Draft genome sequences of five multidrug-resistant Escherichia coli strains isolated from vegetable samples in Bangladesh. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
160401.0000Draft genome sequences of five multidrug-resistant Escherichia coli strains isolated from vegetable samples in Bangladesh. Reports indicate that vegetables are becoming a source of multidrug-resistant (MDR) bacteria, including Escherichia coli. Here, we present genome sequences of five MDR E. coli strains to assist future genomic analysis of this bacterium. These E. coli strains were isolated from vegetable samples of different gardening systems in Dhaka, Bangladesh.202438095874
204210.9998Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria. Escherichia coli is one of the most common commensal bacteria of the gastrointestinal tract of humans and warm-blooded animals. Contaminated poultry can lead to disease outbreaks in consumers causing massive economic losses in the poultry industry. Additionally, commensal E. coli can harbor antibiotic resistance genes that can be transferred to other bacteria, including pathogens, in a colonized human host. In a previous study on antimicrobial resistance of E. coli from food animals from Nigeria, multidrug-resistant E. coli were detected. Three of those isolates were selected for further study using whole-genome sequencing due to the extensive drug resistance exhibited. All of the isolates carried the extended-spectrum β-lactamase (ESBL) genes, bla(CTX-M15) and bla(TEM-1), whereas one isolate harbored an additional ESBL, bla(OXA-1). All of the tetracycline-resistant isolates carried tet(A). The genes aac3-IIa and aacA4, conferring resistance to aminoglycosides, were identified in an E. coli isolate resistant to gentamicin and tobramycin. In two E. coli isolates, dfrA14, qnrS1, and sulII, were detected conferring resistance to trimethoprim, fluoroquinolones, and sulfonamides, respectively. The third isolate carried dfrA17, no fluoroquinolone resistance gene, an additional sulI gene, and a chloramphenicol resistance gene, catB3. Mutations in candidate genes conferring resistance to fosfomycin and fluoroquinolones were also detected. Several efflux systems were detected in all the E. coli isolates and virulence-associated genes related to serum resistance, motility, and adhesion. E. coli and non-E. coli origin prophages were also identified in the isolates. The results underline the higher resolution power of whole-genome sequencing for investigation of antimicrobial resistance, virulence, and phage in E. coli.202031509034
204320.9998Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States. The presence of antibiotic resistance in commensal bacteria may be an influential factor in the persistence of resistance in pathogens. This is especially critical for Escherichia coli that consumers may be exposed to through the consumption of uncooked meat. In this study, E. coli isolates previously recovered from poultry in the US between 2001 and 2012 were whole-genome sequenced to identify their antibiotic resistance genes and mobile genetic elements. The genomes of 98 E. coli isolates from poultry carcass rinsates and 2 isolates from poultry diagnostic samples with multidrug resistance or potential extended-spectrum β-lactam (ESBL)-producing phenotypes as well as the genetic variabilities among the E. coli were assessed. All E. coli isolates were positive for at least one antibiotic resistance gene and plasmid replicon, with 37 resistance genes and 27 plasmid replicons detected among the isolates. While no ESBL genes were detected, bla(CMY-2) was the most common β-lactamase gene, and bla(TEM) and bla(CARB-2) were also identified. Most isolates (95%) harbored at least one intact phage, and as many as seven intact phages were identified in one isolate. These results show the occurrence of antibiotic resistance genes and mobile genetic elements in these 100 poultry-associated E. coli isolates, which may be responsible for the resistance phenotypes exhibited by the isolates. This retrospective study also enables comparisons of resistance genes and mobile genetic elements from more recent E. coli isolates associated with poultry to aid in understanding the trends of both antibiotic resistance phenotypes and genotypes in the poultry setting over time.202540872236
