# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1571 | 0 | 1.0000 | Klebsiella pneumoniae ST147 harboring bla(NDM-1), multidrug resistance and hypervirulence plasmids. The spread of hypervirulent (hv) and carbapenem-/multidrug-resistant Klebsiella pneumoniae is an emerging problem in healthcare settings. The New Delhi metallo-β-lactamase-1 (bla(NDM-1)) is found in Enterobacteriaceae including K. pneumoniae. The bla(NDM-1) is capable of hydrolyzing β-lactam antibiotics which are used for treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. This is associated with the unacceptably high mortality rate in immunocompromised burn injury patients. This study reports on the characterization of bla(NDM-1) gene and virulence factors in hv carbapenem-/multidrug-resistant K. pneumoniae ST147 in the burns unit of a tertiary teaching hospital during routine surveillance. Two K. pneumoniae strains were obtained from wounds of burn-infected patients from May 2020 to July 2021. The hypervirulence genes and genetic context of the bla(NDM-1) gene and mobile genetic elements potentially involved in the transposition of the gene were analyzed. We identified a conserved genetic background and an IS26 and open reading frame flanking the bla(NDM-1) gene that could suggest its involvement in the mobilization of the gene. The plasmid harbored additional antibiotic resistance predicted regions that were responsible for resistance to almost all the routinely used antibiotics. To ensure the identification of potential outbreak strains during routine surveillance, investigations on resistance genes and their environment in relation to evolution are necessary for molecular epidemiology.IMPORTANCEData obtained from this study will aid in the prompt identification of disease outbreaks including evolving resistance and virulence of the outbreak bacteria. This will help establish and implement antimicrobial stewardship programs and infection prevention protocols in fragile health systems in countries with limited resources. Integration of molecular surveillance and translation of whole-genome sequencing in routine diagnosis will provide valuable data for control of infection. This study reports for the first time a high-risk clone K. pneumoniae ST147 with hypervirulence and multidrug-resistance features in Ghana. | 2024 | 38315028 |
| 1574 | 1 | 0.9999 | Plethora of Resistance Genes in Carbapenem-Resistant Gram-Negative Bacteria in Greece: No End to a Continuous Genetic Evolution. Carbapenem-resistant Gram-negative bacteria are a public health threat that requires urgent action. The fact that these pathogens commonly also harbor resistance mechanisms for several other antimicrobial classes further reduces patient treatment options. The present study aimed to provide information regarding the multidrug resistance genetic background of carbapenem-resistant Gram-negative bacteria in Central Greece. Strains from a tertiary care hospital, collected during routine practice, were characterized using a DNA microarray-based assay. Various different resistance determinants for carbapenems, other beta-lactams, aminoglycosides, quinolones, trimethoprim, sulfonamides and macrolides were detected among isolates of the same sequence type. Eighteen different multidrug resistance genomic profiles were identified among the twenty-four K. pneumoniae ST258, seven different profiles among the eight K. pneumoniae ST11, four profiles among the six A. baumannii ST409 and two among the three K. oxytoca. This report describes the multidrug resistance genomic background of carbapenem-resistant Gram-negative bacteria from a tertiary care hospital in Central Greece, providing evidence of their continuous genetic evolution. | 2022 | 35056608 |
| 1570 | 2 | 0.9998 | Genomic Insights into Two Colistin-Resistant Klebsiella pneumoniae Strains Isolated from the Stool of Preterm Neonate During the First Week of Life. Background: Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life. Materials and Methods: In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates. Results: The strains harbored bla(SHV-27), bla(SHV-71), and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance. Conclusion: The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation. | 2020 | 31545116 |
| 1668 | 3 | 0.9998 | Detection of OXA-181 Carbapenemase in Shigella flexneri. We report the detection of OXA-181 carbapenemase in an azithromycin-resistant Shigella spp. bacteria in an immunocompromised patient. The emergence of OXA-181 in Shigella spp. bacteria raises concerns about the global dissemination of carbapenem resistance in Enterobacterales and its implications for the treatment of infections caused by Shigella bacteria. | 2024 | 38666725 |
