# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 162 | 0 | 1.0000 | Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. The current knowledge on the structure and on the organization of polyhydroxyalkanoic acid (PHA)-biosynthetic genes from a wide range of different bacteria, which rely on different pathways for biosynthesis of this storage polyesters, is provided. Molecular data will be shown for genes of Alcaligenes eutrophus, purple non-sulfur bacteria, such as Rhodospirillum rubrum, purple sulfur bacteria, such as Chromatium vinosum, pseudomonads belonging to rRNA homology group I, such as Pseudomonas aeruginosa, Methylobacterium extorquens, and for the Gram-positive bacterium Rhodococcus ruber. Three different types of PHA synthases can be distinguished with respect to their substrate specificity and structure. Strategies for the cloning of PHA synthase structural genes will be outlined which are based on the knowledge of conserved regions of PHA synthase structural genes and of the PHA-biosynthetic routes in bacteria as well as on the heterologous expression of these genes and on the availability of mutants impaired in the accumulation of PHA. In addition, a terminology for the designation of PHAs and of proteins and genes relevant for the metabolism of PHA is suggested. | 1992 | 1476773 |
| 9352 | 1 | 0.9992 | Gene transfer mechanisms among members of the genus Rhodopseudomonas. Recent studies on species of the genus Rhodopseudomonas, particularly R, capsulata and R. sphaeroides, have resulted in the development of a range of systems of genetic exchange without peer among the photosynthetic prokaryotes. In R. capsulata, systems of generalized transduction and R-prime formation have provided a detailed map of the arrangement of photosynthesis genes, while systems of conjugation and chromosome transfer in R, sphaeroides have provided a map of the location of genes involved in amino acid biosynthesis, antibiotic resistance and photosynthesis. A recent report of plasmid transformation in R. sphaeroides provides another important avenue for the analysis of genes such as those involved in photosynthesis and photochemical nitrogen fixation, through the application of DNA cloning technology. That plasmid transformation, generalized and specialized transduction, conjugation, chromosome transfer and R-prime formation do occur in Rhodopseudomonas indicates the rapid emergence of genetic and molecular biological techniques applicable to studies of these bacteria. | 1983 | 6314864 |
| 9328 | 2 | 0.9991 | Man-made cell-like compartments for molecular evolution. Cellular compartmentalization is vital for the evolution of all living organisms. Cells keep together the genes, the RNAs and proteins that they encode, and the products of their activities, thus linking genotype to phenotype. We have reproduced this linkage in the test tube by transcribing and translating single genes in the aqueous compartments of water-in-oil emulsions. These compartments, with volumes close to those of bacteria, can be recruited to select genes encoding catalysts. A protein or RNA with a desired catalytic activity converts a substrate attached to the gene that encodes it to product. In other compartments, substrates attached to genes that do not encode catalysts remain unmodified. Subsequently, genes encoding catalysts are selectively enriched by virtue of their linkage to the product. We demonstrate the linkage of genotype to phenotype in man-made compartments using a model system. A selection for target-specific DNA methylation was based on the resistance of the product (methylated DNA) to restriction digestion. Genes encoding HaeIII methyltransferase were selected from a 10(7)-fold excess of genes encoding another enzyme. | 1998 | 9661199 |
| 135 | 3 | 0.9991 | Resistance to arsenic compounds in microorganisms. Arsenic ions, frequently present as environmental pollutants, are very toxic for most microorganisms. Some microbial strains possess genetic determinants that confer resistance. In bacteria, these determinants are often found on plasmids, which has facilitated their study at the molecular level. Bacterial plasmids conferring arsenic resistance encode specific efflux pumps able to extrude arsenic from the cell cytoplasm thus lowering the intracellular concentration of the toxic ions. In Gram-negative bacteria, the efflux pump consists of a two-component ATPase complex. ArsA is the ATPase subunit and is associated with an integral membrane subunit, ArsB. Arsenate is enzymatically reduced to arsenite (the substrate of ArsB and the activator of ArsA) by the small cytoplasmic ArsC polypeptide. In Gram-positive bacteria, comparable arsB and arsC genes (and proteins) are found, but arsA is missing. In addition to the wide spread plasmid arsenic resistance determinant, a few bacteria confer resistance to arsenite with a separate determinant for enzymatic oxidation of more-toxic arsenite to less-toxic arsenate. In contrast to the detailed information on the mechanisms of arsenic resistance in bacteria, little work has been reported on this subject in algae and fungi. | 1994 | 7848659 |
