Carbapenemase-producing Klebsiella pneumoniae. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
155701.0000Carbapenemase-producing Klebsiella pneumoniae. The continuing emergence of infections due to multidrug resistant bacteria is a serious public health problem. Klebsiella pneumoniae, which commonly acquires resistance encoded on mobile genetic elements, including ones that encode carbapenemases, is a prime example. K. pneumoniae carrying such genetic material, including both blaKPC and genes encoding metallo-β-lactamases, have spread globally. Many carbapenemase-producing K. pneumoniae are resistant to multiple antibiotic classes beyond β-lactams, including tetracyclines, aminoglycosides, and fluoroquinolones. The optimal treatment, if any, for infections due to these organisms is unclear but, paradoxically, appears to often require the inclusion of an optimally administered carbapenem.201425343037
155910.9999Resistance in gram-negative bacteria: enterobacteriaceae. The emergence and spread of resistance in Enterobacteriaceae are complicating the treatment of serious nosocomial infections and threatening to create species resistant to all currently available agents. Approximately 20% of Klebsiella pneumoniae infections and 31% of Enterobacter spp infections in intensive care units in the United States now involve strains not susceptible to third-generation cephalosporins. Such resistance in K pneumoniae to third-generation cephalosporins is typically caused by the acquisition of plasmids containing genes that encode for extended-spectrum beta-lactamases (ESBLs), and these plasmids often carry other resistance genes as well. ESBL-producing K pneumoniae and Escherichia coli are now relatively common in healthcare settings and often exhibit multidrug resistance. ESBL-producing Enterobacteriaceae have now emerged in the community as well. Salmonella and other Enterobacteriaceae that cause gastroenteritis may also be ESBL producers, which is of relevance when children require treatment for invasive infections. Resistance of Enterobacter spp to third-generation cephalosporins is most typically caused by overproduction of AmpC beta-lactamases, and treatment with third-generation cephalosporins may select for AmpC-overproducing mutants. Some Enterobacter cloacae strains are now ESBL and AmpC producers, conferring resistance to both third- and fourth-generation cephalosporins. Quinolone resistance in Enterobacteriaceae is usually the result of chromosomal mutations leading to alterations in target enzymes or drug accumulation. More recently, however, plasmid-mediated quinolone resistance has been reported in K pneumoniae and E coli, associated with acquisition of the qnr gene. The vast majority of Enterobacteriaceae, including ESBL producers, remain susceptible to carbapenems, and these agents are considered preferred empiric therapy for serious Enterobacteriaceae infections. Carbapenem resistance, although rare, appears to be increasing. Particularly troublesome is the emergence of KPC-type carbapenemases in New York City. Better antibiotic stewardship and infection control are needed to prevent further spread of ESBLs and other forms of resistance in Enterobacteriaceae throughout the world.200616735147
155820.9999Resistance in gram-negative bacteria: Enterobacteriaceae. The emergence and spread of resistance in Enterobacteriaceae are complicating the treatment of serious nosocomial infections and threatening to create species resistant to all currently available agents. Approximately 20% of Klebsiella pneumoniae infections and 31% of Enterobacter spp infections in intensive care units in the United States now involve strains not susceptible to third-generation cephalosporins. Such resistance in K pneumoniae to third-generation cephalosporins is typically caused by the acquisition of plasmids containing genes that encode for extended-spectrum beta-lactamases (ESBLs), and these plasmids often carry other resistance genes as well. ESBL-producing K pneumoniae and Escherichia coli are now relatively common in healthcare settings and often exhibit multidrug resistance. ESBL-producing Enterobacteriaceae have now emerged in the community as well. Salmonella and other Enterobacteriaceae that cause gastroenteritis may also be ESBL producers, which is of relevance when children require treatment for invasive infections. Resistance of Enterobacter spp to third-generation cephalosporins is most typically caused by overproduction of AmpC beta-lactamases, and treatment with third-generation cephalosporins may select for AmpC-overproducing mutants. Some Enterobacter cloacae strains are now ESBL and AmpC