Genomic analysis revealing the resistance mechanisms of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from pig and humans in Malaysia. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
163501.0000Genomic analysis revealing the resistance mechanisms of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from pig and humans in Malaysia. Extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae has been associated with a wide range of infections in humans and animals. The objective of this study was to determine the genomic characteristics of two multiple drug resistant, ESBLs-producing K. pneumoniae strains isolated from a swine in 2013 (KP2013Z28) and a hospitalized patient in 2014 (KP2014C46) in Malaysia. Genomic analyses of the two K. pneumoniae strains indicated the presence of various antimicrobial resistance genes associated with resistance to β-lactams, aminoglycosides, colistin, fluoroquinolones, phenicols, tetracycline, sulfonamides, and trimethoprim, corresponding to the antimicrobial susceptibility profiles of the strains. KP2013Z28 (ST25) and KP2014C46 (ST929) harbored 5 and 2 genomic plasmids, respectively. The phylogenomics of these two Malaysian K. pneumoniae, with other 19 strains around the world was determined based on SNPs analysis. Overall, the strains were resolved into five clusters that comprised of strains with different resistance determinants. This study provided a better understanding of the resistance mechanisms and phylogenetic relatedness of the Malaysian strains with 19 strains isolated worldwide. This study also highlighted the needs to monitor the usage of antibiotics in hospital settings, animal husbandry, and agricultural practices due to the increase of β-lactam, aminoglycosides, tetracycline, and colistin resistance among pathogenic bacteria for better infection control.202133469786
157410.9998Plethora of Resistance Genes in Carbapenem-Resistant Gram-Negative Bacteria in Greece: No End to a Continuous Genetic Evolution. Carbapenem-resistant Gram-negative bacteria are a public health threat that requires urgent action. The fact that these pathogens commonly also harbor resistance mechanisms for several other antimicrobial classes further reduces patient treatment options. The present study aimed to provide information regarding the multidrug resistance genetic background of carbapenem-resistant Gram-negative bacteria in Central Greece. Strains from a tertiary care hospital, collected during routine practice, were characterized using a DNA microarray-based assay. Various different resistance determinants for carbapenems, other beta-lactams, aminoglycosides, quinolones, trimethoprim, sulfonamides and macrolides were detected among isolates of the same sequence type. Eighteen different multidrug resistance genomic profiles were identified among the twenty-four K. pneumoniae ST258, seven different profiles among the eight K. pneumoniae ST11, four profiles among the six A. baumannii ST409 and two among the three K. oxytoca. This report describes the multidrug resistance genomic background of carbapenem-resistant Gram-negative bacteria from a tertiary care hospital in Central Greece, providing evidence of their continuous genetic evolution.202235056608
168220.9998Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla (VIM-) (1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context.201931849911
168630.9998Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. The emergence and dissemination of carbapenemases, bacterial enzymes able to inactivate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concurrent spread of resistance against colistin, an antibiotic of last resort, further compounds this challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid and accurate detection/characterization of existing and emergent resistance determinants, an essential aspect of public health surveillance and response activities to combat the spread of antimicrobial resistant bacteria. In the current study, WGS data was used to characterize the genomic content of antimicrobial resistance genes, including those encoding carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan. These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-relevant antimicrobials were determined by broth microdilution; resistant phenotypes were observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically, 8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates, respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromosomal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive isolates. The application of WGS to molecular epidemiology and surveillance studies, as exemplified here, will provide both a more complete understanding of the global distribution of MDR isolates and a robust surveillance tool useful for detecting emerging threats to public health.201829883490