204130.9998Carrier flies of multidrug-resistant Escherichia coli as potential dissemination agent in dairy farm environment. The life cycle of synanthropic flies and their behavior, allows them to serve as mechanical vectors of several pathogens. Given that flies can carry multidrug-resistant (MDR) bacteria, this study aimed to investigate the spread of genes of antimicrobial resistance in Escherichia coli isolated from flies collected in two dairy farms in Brazil. Besides antimicrobial resistance determinants, the presence of virulence genes related to bovine colibacillosis was also assessed. Of 94 flies collected, Musca domestica was the most frequently found in the two farms. We isolated 198 E. coli strains (farm A=135 and farm B=63), and >30% were MDR E. coli. We found an association between bla(TEM) and phenotypical resistance to ampicillin, or chloramphenicol, or tetracycline; and bla(CTX-M) and resistance to cefoperazone. A high frequency (86%) of phylogenetic group B1 among MDR strains and the lack of association between multidrug resistance and virulence factors suggest that antimicrobial resistance possibly is associated with the commensal bacteria. Clonal relatedness of MDR E. coli performed by Pulsed-Field Gel Electrophoresis showed wide genomic diversity. Different flies can carry clones, but with distinct antimicrobial resistance pattern. Sanger sequencing showed that the same class 1 integron arrangement is displayed by apparently unrelated strains, carried by different flies. Our conjugation results indicate class 1 integron transfer associated with tetracycline resistance. We report for the first time, in Brazil, that MDR E. coli is carried by flies in the milking environment. Therefore, flies can act as carriers for MDR strains and contribute to dissemination routes of antimicrobial resistance.201829758886
197340.9998Draft Genome Sequences of Multidrug-Resistant Escherichia coli Strains Isolated from River Water in Malaysia. Antimicrobial resistance has become a primary concern in clinical and public health. Escherichia coli is one of the bacteria that carries and disseminates antimicrobial resistance genes to the community. Here, we report the draft genome sequence of three multidrug-resistant E. coli strains that were isolated from river water in Malaysia.202235678586
298150.9998Investigation of plasmid-mediated resistance in E. coli isolated from healthy and diarrheic sheep and goats. Escherichia coli is zoonotic bacteria and the emergence of antimicrobial-resistant strains becomes a critical issue in both human and animal health globally. This study was therefore aimed to investigate the plasmid-mediated resistance in E. coli strains isolated from healthy and diarrheic sheep and goats. A total of 234 fecal samples were obtained from 157 sheep (99 healthy and 58 diarrheic) and 77 goats (32 healthy and 45 diarrheic) for the isolation and identification of E. coli. Plasmid DNA was extracted using the alkaline lysis method. Phenotypic antibiotic susceptibility profiles were determined against the three classes of antimicrobials, which resistance is mediated by plasmids (Cephalosporins, Fluoroquinolone, and Aminoglycosides) using the disc-diffusion method. The frequency of plasmid-mediated resistance genes was investigated by PCR. A total of 159 E. coli strains harbored plasmids. The isolates antibiogram showed different patterns of resistance in both healthy and diarrheic animals. A total of (82; 51.5%) E. coli strains were multidrug-resistant. rmtB gene was detected in all Aminoglycoside-resistant E. coli, and the ESBL-producing E. coli possessed different CTX-M genes. Similarly, fluoroquinolone-resistant E. coli possessed different qnr genes. On the analysis of the gyrB gene sequence of fluoroquinolone-resistant E. coli, multiple point mutations were revealed. In conclusion, a high prevalence of E. coli with high resistance patterns to antimicrobials was revealed in the current study, in addition to a wide distribution of their resistance determinants. These findings highlight the importance of sheep and goats as reservoirs for the dissemination of MDR E. coli and resistance gene horizontal transfer.202032127753
204060.9998Multidrug-resistant bacteria as intestinal colonizers and evolution of intestinal colonization in healthy university students in Portugal. Multidrug-resistant bacteria have been increasingly described in healthcare institutions, however community resistance also seems to be emerging. Escherichia coli an intestinal commensal bacteria, is also a pathogen and represents an important intestinal reservoir of resistance. Our aim was the study of the intestinal colonization and of the persistence of antibiotic resistant intestinal bacteria in healthy university students of Porto, in the north of Portugal. Samples from 30 university students were collected and analysed. Two E. coli isolates were randomly obtained from each student and Gram-negative bacilli resistant to antibiotics were studied. In addition, we evaluated changes in the Gram-negative intestinal colonization of ten university students in a short period of time. Molecular characterization showed a high presence of bla (TEM) in commensal E. coli . Gram-negative bacteria with intrinsic and extrinsic resistance were isolated, namely Pseudomonas spp., Enterobacter spp. and Pantoea spp. We isolated three ESBL-producing E. coli from two students. These isolates showed bla (CTX-M) group 1 (n=1), bla (CTX-M) group 9 (n=2), bla (TEM) (n=2), bla (SHV) (n=1) and tetA (n=2) genes. Additionally, they showed specific virulence factors and conjugational transfer of antibiotic resistance and virulence genes. One Pseudomonas spp. isolate resistant to carbapenems was detected colonizing one student. Our results confirm that healthy young adults may be colonized with commensals showing clinically relevant antibiotic resistance mechanisms, creating a risk of silent spread of these bacteria in the community.202133997613
161670.9998Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Fresh Produce and Agricultural Environments in Korea. ABSTRACT: This study was conducted to characterize Escherichia coli strains and evaluate the spread of antimicrobial resistance among these strains from fresh produce and farm environments in Korea. We then conducted phenotypic and genetic studies on antimicrobial-resistant isolates. We determined the genetic epidemiological characteristics of isolates that produced extended-spectrum β-lactamase (ESBL) and confirmed plasmid transfer in isolates that carried blaCTX-M-type genes. E. coli strains were isolated from 8 samples of fresh produce and 152 samples from the farm environment collected from May 2014 to June 2016. Cephalosporin resistance was the most prevalent (61.8%) type of resistance among the isolates. Five ESBL-producing strains with high genetic homology with E. coli of human or livestock origin were identified. Lateral transfer of plasmids harboring blaCTX-M-type genes to transconjugants was successful. Two isolates from Chinese cabbage and from water samples collected from a nearby stream harbored the ISEcp1-blaCTX-M-55-orf477 operon and were confirmed as sequence type 1196 and the same type of plasmid replicon, suggesting that cross-contamination was highly likely. A high-risk clone of sequence type 69 (clonal complex 69) isolates was also recovered from the farm environment. This study provides genetic evidence that antimicrobial resistance factors in E. coli from farm environments originate in the clinic or in livestock, highlighting the fact that good agricultural practices in farming are important to inhibit the spread of antimicrobial resistance to bacteria on fresh produce.202032083678
197980.9997Diverse Fluoroquinolone Resistance Plasmids From Retail Meat E. coli in the United States. Fluoroquinolones are used to treat serious bacterial infections, including those caused by Escherichia coli and Salmonella enterica. The emergence of plasmid-mediated quinolone resistance (PMQR) represent a new challenge to the successful treatment of Gram-negative infections. As part of a long-term strategy to generate a reference database of closed plasmids from antimicrobial resistant foodborne bacteria, we performed long-read sequencing of 11 E. coli isolates from retail meats that were non-susceptible to ciprofloxacin. Each of the isolates had PMQR genes, including qnrA1, qnrS1, and qnrB19. The four qnrB19 genes were carried on two distinct ColE-type plasmids among isolates from pork chop and ground turkey and were identical to plasmids previously identified in Salmonella. Seven other plasmids differed from any other sequences in GenBank and comprised IncF and IncR plasmids that ranged in size from 48 to 180 kb. These plasmids also contained different combinations of resistance genes, including those conferring resistance to beta-lactams, macrolides, sulfonamides, tetracycline, and heavy metals. Although relatively few isolates have PMQR genes, the identification of diverse plasmids in multiple retail meat sources suggests the potential for further spread of fluoroquinolone resistance, including through co-selection. These results highlight the value of long-read sequencing in characterizing antimicrobial resistance genes of public health concern.201931866986
160390.9997Screening for the presence of mcr-1/mcr-2 genes in Shiga toxin-producing Escherichia coli recovered from a major produce-production region in California. The rapid spreading of polymyxin E (colistin) resistance among bacterial strains through the horizontally transmissible mcr-1 and mcr-2 plasmids has become a serious concern. The emergence of these genes in Shiga toxin-producing Escherichia coli (STEC), a group of human pathogenic bacteria was even more worrisome, urging us to investigate the prevalence of mcr genes among STEC isolates. A total of 1000 STEC isolates, recovered from livestock, wildlife, produce and other environmental sources in a major production region for leafy vegetables in California during 2006-2014, were screened by PCR for the presence of plasmid-borne mcr-1 and mcr-2. All isolates tested yielded negative results, indicating if any, the occurrence rate of mcr-1/mcr-2 among STEC was very low in this agricultural region. This study provides valuable information such as sample size needed and methodologies for future surveillance programs of antimicrobial resistance.201729117270
