistance or potential extended-spectrum β-lactam (ESBL)-producing phenotypes as well as the genetic variabilities among the E. coli were assessed. All E. coli isolates were positive for at least one antibiotic resistance gene and plasmid replicon, with 37 resistance genes and 27 plasmid replicons detected among the isolates. While no ESBL genes were detected, bla(CMY-2) was the most common β-lactamase gene, and bla(TEM) and bla(CARB-2) were also identified. Most isolates (95%) harbored at least one intact phage, and as many as seven intact phages were identified in one isolate. These results show the occurrence of antibiotic resistance genes and mobile genetic elements in these 100 poultry-associated E. coli isolates, which may be responsible for the resistance phenotypes exhibited by the isolates. This retrospective study also enables comparisons of resistance genes and mobile genetic elements from more recent E. coli isolates associated with poultry to aid in understanding the trends of both antibiotic resistance phenotypes and genotypes in the poultry setting over time. | 2025 | 40872236 |
| 2623 | 18 | 0.9998 | High Carriage of Extended-Spectrum, Beta Lactamase-Producing, and Colistin-Resistant Enterobacteriaceae in Tibetan Outpatients with Diarrhea. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) have been detected in human-impacted habitats, especially in densely populated cities. The Qinghai-Tibet Plateau is located far from the heavily populated regions of China, and Tibetan residents have distinct dietary habits and gut microbes. Antibiotic-resistance monitoring in the Tibetan population is rare. Here, we collected stool samples from Tibetan outpatients with diarrhea. From 59 samples, 48 antibiotic-resistant Enterobacteriaceae isolates were obtained, including 19 extended-spectrum beta lactamase (ESBL)-producing isolates from 16 patients and 29 polymyxin-resistant isolates from 22 patients. Either ESBL or mcr genes were found in 17 Escherichia coli isolates, approximately 58.8% of which were multidrug-resistant, and ten incompatible plasmid types were found. The gene bla(CTX-M) was a common genotype in the ESBL-producing E. coli isolates. Four E. coli isolates contained mcr-1. The same mcr-1-carrying plasmid was found in distinct E. coli isolates obtained from the same sample, thus confirming horizontal transmission of mcr-1 between bacteria. Genomic clustering of E. coli isolates obtained from Lhasa, with strains from other regions providing evidence of clone spreading. Our results reveal a strong presence of ARB and ARGs in Tibetan outpatients with diarrhea, implying that ARB and ARGs should be monitored in the Tibetan population. | 2022 | 35453259 |
| 2068 | 19 | 0.9998 | Genetic characterization of plasmid-mediated fluoroquinolone efflux pump QepA among ESBL-producing Escherichia coli isolates in Mexico. Antimicrobial resistance is a major global public health problem, with fluoroquinolone-resistant strains of Escherichia coli posing a significant threat. This study examines the genetic characterization of ESBL-producing E. coli isolates in Mexican hospitals, which are resistant to both cephalosporins and fluoroquinolones. A total of 23 ESBL-producing E. coli isolates were found to be positive for the qepA gene, which confers resistance to fluoroquinolones. These isolates exhibited drug resistance phenotypes and belonged to specific sequence types and phylogenetic groups. The genetic context of the qepA gene was identified in a novel genetic context flanked by IS26 sequences. Mating experiments showed the co-transfer of qepA1 and chrA determinants alongside bla(CTX-M-15) genes, emphasizing the potential for these genetic structures to spread among Enterobacterales. The emergence of multidrug-resistant Gram-negative bacteria carrying these resistance genes is a significant clinical concern for public healthcare systems. | 2023 | 37702924 |