| 177 | 4 | 0.9991 | Bacterial mercury resistance from atoms to ecosystems. Bacterial resistance to inorganic and organic mercury compounds (HgR) is one of the most widely observed phenotypes in eubacteria. Loci conferring HgR in Gram-positive or Gram-negative bacteria typically have at minimum a mercuric reductase enzyme (MerA) that reduces reactive ionic Hg(II) to volatile, relatively inert, monoatomic Hg(0) vapor and a membrane-bound protein (MerT) for uptake of Hg(II) arranged in an operon under control of MerR, a novel metal-responsive regulator. Many HgR loci encode an additional enzyme, MerB, that degrades organomercurials by protonolysis, and one or more additional proteins apparently involved in transport. Genes conferring HgR occur on chromosomes, plasmids, and transposons and their operon arrangements can be quite diverse, frequently involving duplications of the above noted structural genes, several of which are modular themselves. How this very mobile and plastic suite of proteins protects host cells from this pervasive toxic metal, what roles it has in the biogeochemical cycling of Hg, and how it has been employed in ameliorating environmental contamination are the subjects of this review. | 2003 | 12829275 |
| 134 | 5 | 0.9991 | Bacterial tellurite resistance. Tellurium compounds are used in several industrial processes, although they are relatively rare in the environment. Genes associated with tellurite resistance (TeR) are found in many pathogenic bacteria. Tellurite can be detoxified through interactions with cellular thiols, such as glutathione, or a methyltransferase-catalyzed reaction, although neither process appears involved in plasmid-mediated TeR. | 1999 | 10203839 |
| 9354 | 6 | 0.9990 | Chemical anatomy of antibiotic resistance: chloramphenicol acetyltransferase. The evolution of mechanisms of resistance to natural antimicrobial substances (antibiotics) was almost certainly concurrent with the development in microorganisms of the ability to synthesise such agents. Of the several general strategies adopted by bacteria for defence against antibiotics, one of the most pervasive is that of enzymic inactivation. The vast majority of eubacteria that are resistant to chloramphenicol, an inhibitor of prokaryotic protein synthesis, owe their resistance phenotype to genes for chloramphenicol acetyltransferase (CAT), which catalyses O-acetylation of the antibiotic, using acetyl-CoA as the acyl donor. The structure of CAT is known, as are many of the properties of the enzyme which explain its remarkable specificity and catalytic efficiency. Less clear is the evolutionary pathway which has produced the different members of the CAT 'family' of enzymes. Hints come from other acetyltransferases which share structure and mechanistic features with CAT, while not being strictly 'homologous' at the level of amino acid sequence. The 'super-family' of trimeric acetyltransferases appears to have in common a chemical mechanism based on a shared architecture. | 1992 | 1364583 |
| 9327 | 7 | 0.9990 | Detection of the merA gene and its expression in the environment. Bacterial transformation of mercury in the environment has received much attention owing to the toxicity of both the ionic form and organomercurial compounds. Bacterial resistance to mercury and the role of bacteria in mercury cycling have been widely studied. The genes specifying the required functions for resistance to mercury are organized on the mer operon. Gene probing methodologies have been used for several years to detect specific gene sequences in the environment that are homologous to cloned mer genes. While mer genes have been detected in a wide variety of environments, less is known about the expression of these genes under environmental conditions. We combined new methodologies for recovering specific gene mRNA transcripts and mercury detection with a previously described method for determining biological potential for mercury volatilization to examine the effect of mercury concentrations and nutrient availability on rates of mercury volatilization and merA transcription. Levels of merA-specific transcripts and Hg(II) volatilization were influenced more by microbial activity (as manipulated by nutrient additions) than by the concentration of total mercury. The detection of merA-specific transcripts in some samples that did not reduce Hg(II) suggests that rates of mercury volatilization in the environment may not always be proportional to merA transcription. | 1996 | 8849424 |