2979100.9997Quinolone-resistant Escherichia coli in Poultry Farming. Increasing bacterial resistance to quinolone antibiotics is apparent in both humans and animals. For humans, a potential source of resistant bacteria may be animals or their products entering the human food chain, for example poultry. Between July 2013 and September 2014, samples were collected and analyzed in the Moravian regions of the Czech Republic to isolate the bacterium Escherichia coli. As a result, 212 E. coli isolates were obtained comprising 126 environmental isolates from poultry houses and 86 isolates from cloacal swabs from market-weight turkeys. Subsequently, the E. coli isolates were tested for susceptibility to selected antibiotics. Resistance of the poultry isolates to quinolones ranged from 53% to 73%. Additionally, the presence of plasmid-mediated resistance genes was studied. The genes were confirmed in 58% of the tested strains. The data on resistance of isolates from poultry were compared with results of resistance tests in human isolates obtained in the same regions. The high levels of resistance determined by both phenotyping and genotyping methods and reported in the present study confirm the fact that the use of fluoroquinolones in poultry should be closely monitored.201728662329
1615110.9997Evaluation of the Antibiotic Resistance and Virulence of Escherichia coli Strains Isolated from Chicken Carcasses in 2007 and 2013 from Paraná, Brazil. The frequent use of antimicrobials in commercial poultry production has raised concerns regarding the potential impact of antimicrobials on human health due to selection for resistant bacteria. Several studies have reported similarities between extraintestinal pathogenic Escherichia coli (ExPEC) strains isolated from birds and humans, indicating that these contaminant bacteria in poultry may be linked to human disease. The aim of our study was to analyze the frequency of antimicrobial resistance and virulence factors among E. coli strains isolated from commercial chicken carcasses in Paraná, Brazil, in 2007 and 2013. A total of 84 E. coli strains were isolated from chicken carcasses in 2007, and 121 E. coli strains were isolated in 2013. Polymerase chain reaction was used to detect virulence genes (hlyF, iss, ompT, iron, and iutA) and to determine phylogenetic classification. Antimicrobial susceptibility testing was performed using 15 antimicrobials. The strains were also confirmed as extended-spectrum β-lactamase (ESBL)-producing E. coli with phenotypic and genotypic tests. The results indicated that our strains harbored virulence genes characteristic of ExPEC, with the iutA gene being the most prevalent. The phylogenetic groups D and B1 were the most prevalent among the strains isolated in 2007 and 2013, respectively. There was an increase in the frequency of resistance to a majority of antimicrobials tested. An important finding in this study was the large number of ESBL-producing E. coli strains isolated from chicken carcasses in 2013, primarily for the group 2 cefotaximase (CTX-M) enzyme. ESBL production confers broad-spectrum resistance and is a health risk because ESBL genes are transferable from food-producing animals to humans via poultry meat. These findings suggest that our strains harbored virulence and resistance genes, which are often associated with plasmids that can facilitate their transmission between bacteria derived from different hosts, suggesting zoonotic risks.201525974222
1658120.9997Genetic characterization of extraintestinal Escherichia coli isolates from chicken, cow and swine. Phenotypic determination of antimicrobial resistance in bacteria is very important for diagnosis and treatment, but sometimes this procedure needs further genetic evaluation. Whole-genome sequencing plays a critical role in deciphering and advancing our understanding of bacterial evolution, transmission, and surveillance of antimicrobial resistance. In this study, whole-genome sequencing was performed on nineteen clinically extraintestinal Escherichia coli isolates from chicken, cows and swine and showing different antimicrobial susceptibility. A total of 44 different genes conferring resistance to 11 classes of antimicrobials were detected in 15 of 19 E. coli isolates (78.9%), and 22 types of plasmids were detected in 15/19 (78.9%) isolates. In addition, whole-genome sequencing of these 19 isolates identified 111 potential virulence factors, and 53 of these VFDB-annotated genes were carried by all these 19 isolates. Twelve different virulence genes were identified while the most frequent ones were gad (glutamate decarboxylase), iss (increased serum survival) and lpfA (long polar fimbriae). All isolates harbored at least one of the virulence genes. The findings from comparative genomic analyses of the 19 diverse E. coli isolates in this study provided insights into molecular basis of the rising multi-drug resistance in E. coli.201830019301