| 1689 | 4 | 0.9998 | Occurrence and Characteristics of Mcrs among Gram-Negative Bacteria Causing Bloodstream Infections of Infant Inpatients between 2006 and 2019 in China. The aim of this study was to determine the occurrence of mobilized colistin resistance (mcr) genes in Gram-negative bacteria causing bloodstream infections of child inpatients in China. Bacteria were collected between 2006 and 2019 in a maternal and child health hospital, and mcr genes were screened by PCR. Five of 252 isolates were mcr-positive, including one mcr-1-positive colistin-resistant Escherichia coli isolate, two mcr-9-positive colistin-susceptible Salmonella enterica isolates, and two mcr-9-positive colistin-susceptible Enterobacter hormaechei isolates. These were obtained from two neonate and three infant patients admitted between 2009 and 2018. The E. coli isolate was obtained from a neonate aged 20 min, suggestive of a possible mother-to-neonate transmission. The five mcr-positive isolates were multidrug resistant, and two S. enterica and one E. hormaechei isolate showed a hypervirulent phenotype compared to a hypervirulent Klebsiella pneumoniae type strain in a Galleria mellonella infection model. The mcr-1 gene was carried by an IncX4-type pA1-like epidemic plasmid, and the mcr-9 gene was detected on IncHI2/2A-type novel plasmids co-carrying multiple resistance genes. The four IncHI2/2A-type plasmids shared a backbone and a high similarity (≥77% coverage and ≥ 90% nucleotide identity), suggesting that they were derived from a common ancestor with cross-species transmission and have circulated locally over a long period. The conjugation assay showed that the mcr-1-encoding plasmid and one mcr-9-encoding plasmid were self-transmissible to E. coli with high conjugation frequencies. Our findings demonstrate that mcr genes have disseminated in the community and/or hospitals, mediated by epidemic/endemic plasmids over a long period. The study shows that continuous monitoring of mcr genes is imperative for understanding and tackling their dissemination. IMPORTANCE Antimicrobial resistance, especially the spread of carbapenemase-producing Enterobacteriaceae (CPE), represents one of the largest challenges to One Health coverage of environmental, animal, and human sectors. Colistin is one of the last-line antibiotics for clinical treatment of CPE. However, the emergence of the mobilized colistin resistance (mcr) gene largely threatens the usage of colistin in the clinical setting. In this study, we investigated the existence of mcr genes in 252 Gram-negative bacteria collected between 2006 and 2019 which caused bloodstream infections of child inpatients in China. We found a high prevalence of mcr carriage among children inpatients in the absence of professional exposure, and mcr might have widely disseminated in the community via different routes. This study emphasizes the importance of rational use of colistin in the One Health frame, and highlights both the urgent need for understanding the prevalence and dissemination of mcr genes in different populations and the importance of effective measures to control their spread. | 2022 | 35138190 |
| 1832 | 5 | 0.9998 | Long-read sequencing reveals genomic diversity and associated plasmid movement of carbapenemase-producing bacteria in a UK hospital over 6 years. Healthcare-associated infections (HCAIs) affect the most vulnerable people in society and are increasingly difficult to treat in the face of mounting antimicrobial resistance (AMR). Routine surveillance represents an effective way of understanding the circulation and burden of bacterial resistance and transmission in hospital settings. Here, we used whole-genome sequencing (WGS) to retrospectively analyse carbapenemase-producing Gram-negative bacteria from a single hospital in the UK over 6 years (n=165). We found that the vast majority of isolates were either hospital-onset (HAI) or HCAI. Most carbapenemase-producing organisms were carriage isolates, with 71 % isolated from screening (rectal) swabs. Using WGS, we identified 15 species, the most common being Escherichia coli and Klebsiella pneumoniae. Only one significant clonal outbreak occurred during the study period and involved a sequence type (ST)78 K. pneumoniae carrying bla (NDM-1) on an IncFIB/IncHI1B plasmid. Contextualization with public data revealed little evidence of this ST outside of the study hospital, warranting ongoing surveillance. Carbapenemase genes were found on plasmids in 86 % of isolates, the most common types being bla (NDM)- and bla (OXA)-type alleles. Using long-read sequencing, we determined that approximately 30 % of isolates with carbapenemase genes on plasmids had acquired them via horizontal transmission. Overall, a national framework to collate more contextual genomic data, particularly for plasmids and resistant bacteria in the community, is needed to better understand how carbapenemase genes are transmitted in the UK. | 2023 | 37405394 |