producers, conferring resistance to both third- and fourth-generation cephalosporins. Quinolone resistance in Enterobacteriaceae is usually the result of chromosomal mutations leading to alterations in target enzymes or drug accumulation. More recently, however, plasmid-mediated quinolone resistance has been reported in K pneumoniae and E coli, associated with acquisition of the qnr gene. The vast majority of Enterobacteriaceae, including ESBL producers, remain susceptible to carbapenems, and these agents are considered preferred empiric therapy for serious Enterobacteriaceae infections. Carbapenem resistance, although rare, appears to be increasing. Particularly troublesome is the emergence of KPC-type carbapenemases in New York City. Better antibiotic stewardship and infection control are needed to prevent further spread of ESBLs and other forms of resistance in Enterobacteriaceae throughout the world.200616813978
155630.9999Resistance to Colistin in Klebsiella Pneumoniae: A 4.0 Strain? The global rise of multidrug-resistant gram-negative bacteria represents an increasing threat to patient safety. From the first observation of a carbapenem-resistant gram-negative bacteria a global spread of extended-spectrum beta-lactamases and carbapenemases producing Klebsiella pneumoniae has been observed. Treatment options for multidrug-resistant K. pneumoniae are actually limited to combination therapy with some aminoglycosides, tigecycline and to older antimicrobial agents. Unfortunately, the prevalence of colistin-resistant and tigecycline-resistant K. pneumoniae is increasing globally. Infection due to colistin-resistant K. pneumoniae represents an independent risk factor for mortality. Resistance to colistin in K. pneumoniae may be multifactorial, as it is mediated by chromosomal genes or plasmids. The emergence of transmissible, plasmid-mediated colistin resistance is an alarming finding. The absence of new agents effective against resistant Gram-negative pathogens means that enhanced surveillance, compliance with infection prevention procedures, and antimicrobial stewardship programs will be required to limit the spread of colistin-resistant K. pneumoniae.201728626539
502140.9998Beta-lactamases in Enterobacteriaceae infections in children. Multi-drug resistance in Gram negative bacteria, particularly in Enterobacteriaceae, is a major clinical and public health challenge. The main mechanism of resistance in Enterobacteriaceae is linked to the production of beta-lactamase hydrolysing enzymes such as extended spectrum beta-lactamases (ESBL), AmpC beta-lactamases and carbapenemases (Carbapenemase Producing Enterobacteriaceae (CPE)). ESBL and CPE resistance genes are located on plasmids, which can be transmitted between Enterobacteriaceae, facilitating their spread in hospitals and communities. These plasmids usually harbour multiple additional co-resistance genes, including to trimethoprim-sulfamethoxazole, aminoglycosides, and fluoroquinolones, making these infections challenging to treat. Asymptomatic carriage in healthy children as well as community acquired infections are increasingly reported, particularly with ESBL. Therapeutic options are limited and previously little used antimicrobials such as fosfomycin and colistin have been re-introduced in clinical practice. Paediatric experience with these agents is limited hence there is a need to further examine their clinical efficacy, dosage and toxicity in children. Antimicrobial stewardship along with strict infection prevention and control practices need to be adopted widely in order to preserve currently available antimicrobials. The future development of novel agents effective against beta-lactamases producers and their applicability in children is urgently needed to address the challenge of multi-resistant Gram negative infections.201627180312
155450.9998Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. The emergence of extended-spectrum β-lactamase (ESBL)-producing bacteria, particularly Escherichia coli and Klebsiella pneumoniae, is now a critical concern for the development of therapies against bacterial infection. ESBLs consist of three major genetic groups: TEM, SHV, and CTX-M types. Nosocomial infections due to TEM and SHV-producing K. pneumoniae strains were frequently documented until the late 1990s. The number of reports on community-acquired infections caused by CTX-M-producing E. coli strains have dramatically increased over the last decade; however, K. pneumoniae strains, of either the TEM or SHV types, are persistent and important ESBL producers. The spread of ESBL genes is associated with various mobile genetic elements, such as transposons, insertion sequences, and integrons. The rapid dissemination of ESBL genes of the CTX-M type may be related to highly complicated genetic structures. These structures harboring ESBL genes and mobile elements are found in a variety of plasmids, which often carry many other antibiotic resistance genes. Multidrug-resistant CTX-M-15-producing E. coli strains disseminate worldwide. Efficient mobile elements and plasmids may have accelerated the genetic diversity and the rapid spread of ESBL genes, and their genetic evolution has caused an emerging threat to the bacteria for which few effective drugs have been identified.201121689785