1619130.9997Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. BACKGROUND: Antimicrobial resistance has become one of the most severe global threats to human and veterinary Medicine. colistin is an effective therapeutic agent against multi-drug-resistant pathogens. However, the discovery of transferable plasmids that confer resistance to colistin (mcr-1) has led to challenges in medical science. This study describes the role of wild birds in the harbouring and environmental spread of colistin-resistant bacteria, which could pose a potential hazard to human and animal health. METHODS: In total, 140 faecal samples from wild birds (migratory and resident birds) were tested. Twenty surface water samples were collected from the area in which wild bird trapping was conducted, and 50 human stool samples were collected from individuals residing near the surface water sources and farm buildings. Isolation and identification of Enterobacteriaceae and Pseudomonas aeruginosa from the different samples were performed using conventional culture techniques and biochemical identification. PCR amplification of the mcr genes was performed in all positive isolates. Sequencing of mcr-1 genes from three randomly selected E. coli carrying mcr-1 isolates; wild birds, water and humans was performed. RESULT: The bacteriological examination of the samples showing isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and P. aeruginosa. The results of multiplex PCR of the mcr genes revealed that E. coli was the most prevalent gram-negative bacterium harbouring the mcr genes, whereas a low prevalence was observed for K. pneumoniae. The prevalence of mcr-1 in resident birds, migratory birds, water sources and humans were 10.4, 20,16.6 and 9.6% while the prevalence of mcr-2 were 1.4, 3.6, 11.1 and 9.6%, respectively. Sequencing of the mcr-1 gene from the three E. coli carrying mcr-1 isolates indicated a possible correlation between the wild bird and surface water isolates. CONCLUSION: The detection of mcr-1-positive bacteria in wild birds in Egypt indicates the possible environmental dissemination of this gene through bird activity. The impact of the interaction between domestic and wild animals on public health cannot be overlooked.201931827778
5567140.9997Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry. Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria.201526579536
1587150.9997Prevalence of Extended-Spectrum β-Lactamases in E. coli of Rats in the Region North East of Gabon. Antibiotic resistance occurs in the environment by multiplication and the spread of multidrug-resistant bacteria that would be due to an improper and incorrect use of antibiotics in human and veterinary medicine. The aim of this study was to establish the prevalence of E.coli producing Extended-Spectrum beta-Lactamase (ESBL) antibiotics from rats and gregarious animals in a semirural area of Gabon and to evaluate the origin of a resistance distribution in the environment from animal feces. The bacterial culture was carried out, and the identification of E. coli strains on a specific medium and the antibiotic susceptibility tests allowed establishing the prevalence. Characterization of resistance genes was performed by gene amplification after DNA extraction. On 161 feces collected in rats, 32 strains were isolated, and 11 strains of E. coli produced ESBL with a prevalence of 34.37%. Molecular tests showed that CTX-M genes 214 bp were identified in rats. The presence of CTX-M genes could have a human origin. So, the rats can carry ESBL-producing Enterobacteriaceae which poses a risk to human health and pets in this region of Gabon.202032733665
1902160.9997Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. INTRODUCTION: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. METHODS: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. RESULTS: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the bla(KPC-2), bla(NDM-5), bla(OXA-1), bla(OXA-48), and bla(OXA-181) β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. DISCUSSION: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance.202337323902