| 1680 | 6 | 0.9998 | Emergence of carbapenem resistant gram-negative pathogens with high rate of colistin resistance in Egypt: A cross sectional study to assess resistance trends during the COVID-19 pandemic. The current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi-drug resistant and carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem-resistant isolates, bla(NDM) and bla(OXA-48)-like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co-produced these two carbapenemase genes. The plasmid-mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last-resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing-based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR. | 2024 | 38494251 |
| 1678 | 7 | 0.9998 | Molecular characterization and descriptive analysis of carbapenemase-producing Gram-negative rod infections in Bogota, Colombia. In this study, the genetic differences and clinical impact of the carbapenemase-encoding genes among the community and healthcare-acquired infections were assessed. This retrospective, multicenter cohort study was conducted in Colombia and included patients infected with carbapenem-resistant Gram-negative rods between 2017 and 2021. Carbapenem resistance was identified by Vitek, and carbapenemase-encoding genes were identified by whole-genome sequencing (WGS) to classify the alleles and sequence types (STs). Descriptive statistics were used to determine the association of any pathogen or gene with clinical outcomes. A total of 248 patients were included, of which only 0.8% (2/248) had community-acquired infections. Regarding the identified bacteria, the most prevalent pathogens were Pseudomonas aeruginosa and Klebsiella pneumoniae. In the WGS analysis, 228 isolates passed all the quality criteria and were analyzed. The principal carbapenemase-encoding gene was blaKPC, specifically blaKPC-2 [38.6% (88/228)] and blaKPC-3 [36.4% (83/228)]. These were frequently detected in co-concurrence with blaVIM-2 and blaNDM-1 in healthcare-acquired infections. Notably, the only identified allele among community-acquired infections was blaKPC-3 [50.0% (1/2)]. In reference to the STs, 78 were identified, of which Pseudomonas aeruginosa ST111 was mainly related to blaKPC-3. Klebsiella pneumoniae ST512, ST258, ST14, and ST1082 were exclusively associated with blaKPC-3. Finally, no particular carbapenemase-encoding gene was associated with worse clinical outcomes. The most identified genes in carbapenemase-producing Gram-negative rods were blaKPC-2 and blaKPC-3, both related to gene co-occurrence and diverse STs in the healthcare environment. Patients had several systemic complications and poor clinical outcomes that were not associated with a particular gene.IMPORTANCEAntimicrobial resistance is a pandemic and a worldwide public health problem, especially carbapenem resistance in low- and middle-income countries. Limited data regarding the molecular characteristics and clinical outcomes of patients infected with these bacteria are available. Thus, our study described the carbapenemase-encoding genes among community- and healthcare-acquired infections. Notably, the co-occurrence of carbapenemase-encoding genes was frequently identified. We also found 78 distinct sequence types, of which two were novel Pseudomonas aeruginosa, which could represent challenges in treating these infections. Our study shows that in low and middle-income countries, such as Colombia, the burden of carbapenem resistance in Gram-negative rods is a concern for public health, and regardless of the allele, these infections are associated with poor clinical outcomes. Thus, studies assessing local epidemiology, prevention strategies (including trials), and underpinning genetic mechanisms are urgently needed, especially in low and middle-income countries. | 2024 | 38629835 |
| 1575 | 8 | 0.9998 | Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. A transferable plasmid encoding SHV-12 extended-spectrum beta-lactamase, TEM-116, and aminoglycoside resistance was responsible for two sequential clonal outbreaks of Enterobacter cloacae and Acinetobacter baumannii bacteria. A similar plasmid was present among isolates of four different bacterial species. Recognition of plasmid transfer is crucial for control of outbreaks of multidrug-resistant nosocomial pathogens. | 2005 | 16145160 |