251160.9998Klebsiella pneumoniae with Two Carbapenemases: Where Molecular Research Stands Now. Klebsiella pneumoniae is a significant pathogen causing various infections. Since the 1990s, carbapenem-resistant Klebsiella pneumoniae (CRKP) has threatened global health. Its main resistance mechanism is producing carbapenemases like KPC, NDM, OXA, IMP and VIM, which have different prevalent isoforms and resistance features. In China, KPC is the most common carbapenemase in CRKP, followed by metallo-β-lactamase (MBL). Alarmingly, an increasing number of K. pneumoniae strains carry two or more types of enzymes, making resistance more complex. This review summarizes the major carbapenemases carried by K. pneumoniae, their global spread, and plasmids of CRKP enzyme type combinations reported in existing studies. Common combinations such as KPC + metalloenzyme, bimetallic enzyme, and metalloenzyme + OXA-48 are discussed in detail, including their genetic environments and transfer characteristics. Whole genome sequencing technology plays a crucial role in studying drug resistance genes of K. pneumoniae, facilitating in - depth identification and analysis of bacteria, and being useful for outbreak investigation and epidemiological surveillance. In conclusion, resistance genes in K. pneumoniae are often located on mobile elements. Different resistance genes tend to be carried by specific plasmids, which have high transformation rates and little impact on host growth. In order to prevent the emergence of Klebsiella pneumoniae carrying multiple drug-resistant genes, several measures such as the rational use of antibiotics, earlier monitoring of the transmission trajectory of strains, and the prediction of the development direction of drug resistance as much as possible are particularly important in the world today.202540979938
154470.9998Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. During the past 15 years, emergence and dissemination of beta-lactam resistance in nosocomial Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii, became a serious problem worldwide. Especially the increasing resistance to 3rd and 4th generation cephalosporins and carbapenems is of particular concern. Gram-negative bacteria pursue various molecular strategies for development of resistance to these antibiotics: (a) generation of extended-spectrum beta-lactamases (ESBL) according to the original definition due to extension of the spectrum of already widely disseminated plasmid-encoded beta-lactamases by amino acid substitution; (b) acquisition of genes encoding ESBL from environmental bacteria as, for instance the CTX-M-type beta-lactamases from Kluyvera spp.; (c) high-level expression of chromosome-encoded beta-lactamase (bla) genes as bla(OXA) or bla(ampC) genes due to modifications in regulatory genes, mutations of the beta-lactamase promoter sequence as well as integration of insertion sequences containing an efficient promoter for intrinsic bla genes; (d) mobilization of bla genes by incorporation in integrons and horizontal transfer into other Gram-negative species such as the transfer of the ampC gene from Citrobacter freundii to Klebsiella spp.; (e) dissemination of plasmid-mediated carbapenemases as KPC and metallo-beta-lactamases, e.g. VIM and IMP; (f) non-expression of porin genes and/or efflux pump-based antibiotic resistance. This mini-review summarizes the historical emergence of beta-lactam resistance and beta-lactamases as major resistance mechanism in enteric bacteria, and also highlights recent developments such as multidrug- and carbapenem resistance.201020537585