163740.9998Genomic surveillance of antimicrobial resistance in bovine fecal samples from Lebanon. Antimicrobial resistance (AMR) threatens human and animal health worldwide, driven by the spread of extended-spectrum β-lactamase (ESBL)-producing, and carbapenem-resistant Gram-negative bacteria. In Lebanon, inadequate surveillance and antibiotic misuse worsen the issue. Animal fecal material is an important reservoir of resistance genes and mobile elements. This study aims to address AMR in bovine feces. To achieve this, bovine fecal samples were collected from 24 farms in Lebanon. Sixty-two ESBL-producing bacteria were recovered on CHROMagar ESBL and whole-genome sequencing followed by in silico typing was used to determine the resistance genes, virulence factors, and mobile genetic elements. Disk diffusion assay revealed the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (33/62) with Escherichia coli being the most common (37/62). Resistance to amoxicillin, ceftriaxone, and cefotaxime was detected in all 37 E. coli isolates, with one also exhibiting resistance to colistin. β-lactam resistance was primarily associated with bla(CTX-M-15) and bla(TEM-1B), while colistin resistance was linked to mcr-1.1 on an IncHI2A/IncFIC multi-replicon plasmid. Plasmid typing identified 22 replicons, the most common being IncFIB and IncFII. Virulence factor analysis identified enterotoxin-encoding genes in one E. coli isolate, suggesting a potentially pathogenic strain with diarrheagenic properties among the recovered isolates. The findings of this study revealed highly resistant Gram-negative bacteria with plasmid-mediated resistance to critical antibiotics such as colistin, emphasizing the risks posed to human and livestock health. Comprehensive surveillance and responsible antibiotic use, guided by an integrated One Health approach, are essential steps to effectively tackle the interconnected challenges of AMR.202540482361
157550.9998Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. A transferable plasmid encoding SHV-12 extended-spectrum beta-lactamase, TEM-116, and aminoglycoside resistance was responsible for two sequential clonal outbreaks of Enterobacter cloacae and Acinetobacter baumannii bacteria. A similar plasmid was present among isolates of four different bacterial species. Recognition of plasmid transfer is crucial for control of outbreaks of multidrug-resistant nosocomial pathogens.200516145160
168560.9997Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were bla(OXA-48) and bla(NDM-1), which frequently occurred together, while bla(KPC-2) together with bla(NDM-1) was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.202438479059
166770.9997Colistin Resistance Gene mcr-8 in a High-Risk Sequence Type 15 Klebsiella pneumoniae Isolate from Kenya. The emergence and rise of mobile colistin resistance genes are of great global concern due to the ease of transfer of resistance to other bacteria. This report describes the genome of a colistin- and multidrug-resistant Klebsiella pneumoniae isolate bearing mcr-8, obtained from a hospitalized patient in Kenya.202032972937
86980.9997The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. The heterogenicity of antimicrobial resistance genes described in clinically significant bacterial isolates and their potential role in reducing the efficacy of classically effective antibiotics pose a major challenge for global healthcare, especially in infections caused by Gram-negative bacteria. We analyzed 112 multidrug-resistant (MDR) isolates from clinical samples in order to detect high resistance profiles, both phenotypically and genotypically, among four Gram-negative genera (Acinetobacter, Escherichia, Klebsiella, and Pseudomonas). We found that 9.8% of the total selected isolates were classified as extensively drug-resistant (XDR) (six isolates identified as A. baumannii and five among P. pneumoniae isolates). All other isolates were classified as MDR. Almost 100% of the isolates showed positive results for bla(OXA-23) and bla(NDM-1) genes among the A. baumannii samples, one resistance gene (bla(CTX-M)) among E. coli, and two genetic determinants (bla(CTX-M) and aac(6')-Ib) among Klebsiella. In contrast, P. aeruginosa showed just one high-frequency antibiotic resistance gene (dfrA), which was present in 68.42% of the isolates studied. We also describe positive associations between ampicillin and cefotaxime resistance in A. baumannii and the presence of bla(VEB) and bla(GES) genes, as well as between the aztreonam resistance phenotype and the presence of bla(GES) gene in E. coli. These data may be useful in achieving a better control of infection strategies and antibiotic management in clinical scenarios where these multidrug-resistant Gram-negative pathogens cause higher morbidity and mortality.202438786157