| 1573 | 9 | 0.9998 | Genomic Analysis of a Pan-Resistant Isolate of Klebsiella pneumoniae, United States 2016. Antimicrobial resistance is a threat to public health globally and leads to an estimated 23,000 deaths annually in the United States alone. Here, we report the genomic characterization of an unusual Klebsiella pneumoniae, nonsusceptible to all 26 antibiotics tested, that was isolated from a U.S. PATIENT: The isolate harbored four known beta-lactamase genes, including plasmid-mediated bla(NDM-1) and bla(CMY-6), as well as chromosomal bla(CTX-M-15) and bla(SHV-28), which accounted for resistance to all beta-lactams tested. In addition, sequence analysis identified mechanisms that could explain all other reported nonsusceptibility results, including nonsusceptibility to colistin, tigecycline, and chloramphenicol. Two plasmids, IncA/C2 and IncFIB, were closely related to mobile elements described previously and isolated from Gram-negative bacteria from China, Nepal, India, the United States, and Kenya, suggesting possible origins of the isolate and plasmids. This is one of the first K. pneumoniae isolates in the United States to have been reported to the Centers for Disease Control and Prevention (CDC) as nonsusceptible to all drugs tested, including all beta-lactams, colistin, and tigecycline.IMPORTANCE Antimicrobial resistance is a major public health threat worldwide. Bacteria that are nonsusceptible or resistant to all antimicrobials available are of major concern to patients and the public because of lack of treatment options and potential for spread. A Klebsiella pneumoniae strain that was nonsusceptible to all tested antibiotics was isolated from a U.S. PATIENT: Mechanisms that could explain all observed phenotypic antimicrobial resistance phenotypes, including resistance to colistin and beta-lactams, were identified through whole-genome sequencing. The large variety of resistance determinants identified demonstrates the usefulness of whole-genome sequencing for detecting these genes in an outbreak response. Sequencing of isolates with rare and unusual phenotypes can provide information on how these extremely resistant isolates develop, including whether resistance is acquired on mobile elements or accumulated through chromosomal mutations. Moreover, this provides further insight into not only detecting these highly resistant organisms but also preventing their spread. | 2018 | 29615503 |
| 1822 | 10 | 0.9998 | Carriage of two carbapenem-resistance genes in Pseudomonas aeruginosa isolated from hospital-acquired infections in children from Costa Rica: the importance of local epidemiology. BACKGROUND: The assessment of Hospital-acquired infections due to multidrug-resistant bacteria involves the use of a variety of commercial and laboratory-developed tests to detect antimicrobial resistance genes in bacterial pathogens; however, few are evaluated for use in low- and middle-income countries. METHODS: We used whole-genome sequencing, rapid commercial molecular tests, laboratory-developed tests and routine culture testing. RESULTS: We identified the carriage of the metallo-β-lactamase bla(VIM-2) and bla(IMP-18) alleles in Carbapenem-Resistant Pseudomonas aeruginosa infections among children in Costa Rica. CONCLUSIONS: The bla(IMP-18) allele is not present in the most frequently used commercial tests; thus, it is possible that the circulation of this resistance gene may be underdiagnosed in Costa Rica. | 2021 | 33910633 |
| 1686 | 11 | 0.9998 | Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. The emergence and dissemination of carbapenemases, bacterial enzymes able to inactivate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concurrent spread of resistance against colistin, an antibiotic of last resort, further compounds this challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid and accurate detection/characterization of existing and emergent resistance determinants, an essential aspect of public health surveillance and response activities to combat the spread of antimicrobial resistant bacteria. In the current study, WGS data was used to characterize the genomic content of antimicrobial resistance genes, including those encoding carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan. These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-relevant antimicrobials were determined by broth microdilution; resistant phenotypes were observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically, 8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates, respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromosomal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive isolates. The application of WGS to molecular epidemiology and surveillance studies, as exemplified here, will provide both a more complete understanding of the global distribution of MDR isolates and a robust surveillance tool useful for detecting emerging threats to public health. | 2018 | 29883490 |