| 9339 | 8 | 0.9990 | A functional genomics approach to identify and characterize oxidation resistance genes. In order to develop a more complete understanding of the genes required for resistance to oxidative DNA damage, we devised methods to identify genes that can prevent or repair oxidative DNA damage. These methods use the oxidative mutator phenotype of a repair deficient E. coli strain to measure the antimutator effect resulting from the expression of human cDNAs. The method can be adapted to characterize the function, and to determine the active site domains, of putative antimutator genes. Since bacteria do not contain subcellular compartments, genes that function in mitochondria, the cytoplasm, or the nucleus can be identified. Methods to determine the localization of genes in their normal host organism are also described. | 2008 | 19082958 |
| 8351 | 9 | 0.9990 | Photorhabdus toxins: novel biological insecticides. Following concerns over the potential for insect resistance to insecticidal Bacillus thuringiensis toxins expressed in transgenic plants, there has been recent interest in novel biological insecticides. Over the past year there has been considerable progress in the cloning of several alternative toxin genes from the bacteria Photorhabdus luminescens and Xenorhabdus nematophilus. These genes encode large insecticidal toxin complexes with little homology to other known toxins. | 1999 | 10383860 |
| 9336 | 10 | 0.9990 | Molecular dissection of nutrient exchange at the insect-microbial interface. Genome research is transforming our understanding of nutrient exchange between insects and intracellular bacteria. A key characteristic of these bacteria is their small genome size and gene content. Their fastidious and inflexible nutritional requirements are met by multiple metabolites from the insect host cell. Although the bacteria have generally retained genes coding the synthesis of nutrients required by the insect, some apparently critical genes have been lost, and compensated for by shared metabolic pathways with the insect host or supplementary bacteria with complementary metabolic capabilities. | 2014 | 28043404 |
| 184 | 11 | 0.9990 | Plasmid chromate resistance and chromate reduction. Compounds of hexavalent chromium (chromates and dichromates) are highly toxic. Plasmid genetic determinants for chromate resistance have been described in several bacterial genera, most notably in Pseudomonas. Resistance to chromate is associated with decreased chromate transport by the resistant cells. The genes for a hydrophobic polypeptide, ChrA, were identified in chromate resistance plasmids of Pseudomonas aeruginosa and Alcaligenes eutrophus. ChrA is postulated to be responsible for the outward membrane translocation of chromate anions. Widespread bacterial reduction of hexavalent chromate to the less toxic trivalent chromic ions is also known. Chromate reduction determinants have not, however, been found on bacterial plasmids or transposons. In different bacteria, chromate reduction is either an aerobic or an anaerobic process (but not both) and is carried out either by soluble proteins or by cell membranes. Chromate reduction may also be a mechanism of resistance to chromate, but this has not been unequivocally shown. | 1992 | 1741461 |
| 8695 | 12 | 0.9990 | Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Cadmium is an important environmental pollutant and a potent toxicant to bacteria, algae, and fungi. Mechanisms of Cd toxicity and resistance are variable, depending on the organism. It is very clear that the form of the metal and the environment it is studied in, play an important role in how Cd exerts its effect and how the organism(s) responds. A wide range of Cd concentrations have been used to designate resistance in organisms. To date, no concentration has been specified that is applicable to all species studied under standardized conditions. Cadmium exerts its toxic effect(s) over a wide range of concentrations. In most cases, algae and cyanobacteria are the most sensitive organisms, whereas bacteria and fungi appear to be more resistant. In some bacteria, plasmid-encoded resistance can lead to reduced Cd2+ uptake. However, some Gram-negative bacteria without plasmids are just as resistant to Cd as are bacteria containing plasmids encoding for Cd resistance. According to Silver and Misra (1984), there is no evidence for enzymatic or chemical transformations associated with Cd resistance. Insufficient information is available on the genetics of Cd uptake and resistance in cyanobacteria and algae. Mechanisms