154780.9998The KPC type beta-lactamases: new enzymes that confer resistance to carbapenems in Gram-negative bacilli. Antimicrobial resistance due to the continuous selective pressure from widespread use of antimicrobials in humans, animals and agriculture has been a growing problem for last decades. KPC beta-lactamases hydrolyzed beta-lactams of all classes. Especially, carbapenem antibiotics are hydrolyzed more efficiency than other beta-lactam antibiotics. The KPC enzymes are found most often in Enterobacteriaceae. Recently, these enzymes have been found in isolates of Pseudomonas aeruginosa and Acinetobacter spp. The observations of blaKPC genes isolated from different species in other countries indicate that these genes from common but unknown ancestor may have been mobilized in these areas or that blaKPC-carrying bacteria may have been passively by many vectors. The emergence of carbapenem resistance in Gram-negative bacteria is worrisome because the carbapenem resistance often may be associated with resistance to many beta-lactam and non-beta-lactam antibiotics. Treatment of infections caused by KPC-producing bacteria is extremely difficult because of their multidrug resistance, which results in high mortality rates. Therapeutic options to treat infections caused by multiresistant Gram-negative bacteria producing KPC-carbapenemases could be used polymyxin B or tigecycline.200920430717
154690.9998Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Multidrug resistance has been increasing among Gram-negative bacteria and is strongly associated with the production of both chromosomal- and plasmid-encoded beta-lactamases, whose number now exceeds 890. Many of the newer enzymes exhibit broad-spectrum hydrolytic activity against most classes of beta-lactams. The most important plasmid-encoded beta-lactamases include (a) AmpC cephalosporinases produced in high quantities, (b) the expanding families of extended-spectrum beta-lactamases such as the CTX-M enzymes that can hydrolyze the advanced-spectrum cephalosporins and monobactams, and (c) carbapenemases from multiple molecular classes that are responsible for resistance to almost all beta-lactams, including the carbapenems. Important plasmid-encoded carbapenemases include (a) the KPC beta-lactamases originating in Klebsiella pneumoniae isolates and now appearing worldwide in pan-resistant Gram-negative pathogens and (b) metallo-beta-lactamases that are produced in organisms with other deleterious beta-lactamases, causing resistance to all beta-lactams except aztreonam. beta-Lactamase genes encoding these enzymes are often carried on plasmids that bear additional resistance determinants for other antibiotic classes. As a result, some infections caused by Gram-negative pathogens can now be treated with only a limited number, if any, antibiotics. Because multidrug resistance in Gram-negative bacteria is observed in both nosocomial and community isolates, eradication of these resistant strains is becoming more difficult.201020594363
1551100.9998Mechanisms of Resistance in Gram-Negative Urinary Pathogens: From Country-Specific Molecular Insights to Global Clinical Relevance. Urinary tract infections (UTIs) are the most frequent hospital infections and among the most commonly observed community acquired infections. Alongside their clinical importance, they are notorious because the pathogens that cause them are prone to acquiring various resistance determinants, including extended-spectrum beta-lactamases (ESBL); plasmid-encoded AmpC β-lactamases (p-AmpC); carbapenemases belonging to class A, B, and D; qnr genes encoding reduced susceptibility to fluoroquinolones; as well as genes encoding enzymes that hydrolyse aminoglycosides. In Escherichia coli and Klebsiella pneumoniae, the dominant resistance mechanisms are ESBLs belonging to the CTX-M, TEM, and SHV families; p-AmpC; and (more recently) carbapenemases belonging to classes A, B, and D. Urinary Pseudomonas aeruginosa isolates harbour metallo-beta-lactamases (MBLs) and ESBLs belonging to PER and GES families, while carbapenemases of class D are found in urinary Acinetobacter baumannii isolates. The identification of resistance mechanisms in routine diagnostic practice is primarily based on phenotypic tests for the detection of beta-lactamases, such as the double-disk synergy test or Hodge test, while polymerase chain reaction (PCR) for the detection of resistance genes is mostly pursued in reference laboratories for research purposes. As the emergence of drug-resistant bacterial strains poses serious challenges in the management of UTIs, this review aimed to appraise mechanisms of resistance in relevant Gram-negative urinary pathogens, to provide a detailed map of resistance determinants in Croatia and the world, and to discuss the implications of these resistance traits on diagnostic approaches. We summarized a sundry of different resistance mechanisms among urinary isolates and showed how their prevalence highly depends on the local epidemiological context, highlighting the need for tailored interventions in the field of antimicrobial stewardship.202133925181