| 1825 | 12 | 0.9998 | Free online genome analyses reveal multiple strains in the beginning of a hospital outbreak of Enterobacter hormaechei carrying bla (OXA-436) carbapenemase gene. Free online tools for bacterial genome analyses are available for local infection surveillance at hospitals. The tools do not require bioinformatic expertise and provide rapid actionable results. Within half a year carbapenemase producing Enterobacter cloacae was reported in clinical samples from three patients who had been hospitalized at the same ward. The aim of this outbreak investigation was to characterize and compare genomes of the isolated bacteria in order to determine molecular evidence of hospital transmission. The three isolates and two isolates reported as susceptible to carbapenems were locally analyzed by whole genome sequencing (WGS). Draft genome assembly, species identification, phylogenetic analyses, typing, resistance gene determination, and plasmid analyses were carried out using free online tools from the Center for Genomic Epidemiology (CGE). Genome analyses identified all three suspected outbreak isolates as E. hormaechei carrying bla (OXA-436) gene. Two of the suspected outbreak isolates were closely related, while one was substantially different from them. Horizontal transfer of plasmid may have taken place in the ward. Detailed knowledge on the genomic composition of bacteria in suspected hospital outbreaks can be obtained by free online tools and may reveal transfer of resistance genes between different strains in addition to dissemination of specific clones. | 2022 | 36003132 |
| 1667 | 13 | 0.9998 | Colistin Resistance Gene mcr-8 in a High-Risk Sequence Type 15 Klebsiella pneumoniae Isolate from Kenya. The emergence and rise of mobile colistin resistance genes are of great global concern due to the ease of transfer of resistance to other bacteria. This report describes the genome of a colistin- and multidrug-resistant Klebsiella pneumoniae isolate bearing mcr-8, obtained from a hospitalized patient in Kenya. | 2020 | 32972937 |
| 1907 | 14 | 0.9998 | Nationwide surveillance of carbapenem-resistant Gram-negative pathogens in the Lebanese environment. Gram-negative ESKAPE pathogens with carbapenem resistance pose a significant health threat. Despite extensive research on the spread of these pathogens within Lebanese hospital settings, their emergence in environmental settings remains understudied. This study aimed to explore the environmental spread of carbapenem resistance among Gram-negative bacteria isolated from environmental samples in nine districts across Lebanon. A total of 250 samples were collected from wild animals, sewage, water, and soil between June 2022 and September 2023. Samples were streaked on MacConkey agar plates supplemented with 2 mg/L meropenem. Bacterial species were identified primarily using API20E. Antimicrobial susceptibility profiles were determined by the disk diffusion method and the Vitek 2 compact system. Meropenem-resistant Gram-negative bacteria were further characterized by whole-genome sequencing, and each of the bacterial species, sequence types, resistance genes, and plasmids was detected by sequence data analysis. We successfully isolated 130 carbapenem-resistant isolates from various samples, 67 of which belonged to the ESKAPE pathogens list and showed a multidrug-resistant (MDR) profile. The distribution of the latter was as follows: Escherichia coli (65.67%), Acinetobacter baumannii (16.42%), Pseudomonas aeruginosa (11.94%), and Klebsiella pneumoniae (5.97%). Several carbapenem resistance genes were detected, with a prevalence of blaNDM-5 in Escherichia coli and Klebsiella pneumoniae, blaIMP-1 and mexAB-OprM efflux pumps in Pseudomonas aeruginosa, and blaOXA-23 in Acinetobacter baumannii. Our findings revealed a widespread distribution of carbapenem-resistant ESKAPE bacteria in Lebanon, underscoring the significant public health risk posed by these pathogens. This highlights the urgent need to address the dissemination of antibiotic resistance in Lebanese environmental settings. IMPORTANCE: The emergence of antimicrobial resistance (AMR) extremely burdens public health and increases morbid and mortal threats in Lebanon. While the majority of the studies in our country target antimicrobial resistance in clinical settings, fewer studies focus on antimicrobial resistance dissemination in the environment. The significance of our research is that it sheds light on the environment as a less explored yet equally crucial sector in the spread of AMR. Here, we isolated carbapenemase-producing bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) that were categorized as multidrug resistant (MDR) from diverse environmental sources in multiple provinces across Lebanon. The finding of carbapenem-resistant bacteria carrying plasmids represents a potential risk due to the possible spread of resistance genes via horizontal gene transfer across the environment and hospital settings. This highly recommends the implementation of regular surveillance to monitor the spread of antimicrobial resistance among environmental bacteria, which consequently leads to its spread within communities and thus poses a great threat to human health. | 2025 | 40492734 |