173290.9997High Carriage Rate of the Multiple Resistant Plasmids Harboring Quinolone Resistance Genes in Enterobacter spp. Isolated from Healthy Individuals. Antimicrobial-resistant bacteria causing intractable and even fatal infections are a major health concern. Resistant bacteria residing in the intestinal tract of healthy individuals present a silent threat because of frequent transmission via conjugation and transposition. Plasmids harboring quinolone resistance genes are increasingly detected in clinical isolates worldwide. Here, we investigated the molecular epidemiology of plasmid-mediated quinolone resistance (PMQR) in Gram-negative bacteria from healthy service trade workers. From 157 rectal swab samples, 125 ciprofloxacin-resistant strains, including 112 Escherichia coli, 10 Klebsiella pneumoniae, two Proteus mirabilis, and one Citrobacter braakii, were isolated. Multiplex PCR screening identified 39 strains harboring the PMQR genes (including 17 qnr,19 aac(6')-Ib-cr, and 22 oqxA/oqxB). The genome and plasmid sequences of 39 and 31 strains, respectively, were obtained by short- and long-read sequencing. PMQR genes mainly resided in the IncFIB, IncFII, and IncR plasmids, and coexisted with 3-11 other resistance genes. The high PMQR gene carriage rate among Gram-negative bacteria isolated from healthy individuals suggests the high-frequency transmission of these genes via plasmids, along with other resistance genes. Thus, healthy individuals may spread antibiotic-resistant bacterial, highlighting the need for improved monitoring and control of the spread of antibiotic-resistant bacteria and genes in healthy individuals.202135052892
1680100.9997Emergence of carbapenem resistant gram-negative pathogens with high rate of colistin resistance in Egypt: A cross sectional study to assess resistance trends during the COVID-19 pandemic. The current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi-drug resistant and carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem-resistant isolates, bla(NDM) and bla(OXA-48)-like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co-produced these two carbapenemase genes. The plasmid-mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last-resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing-based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR.202438494251
1712110.9997Low-virulence Citrobacter species encode resistance to multiple antimicrobials. Citrobacter spp. are gram-negative commensal bacteria that infrequently cause serious nosocomial infections in compromised hosts. They are often resistant to cephalosporins due to overexpression of their chromosomal beta-lactamase. During a recent study of multidrug-resistant Enterobacteriaceae (MDRE) in solid-organ transplant patients, we found that almost half of patients colonized with MDRE carried one or more cefpodoxime-resistant Citrobacter freundii, Citrobacter braakii, or Citrobacter amalonaticus strains. Pulsed-field gel electrophoresis showed that 36 unique strains of Citrobacter were present among 32 patients. Genetic and phenotypic analysis of the resistance mechanisms of these bacteria showed that the extended-spectrum beta-lactamase (ESBL) SHV-5 or SHV-12 was encoded by 8 strains (26%) and expressed by 7 strains (19%). A number of strains were resistant to other drug classes, including aminoglycosides (28%), trimethoprim-sulfamethoxazole (31%), and fluoroquinolones (8%). PCR and DNA analysis of these multiresistant strains revealed the presence of class I integrons, including the first integrons reported for C. braakii and C. amalonaticus. The integrons encoded aminoglycoside resistance, trimethoprim resistance, or both. Despite the prevalence of MDR Citrobacter spp. in our solid-organ transplant patients, only a single infection with a colonizing strain was recorded over 18 months. Low-virulence Citrobacter spp., which can persist in the host for long periods, could influence pathogen evolution by accumulation of genes encoding resistance to multiple antimicrobial classes.200212384364