1847110.9998Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Non-typhoidal serovars of Salmonella enterica (NTS) are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical "last resort" antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli, and Enterobacter, which are major nosocomial pathogens affecting debilitated and immunocompromised patients), carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance-namely KPC (Klebsiella pneumoniae carbapenemase) (class A), IMP (imipenemase), NDM (New Delhi metallo-β-lactamase), VIM (Verona integron-encoded metallo-β-lactamase) (class B), and OXA-48 (oxacillinase, class D)-have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC β-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids), together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these "last resort" antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria.201829642473
1555120.9998Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era.201525812463
1548130.9998Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics. Since about twenty years, following the introduction into therapeutic of news beta-lactam antibiotics (broad-spectrum cephalosporins, monobactams and carbapenems), a very significant number of new beta-lactamases appeared. These enzymes confer to the bacteria which put them, the means of resisting new molecules. The genetic events involved in this evolution are of two types: evolution of old enzymes by mutation and especially appearance of new genes coming for some, from bacteria of the environment. Numerous mechanisms of enzymatic resistance to the carbapenems have been described in Pseudomonas aeruginosa. The important mechanism of inactivation carbapenems is production variety of b-lactam hydrolysing enzymes associated to carbapenemases. The metallo-beta-enzymes (IMP, VIM, SPM, GIM types) are the most clinically significant carbapenemases. P. aeruginosa posses MBLs and seem to have acquired them through transmissible genetic elements (plasmids or transposons associated with integron) and can be transmission to other bacteria. They have reported worldwide but mostly from South East Asia and Europe. The enzymes, belonging to the molecular class B family, are the most worrisome of all beta-lactamases because they confer resistance to carbapenems and all the beta-lactams (with the exception of aztreonam) and usually to aminoglycosides and quinolones. The dissemination of MBLs genes is thought to be driven by regional consumption of extended--spectrum antibiotics (e.g. cephalosporins and carbapenems), and therefore care must be taken that these drugs are not used unnecessarily.200818519228
5017140.9998Evolution of β-lactams resistance in Gram-negative bacteria in Tunisia. Antimicrobial resistance is a major health problem worldwide, but marked variations in the resistance profiles of bacterial pathogens are found between countries and in different patient settings. In Tunisia, the strikingly high prevalence of resistance of bacteria to penicillins and cephalorosporins drugs including fourth generation in clinical isolates of Gram negative bacteria has been reported. During 30 years, the emerging problem of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates is substantial, and some unique enzymes have been found. Recently, evidence that Gram-negative bacteria are resistant to nearly all available antimicrobial agents, including carbapenems, have emerged.201121438848
5018150.9998Multidrug-resistant Gram-negative bacteria: a product of globalization. Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use.201525737092
1553160.9998Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. The worldwide spread of extended-spectrum β-lactamase (ESBL)-producing bacteria, particularly Escherichia coli and Klebsiella pneumoniae, is a critical concern for the development of therapies against multidrug-resistant bacteria. Since the 2000s, detection rates of CTX-M types ESBL-producing E. coli in the community have been high, possibly contributing to their nosocomial detection. Various factors, such as environmental sources, food animals, and international travel, accelerate the global ESBL spread in the community. The dramatic dissemination of ESBLs in the community is associated with the relatively recent emergence of CTX-M-15-producing ST131 E. coli clones, which often carry many other antibiotic resistance genes (including quinolone). The usefulness of β-lactam/β-lactamase inhibitor, particularly, piperacillin/tazobactam, has been considered as a carbapenem-sparing regimen for ESBL infections, although the global trend of AmpC β-lactamase-producing bacteria should be monitored carefully. Careful therapeutic selection and continued surveillance for the detection of multidrug-resistant bacteria are required.201829626676