| 1670 | 15 | 0.9998 | KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Carbapenemase-producing Gram-negative bacteria peak clinical interest due to their ability to hydrolyze most β-lactams, including carbapenems; moreover, their genes spread through bacterial populations by horizontal transfer. Bacteria with acquired carbapenemase have sporadically been reported in the Czech Republic, so far only in Enterobacteriaceae and Pseudomonas aeruginosa. In this study, we described the first finding of a KPC-2-producing strain of Klebsiella pneumoniae, which was isolated from a surgical wound swab, decubitus ulcer, and urine of a patient previously hospitalized in Greece. The patient underwent various antibiotic therapies including a colistin treatment. However, after approximately 20 days of the colistin therapy, the strain developed a high-level resistance to this drug. All the isolates were indistinguishable by pulsed field gel electrophoretic analysis and belonged to the international clone ST258, which is typical of KPC-producing K. pneumoniae isolates. The bla (KPC-2) gene was located on a Tn4401a transposon variant. The OmpK35 and OmpK36 genes analysis performed due to the high resistance level of the strains to β-lactams exhibited no changes in their sequence or in their expression when compared with carbapenem-susceptible isolates. | 2011 | 21818609 |
| 1552 | 16 | 0.9998 | Evolution of β-Lactam Antibiotic Resistance in Proteus Species: From Extended-Spectrum and Plasmid-Mediated AmpC β-Lactamases to Carbapenemases. The management of infectious diseases has proven to be a daunting task for clinicians worldwide, and the rapid development of antibiotic resistance among Gram-negative bacteria is making it even more challenging. The first-line therapy is empirical, and it most often comprises β-lactam antibiotics. Among Gram-negative bacteria, Proteus mirabilis, an important community and hospital pathogen associated primarily with urinary tract and wound infection, holds a special place. This review's aim was to collate and examine recent studies investigating β-lactam resistance phenotypes and mechanisms of Proteus species and the global significance of its β-lactam resistance evolution. Moreover, the genetic background of resistance traits and the role of mobile genetic elements in the dissemination of resistance genes were evaluated. P. mirabilis as the dominant pathogen develops resistance to expanded-spectrum cephalosporins (ESC) by producing extended-spectrum β-lactamases (ESBL) and plasmid-mediated AmpC β-lactamases (p-AmpC). β-lactamase-mediated resistance to carbapenems in Enterobacterales, including Proteus spp., is mostly due to expression of carbapenemases of class A (KPC); class B (metallo-β-lactamases or MBLs of IMP, VIM, or NDM series); or class D or carbapenem-hydrolyzing oxacillinases (CHDL). Previously, a dominant ESBL type in P. mirabilis was TEM-52; yet, lately, it has been replaced by CTX-M variants, particularly CTX-M-14. ESC resistance can also be mediated by p-AmpC, with CMY-16 as the dominant variant. Carbapenem resistance in Proteus spp. is a challenge due to its intrinsic resistance to colistin and tigecyclin. The first carbapenemases reported belonged to class B, most frequently VIM-1 and NDM-5. In Europe, predominantly France and Belgium, a clonal lineage positive for OXA-23 CHDL spreads rapidly undetected, due to its low-level resistance to carbapenems. The amazing capacity of Proteus spp. to accumulate a plethora of various resistance traits is leading to multidrug or extensively drug-resistant phenotypes. | 2025 | 40142401 |
| 1683 | 17 | 0.9998 | Colonization of a hand washing sink in a veterinary hospital by an Enterobacter hormaechei strain carrying multiple resistances to high importance antimicrobials. BACKGROUND: Hospital intensive care units (ICUs) are known reservoirs of multidrug resistant nosocomial bacteria. Targeted environmental monitoring of these organisms in health care facilities can strengthen infection control procedures. A routine surveillance of extended spectrum beta-lactamase (ESBL) producers in a large Australian veterinary teaching hospital detected the opportunistic pathogen Enterobacter hormaechei in a hand washing sink of the ICU. The organism persisted for several weeks, despite two disinfection attempts. Four isolates were characterized in this study. METHODS: Brilliance-ESBL selective plates were inoculated from environmental swabs collected throughout the hospital. Presumptive identification was done by conventional biochemistry. Genomes of multidrug resistant Enterobacter were entirely sequenced with Illumina and Nanopore platforms. Phylogenetic markers, mobile genetic elements and antimicrobial resistance genes were identified in silico. Antibiograms of isolates and transconjugants were established with Sensititre microdilution plates. RESULTS: The isolates possessed a chromosomal Tn7-associated silver/copper resistance locus and a large IncH12 conjugative plasmid encoding resistance against tellurium, arsenic, mercury and nine classes of antimicrobials. Clusters of antimicrobial