1714120.9997Carbapenemase-producing enterobacteriaceae recovered from a Spanish river ecosystem. The increasing resistance to carbapenems is an alarming threat in the fight against multiresistant bacteria. The dissemination properties of antimicrobial resistance genes are supported by their detection in a diverse population of bacteria, including strains isolated from the environment. The objective of this study was to investigate the presence of carbapenemase-producing Enterobacteriaceae (CPE) collected from a river ecosystem in the Barcelona metropolitan area (Spain). Identification of β-lactamases and other resistance determinants was determined as was the antimicrobial susceptibility profile. Moreover, screening of virulence factors, plasmid addiction systems, plasmid partition systems and replicon typing was performed. The results identified 8 isolates belonging to different species (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica). The most prevalent enzyme was KPC-2 (n = 6), followed by VIM-1 (n = 2) and IMI-2 (n = 1), whereas no OXA-48-type was detected. In addition, one strain was positive for both KPC-2 and VIM-1 enzymes. All the carbapenemase-encoding plasmids carried at least one plasmid addiction or partition system, being vagCD and parAB the most frequently detected, respectively. E. coli and K. pneumoniae isolates carried a low number of virulence-associated factors and none of the detected clones has previously been identified in the clinical setting. These findings support the high dissemination potential of the carbapanemase-encoding genes and reinforce the idea that the environment is another reservoir that may play an important role in the capture, selection and dissemination of carbapenem resistance genes.201728380016
1688130.9997Carriage of colistin-resistant Gram-negative bacteria in children from communities in Cape Town (Tuberculosis child multidrug-resistant preventive therapy trial sub-study). Colistin is a last-resort antibiotic against multidrug-resistant, Gram-negative bacteria. Colistin resistance has been described in the clinical settings in South Africa. However, information on carriage of these bacteria in communities is limited. This study investigated gastrointestinal carriage of colistin-resistant Escherichia coli and Klebsiella spp. and mcr genes in children from communities in Cape Town. Colistin-resistant E. coli was isolated from two participants (4%, 2/50), and mcr-1-mcr-9 genes were not detected. Gastrointestinal carriage of colistin-resistant Enterobacterales was rare; however, continuous extensive surveillance is necessary to determine the extent of carriage and its contribution to resistance observed in clinical settings.202134485500
1689140.9997Occurrence and Characteristics of Mcrs among Gram-Negative Bacteria Causing Bloodstream Infections of Infant Inpatients between 2006 and 2019 in China. The aim of this study was to determine the occurrence of mobilized colistin resistance (mcr) genes in Gram-negative bacteria causing bloodstream infections of child inpatients in China. Bacteria were collected between 2006 and 2019 in a maternal and child health hospital, and mcr genes were screened by PCR. Five of 252 isolates were mcr-positive, including one mcr-1-positive colistin-resistant Escherichia coli isolate, two mcr-9-positive colistin-susceptible Salmonella enterica isolates, and two mcr-9-positive colistin-susceptible Enterobacter hormaechei isolates. These were obtained from two neonate and three infant patients admitted between 2009 and 2018. The E. coli isolate was obtained from a neonate aged 20 min, suggestive of a possible mother-to-neonate transmission. The five mcr-positive isolates were multidrug resistant, and two S. enterica and one E. hormaechei isolate showed a hypervirulent phenotype compared to a hypervirulent Klebsiella pneumoniae type strain in a Galleria mellonella infection model. The mcr-1 gene was carried by an IncX4-type pA1-like epidemic plasmid, and the mcr-9 gene was detected on IncHI2/2A-type novel plasmids co-carrying multiple resistance genes. The four IncHI2/2A-type plasmids shared a backbone and a high similarity (≥77% coverage and ≥ 90% nucleotide identity), suggesting that they were derived from a common ancestor with cross-species transmission and have circulated locally over a long period. The conjugation assay showed that the mcr-1-encoding plasmid and one mcr-9-encoding plasmid were self-transmissible to E. coli with high conjugation frequencies. Our findings demonstrate that mcr genes have disseminated in the community and/or hospitals, mediated by epidemic/endemic plasmids over a long period. The study shows that continuous monitoring of mcr genes is imperative for understanding and tackling their dissemination. IMPORTANCE Antimicrobial resistance, especially the spread of carbapenemase-producing Enterobacteriaceae (CPE), represents one of the largest challenges to One Health coverage of environmental, animal, and human sectors. Colistin is one of the last-line antibiotics for clinical treatment of CPE. However, the emergence of the mobilized colistin resistance (mcr) gene largely threatens the usage of colistin in the clinical setting. In this study, we investigated the existence of mcr genes in 252 Gram-negative bacteria collected between 2006 and 2019 which caused bloodstream infections of child inpatients in China. We found a high prevalence of mcr carriage among children inpatients in the absence of professional exposure, and mcr might have widely disseminated in the community via different routes. This study emphasizes the importance of rational use of colistin in the One Health frame, and highlights both the urgent need for understanding the prevalence and dissemination of mcr genes in different populations and the importance of effective measures to control their spread.202235138190