1837170.9998Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. The emergence and spread of carbapenemase-producing bacteria, that hydolyze most β-lactams, including carbapenems, are a major concern of public health system worldwide, particularly in the Middle East area. Since the plasmids harboring resistance genes could be spread across other bacterial populations, detection of carbapenemase-producing organisms has become more problematic. These organisms produce different types of enzymes including the most prevalent types including KPC, VIM, IMP, NDM, and OXA-48. Carbapenemase producers are mostly identified among Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. This study reviewed almost all papers, which conducted in the Middle East. In order to decrease the spread of resistance, the regional cooperation has been emphasized by the Middle East countries. The highest resistance, which is mediated by KPC has been observed in Afghanistan, Saudi Arabia and Jordan followed by NDM in Pakistan and OXA in Turkey and Pakistan. It is important to mention that the spread of these types have been reported sporadically in the other countries of this area. This review described the widespread carbapenemases in the Middle East area, which have been identified in an alarming rate.201526719779
2517180.9998The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Mechanisms of drug resistance in gram-negative bacteria (GNB) are numerous; β-lactamase genes carried on mobile genetic elements are a key mechanism for the rapid spread of antibiotic-resistant GNB worldwide. Transmissible carbapenem-resistance in Enterobacteriaceae has been recognized for the last 2 decades, but global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a more recent problem that, once initiated, has been occurring at an alarming pace. In this article, we discuss the evolution of CRE, with a focus on the epidemiology of the CPE pandemic; review risk factors for colonization and infection with the most common transmissible CPE worldwide, Klebsiella pneumoniae carbapenemase-producing K. pneumoniae; and present strategies used to halt the striking spread of these deadly pathogens.201728375512
1552190.9998Evolution of β-Lactam Antibiotic Resistance in Proteus Species: From Extended-Spectrum and Plasmid-Mediated AmpC β-Lactamases to Carbapenemases. The management of infectious diseases has proven to be a daunting task for clinicians worldwide, and the rapid development of antibiotic resistance among Gram-negative bacteria is making it even more challenging. The first-line therapy is empirical, and it most often comprises β-lactam antibiotics. Among Gram-negative bacteria, Proteus mirabilis, an important community and hospital pathogen associated primarily with urinary tract and wound infection, holds a special place. This review's aim was to collate and examine recent studies investigating β-lactam resistance phenotypes and mechanisms of Proteus species and the global significance of its β-lactam resistance evolution. Moreover, the genetic background of resistance traits and the role of mobile genetic elements in the dissemination of resistance genes were evaluated. P. mirabilis as the dominant pathogen develops resistance to expanded-spectrum cephalosporins (ESC) by producing extended-spectrum β-lactamases (ESBL) and plasmid-mediated AmpC β-lactamases (p-AmpC). β-lactamase-mediated resistance to carbapenems in Enterobacterales, including Proteus spp., is mostly due to expression of carbapenemases of class A (KPC); class B (metallo-β-lactamases or MBLs of IMP, VIM, or NDM series); or class D or carbapenem-hydrolyzing oxacillinases (CHDL). Previously, a dominant ESBL type in P. mirabilis was TEM-52; yet, lately, it has been replaced by CTX-M variants, particularly CTX-M-14. ESC resistance can also be mediated by p-AmpC, with CMY-16 as the dominant variant. Carbapenem resistance in Proteus spp. is a challenge due to its intrinsic resistance to colistin and tigecyclin. The first carbapenemases reported belonged to class B, most frequently VIM-1 and NDM-5. In Europe, predominantly France and Belgium, a clonal lineage positive for OXA-23 CHDL spreads rapidly undetected, due to its low-level resistance to carbapenems. The amazing capacity of Proteus spp. to accumulate a plethora of various resistance traits is leading to multidrug or extensively drug-resistant phenotypes.202540142401