resistance genes were associated with class 1 integrons and IS26, IS903 and ISCR transposable elements. The blaSHV-12, qnrB2 and mcr-9.1 genes, respectively conferring resistance to cephalosporins, quinolones and colistin, were present in a locus flanked by two IS903 copies. ESBL production and enrofloxacin resistance were confirmed phenotypically. The isolates appeared susceptible to colistin, possibly reflecting the inducible nature of mcr-9.1. CONCLUSIONS: The persistence of this strain in the veterinary hospital represented a risk of further accumulation and dissemination of antimicrobial resistance, prompting a thorough disinfection of the ICU. The organism was not recovered from subsequent environmental swabs, and nosocomial Enterobacter infections were not observed in the hospital during that period. This study shows that targeted routine environmental surveillance programs to track organisms with major resistance phenotypes, coupled with disinfection procedures and follow-up microbiological cultures are useful to control these risks in sensitive areas of large veterinary hospitals. | 2020 | 33087168 |
| 1679 | 18 | 0.9998 | Analysis of ESKAPE pathogens in clinical isolates in a tertiary care hospital in China from 2018 to 2023. The widespread use of antimicrobial agents correlated with the increasing incidence of nosocomial infections and bacterial antibiotic resistance. These have become major challenges in the prevention and control of hospital-acquired infections worldwide. The aims of this study were to analyze the distribution and characteristics of ESKAPE pathogenic bacteria and their antibiotic resistance profile among clinical isolates from a tertiary hospital in China from 2018 to 2023. The results showed that a total of 20,472 non-duplicated pathogenic bacteria were isolated from clinical specimens in this hospital between 2018 and 2023, of which the top five pathogenic bacteria were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii. In case of E. coli the main detected resistance genes were blaCTX-M, blaTEM and blaOXA. K. pneumoniae mainly carried blaOXA, blaKPC and blaNDM genes. P. aeruginosa was mainly positive for blaOXA, AmpC type beta-lactamases and blaVIM genes. A. baumannii mainly carried ArmA, blaTEM and cas3 genes. S. aureus was mainly positive for mecA, erm(C) and erm(A) genes. In this study, we have found that the antibiotic resistance of common pathogens from clinical isolates in a tertiary hospital in China in the past 6 years is severe, and A. baumannii was particularly a prominent pathogen. There is an urgent need to strengthen the prevention and control of nosocomial infections and antimicrobial drug management in order to curb the spread of multidrug-resistant bacteria. | 2025 | 40522743 |
| 1551 | 19 | 0.9998 | Mechanisms of Resistance in Gram-Negative Urinary Pathogens: From Country-Specific Molecular Insights to Global Clinical Relevance. Urinary tract infections (UTIs) are the most frequent hospital infections and among the most commonly observed community acquired infections. Alongside their clinical importance, they are notorious because the pathogens that cause them are prone to acquiring various resistance determinants, including extended-spectrum beta-lactamases (ESBL); plasmid-encoded AmpC β-lactamases (p-AmpC); carbapenemases belonging to class A, B, and D; qnr genes encoding reduced susceptibility to fluoroquinolones; as well as genes encoding enzymes that hydrolyse aminoglycosides. In Escherichia coli and Klebsiella pneumoniae, the dominant resistance mechanisms are ESBLs belonging to the CTX-M, TEM, and SHV families; p-AmpC; and (more recently) carbapenemases belonging to classes A, B, and D. Urinary Pseudomonas aeruginosa isolates harbour metallo-beta-lactamases (MBLs) and ESBLs belonging to PER and GES families, while carbapenemases of class D are found in urinary Acinetobacter baumannii isolates. The identification of resistance mechanisms in routine diagnostic practice is primarily based on phenotypic tests for the detection of beta-lactamases, such as the double-disk synergy test or Hodge test, while polymerase chain reaction (PCR) for the detection of resistance genes is mostly pursued in reference laboratories for research purposes. As the emergence of drug-resistant bacterial strains poses serious challenges in the management of UTIs, this review aimed to appraise mechanisms of resistance in relevant Gram-negative urinary pathogens, to provide a detailed map of resistance determinants in Croatia and the world, and to discuss the implications of these resistance traits on diagnostic approaches. We summarized a sundry of different resistance mechanisms among urinary isolates and showed how their prevalence highly depends on the local epidemiological context, highlighting the need for tailored interventions in the field of antimicrobial stewardship. | 2021 | 33925181 |