1618150.9997Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (bla(CTX-M-65), bla(CTX-M-55), and bla(EC-1982)). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use.202439453061
1684160.9997Plasmid-encoded gene duplications of extended-spectrum β-lactamases in clinical bacterial isolates. INTRODUCTION: The emergence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is an urgent and alarming One Health problem. This study aimed to investigate duplications of plasmid-encoded ESBL genes and their impact on antimicrobial resistance (AMR) phenotypes in clinical and screening isolates. METHODS: Multi-drug-resistant bacteria from hospitalized patients were collected during routine clinical surveillance from January 2022 to June 2023, and their antimicrobial susceptibility patterns were determined. Genotypes were extracted from long-read whole-genome sequencing data. Furthermore, plasmids and other mobile genetic elements associated with ESBL genes were characterized, and the ESBL genes were correlated to ceftazidime minimal inhibitory concentration (MIC). RESULTS: In total, we identified four cases of plasmid-encoded ESBL gene duplications that match four genetically similar plasmids during the 18-month surveillance period: five Escherichia coli and three Klebsiella pneumoniae isolates. As the ESBL genes were part of transposable elements, the surrounding sequence regions were duplicated as well. In-depth analysis revealed insertion sequence (IS)-mediated transposition mechanisms. Isolates with duplicated ESBL genes exhibited a higher MIC for ceftazidime in comparison to isolates with a single gene copy (3-256 vs. 1.5-32 mg/L, respectively). CONCLUSION: ESBL gene duplications led to an increased phenotypic resistance against ceftazidime. Our data suggest that ESBL gene duplications by an IS-mediated transposition are a relevant mechanism for how AMR develops in the clinical setting and is part of the microevolution of plasmids.202438469349
1902170.9997Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. INTRODUCTION: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. METHODS: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. RESULTS: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the bla(KPC-2), bla(NDM-5), bla(OXA-1), bla(OXA-48), and bla(OXA-181) β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. DISCUSSION: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance.202337323902
1653180.9997Resistance Genes, Plasmids, Multilocus Sequence Typing (MLST), and Phenotypic Resistance of Non-Typhoidal Salmonella (NTS) Isolated from Slaughtered Chickens in Burkina Faso. The emergence of antimicrobial-resistant bacteria in developing countries increases risks to the health of both such countries' residents and the global community due to international travel. It is consequently necessary to investigate antimicrobial-resistant pathogens in countries such as Burkina Faso, where surveillance data are not available. To study the epidemiology of antibiotic resistance in Salmonella, 102 Salmonella strains isolated from slaughtered chickens were subjected to whole-genome sequencing (WGS) to obtain information on antimicrobial resistance (AMR) genes and other genetic factors. Twenty-two different serotypes were identified using WGS, the most prevalent of which were Hato (28/102, 27.5%) and Derby (23/102, 22.5%). All strains analyzed possessed at least one and up to nine AMR genes, with the most prevalent being the non-functional aac(6')-Iaa gene, followed by aph(6)-Id. Multi-drug resistance was found genotypically in 36.2% of the isolates for different classes of antibiotics, such as fosfomycin and β-lactams, among others. Plasmids were identified in 43.1% of isolates (44/102), and 25 plasmids were confirmed to carry AMR genes. The results show that chicken can be considered as a reservoir of antibiotic-resistant Salmonella strains. Due to the prevalence of these drug-resistant pathogens and the potential for foodborne illnesses, poultry processing and cooking should be performed with attention to prescribed safe handling methods to avoid cross-contamination with chicken products.202235740187
1899190.9997Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance.201222808141