remain largely unknown at this point in time. Cadmium is toxic to these organisms, causing severe inhibition of such physiological processes as growth, photosynthesis, and nitrogen fixation at concentrations less than 2 ppm, and often in the ppb range (Tables 2 and 3). Cadmium also causes pronounced morphological aberrations in these organisms, which are probably related to deleterious effects on cell division. This may be direct or indirect, as a result of Cd effects on protein synthesis and cellular organelles such as mitochondria and chloroplasts. Cadmium is accumulated internally in algae (Table 4) as a result of a two-phase uptake process. The first phase involves a rapid physicochemical adsorption of Cd onto cell wall binding sites, which are probably proteins and (or) polysaccharides. This is followed by a lag period and then a slow, steady intracellular uptake. This latter phase is energy dependent and may involve transport systems used to accumulate other divalent cations, such as Mn2+ and Ca2+. Some data indicate that Cd resistance, and possibly uptake, in algae and cyanobacteria is controlled by a plasmid-encoded gene(s). Although considerable information is available on Cd toxicity to, and uptake in fungi, further work is clearly needed in several areas. There is little information about Cd uptake by filamentous fungi, and even in yeasts, information on the specificity, kinetics, and mechanisms of Cd uptake is limited.(ABSTRACT TRUNCATED AT 400 WORDS) | 1986 | 3089567 |
| 159 | 13 | 0.9990 | Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. Decarboxylation pathways are widespread among lactic acid bacteria; their physiological role is related to acid resistance through the regulation of the intracellular pH and to the production of metabolic energy via the generation of a proton motive force and its conversion into ATP. These pathways include, among others, biogenic amine (BA) production pathways. BA accumulation in foodstuffs is a health risk; thus, the study of the factors involved in their production is of major concern. The analysis of several lactic acid bacterial strains isolated from different environments, including fermented foods and beverages, revealed that the genes encoding these pathways are clustered on the chromosome, which suggests that these genes are part of a genetic hotspot related to acid stress resistance. Further attention was devoted to the ornithine decarboxylase pathway, which affords putrescine from ornithine. Studies were performed on three lactic acid bacteria belonging to different species. The ODC pathway was always shown to be involved in cytosolic pH alkalinisation and acid shock survival, which were observed to occur with a concomitant increase in putrescine production. | 2014 | 24495587 |
| 685 | 14 | 0.9990 | Implication of a Key Region of Six Bacillus cereus Genes Involved in Siroheme Synthesis, Nitrite Reductase Production and Iron Cluster Repair in the Bacterial Response to Nitric Oxide Stress. Bacterial response to nitric oxide (NO) is of major importance for bacterial survival. NO stress is a main actor of the eukaryotic immune response and several pathogenic bacteria have developed means for detoxification and repair of the damages caused by NO. However, bacterial mechanisms of NO resistance by Gram-positive bacteria are poorly described. In the opportunistic foodborne pathogen Bacillus cereus, genome sequence analyses did not identify homologs to known NO reductases and transcriptional regulators, such as NsrR, which orchestrate the response to NO of other pathogenic or non-pathogenic bacteria. Using a transcriptomic approach, we investigated the adaptation of B. cereus to NO stress. A cluster of 6 genes was identified to be strongly up-regulated in the early phase of the response. This cluster contains an iron-sulfur cluster repair enzyme, a nitrite reductase and three enzymes involved in siroheme biosynthesis. The expression pattern and close genetic localization suggest a functional link between these genes, which may play a pivotal role in the resistance of B. cereus to NO stress during infection. | 2021 | 34064887 |
| 9337 | 15 | 0.9990 | Predation-resistant Pseudomonas bacteria engage in symbiont-like behavior with the social amoeba Dictyostelium discoideum. The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance. | 2023 | 37884792 |