1644170.9997Emergence of plasmid-mediated tigecycline resistance tet(X4) gene in Enterobacterales isolated from wild animals in captivity. BACKGROUND: Over the past few decades, antimicrobial resistance (AMR) has emerged as a global health challenge in human and veterinary medicine. Research on AMR genes in captive wild animals has increased. However, the presence and molecular characteristics of tet(X)-carrying bacteria in these animals remain unknown. METHODS: Eighty-four samples were collected from captive wild animals. tet(X) variants were detected using polymerase chain reaction and the isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. All isolated strains were subjected to antimicrobial susceptibility testing and whole-genome sequencing. The virulence of an Escherichia coli strain carrying enterotoxin genes was assessed using a Galleria mellonella larval model. RESULTS: We isolated two tet(X4)-positive E. coli strains and one tet(X4)-positive Raoultella ornithinolytica strain. Antimicrobial susceptibility tests revealed that all three tet(X4)-carrying bacteria were sensitive to the 13 tested antimicrobial agents, but exhibited resistance to tigecycline. Notably, one tet(X4)-carrying E. coli strain producing an enterotoxin had a toxic effect on G. mellonella larvae. Whole-genome sequencing analysis showed that the two tet(X4)-carrying E. coli strains had more than 95% similarity to tet(X4)-containing E. coli strains isolated from pigs and humans in China. CONCLUSION: The genetic environment of tet(X4) closely resembled that of the plasmid described in previous studies. Our study identified tet(X4)-positive strains in wildlife and provided valuable epidemiological data for monitoring drug resistance. The identification of enterotoxin-producing E. coli strains also highlights the potential risks posed by virulence genes.202439077391
2068180.9997Genetic characterization of plasmid-mediated fluoroquinolone efflux pump QepA among ESBL-producing Escherichia coli isolates in Mexico. Antimicrobial resistance is a major global public health problem, with fluoroquinolone-resistant strains of Escherichia coli posing a significant threat. This study examines the genetic characterization of ESBL-producing E. coli isolates in Mexican hospitals, which are resistant to both cephalosporins and fluoroquinolones. A total of 23 ESBL-producing E. coli isolates were found to be positive for the qepA gene, which confers resistance to fluoroquinolones. These isolates exhibited drug resistance phenotypes and belonged to specific sequence types and phylogenetic groups. The genetic context of the qepA gene was identified in a novel genetic context flanked by IS26 sequences. Mating experiments showed the co-transfer of qepA1 and chrA determinants alongside bla(CTX-M-15) genes, emphasizing the potential for these genetic structures to spread among Enterobacterales. The emergence of multidrug-resistant Gram-negative bacteria carrying these resistance genes is a significant clinical concern for public healthcare systems.202337702924
1617190.9997Multidrug-resistant Escherichia coli from free-living pigeons (Columba livia): Insights into antibiotic environmental contamination and detection of resistance genes. Bacterial resistance is a public and one health problem. Free-living birds can be reservoirs of multidrug-resistant bacteria and resistance genes. This study aimed to characterize the antimicrobial resistance of Escherichia coli isolated from free-living urban pigeons (Columba livia) in South Brazil. Ninety-two animals were sampled, and one isolate was obtained from each one. The isolates were characterized, and the antimicrobial resistance profile and beta-lactam and colistin resistance genes were investigated. The isolates were classified as phylogroups B1 (35%), B2 (33%), A (16%) and D (16%), and 14% of the strains had the eae virulence gene. All isolates were resistant to at least one antimicrobial, and 63% of them were multidrug-resistant. Geographical location where the pigeons were captured and presence of the eae gene were associated with multidrug resistance. bla(VIM) and mcr-1 genes were detected in one and two isolates, respectively. This is the first report of these genes in E. coli of pigeons. The bla(VIM) -positive isolate was classified as Shiga toxin-producing E. coli, and the isolates with mcr-1 were classified as Enterohaemorrhagic E. coli and Enteropathogenic E. coli, which raise additional concerns related to public health since these are zoonotic pathotypes. The results reveal that pigeons carry multidrug-resistant pathogenic E. coli, which may interest public health. Nonetheless, further studies on whether these animals are sources of contamination for humans must be performed to understand their role in spreading antimicrobial resistance.202235569138