| 179 | 16 | 0.9990 | The genetics and biochemistry of mercury resistance. The ability of bacteria to detoxify mercurial compounds by reduction and volatilization is conferred by mer genes, which are usually plasmid located. The narrow spectrum (Hg2+ detoxifying) Tn501 and R100 determinants have been subjected to molecular genetic and DNA sequence analysis. Biochemical studies on the flavoprotein mercuric reductase have elucidated the mechanism of reduction of Hg2+ to Hg0. The mer genes have been mapped and sequenced and their protein products studied in minicells. Based on the deduced amino acid sequences, these proteins have been assigned a role in a mechanistic scheme for mercury flux in resistant bacteria. The mer genes are inducible, with regulatory control being exerted at the transcriptional level both positively and negatively. Attention is now focusing on broad-spectrum resistance involving detoxification of organomercurials by an additional enzyme, organomercurial lyase. Lyase genes have recently been cloned and sequencing studies are in progress. | 1987 | 2827958 |
| 149 | 17 | 0.9990 | Unravelling the mechanism of arsenic resistance and bioremediation in Stenotrophomonas maltophilia: A molecular approach. The mechanism of arsenic resistance in bacteria is under studied and still lacks a clear understanding despite of wide research work. The advanced technologies can help in analysing the arsenic bioremediating bacteria at a molecular level. With this line of idea, highly efficient arsenic bioremediating S. maltophilia was subjected to extensive analysis to understand the mechanism of arsenic resistance and bioremediation. The cell surface analysis revealed that S. maltophilia induces only slight changes in cell surface in the presence of arsenic. Whereas, TEM analysis has indicated the bioaccumulation of arsenic in S. maltophilia. Also, arsenic was found to generate ROS in a concentration dependant manner, and in response, S. maltophilia activated SOD, catalase, thioredoxin reductase etc. to manage oxidative stress which is very much crucial in managing arsenic toxicity. S. maltophilia was found to possess genes such as arsC, aoxB, aoxC and aioA. These genes are involved in arsenic reduction and oxidation. Transcriptomics and proteomics analysis have shown that S. maltophilia detoxifies arsenic by upregulating ars operon, arsH, BetB etc. which are responsible for arsenic reduction, efflux methylation, oxidation etc. A detailed molecular mechanism of arsenic bioremediation in S. maltophilia was put forth. | 2024 | 39368626 |
| 167 | 18 | 0.9990 | Ion efflux systems involved in bacterial metal resistances. Studying metal ion resistance gives us important insights into environmental processes and provides an understanding of basic living processes. This review concentrates on bacterial efflux systems for inorganic metal cations and anions, which have generally been found as resistance systems from bacteria isolated from metal-polluted environments. The protein products of the genes involved are sometimes prototypes of new families of proteins or of important new branches of known families. Sometimes, a group of related proteins (and presumedly the underlying physiological function) has still to be defined. For example, the efflux of the inorganic metal anion arsenite is mediated by a membrane protein which functions alone in Gram-positive bacteria, but which requires an additional ATPase subunit in some Gram-negative bacteria. Resistance to Cd2+ and Zn2+ in Gram-positive bacteria is the result of a P-type efflux ATPase which is related to the copper transport P-type ATPases of bacteria and humans (defective in the human hereditary diseases Menkes' syndrome and Wilson's disease). In contrast, resistance to Zn2+, Ni2+, Co2+ and Cd2+ in Gram-negative bacteria is based on the action of proton-cation antiporters, members of a newly-recognized protein family that has been implicated in diverse functions such as metal resistance/nodulation of legumes/cell division (therefore, the family is called RND). Another new protein family, named CDF for 'cation diffusion facilitator' has as prototype the protein CzcD, which is a regulatory component of a cobalt-zinc-cadmium resistance determinant in the Gram-negative bacterium Alcaligenes eutrophus. A family for the ChrA chromate resistance system in Gram-negative bacteria has still to be defined. | 1995 | 7766211 |
| 161 | 19 | 0.9990 | Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. Structural and regulatory genes encoding enzymes and proteins of the reductive pentose phosphate pathway have been isolated from a number of bacteria recently. In the phototroph Rhodobacter sphaeroides, and in two chemoautotrophic bacteria, Alcaligenes eutrophus and Xanthobacter flavus, these genes have been found in distinct operons. However, in these three organisms and in other bacteria where certain of these genes have been discovered, a uniform nomenclature to designate these genes has been lacking. This report represents an effort to provide uniformity to the designation of these genes from all bacteria. | 1992 | 1490592 |