# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1543 | 0 | 1.0000 | AmpC beta-lactamases. AmpC beta-lactamases are clinically important cephalosporinases encoded on the chromosomes of many of the Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and beta-lactamase inhibitor-beta-lactam combinations. In many bacteria, AmpC enzymes are inducible and can be expressed at high levels by mutation. Overexpression confers resistance to broad-spectrum cephalosporins including cefotaxime, ceftazidime, and ceftriaxone and is a problem especially in infections due to Enterobacter aerogenes and Enterobacter cloacae, where an isolate initially susceptible to these agents may become resistant upon therapy. Transmissible plasmids have acquired genes for AmpC enzymes, which consequently can now appear in bacteria lacking or poorly expressing a chromosomal bla(AmpC) gene, such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Resistance due to plasmid-mediated AmpC enzymes is less common than extended-spectrum beta-lactamase production in most parts of the world but may be both harder to detect and broader in spectrum. AmpC enzymes encoded by both chromosomal and plasmid genes are also evolving to hydrolyze broad-spectrum cephalosporins more efficiently. Techniques to identify AmpC beta-lactamase-producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. Carbapenems can usually be used to treat infections due to AmpC-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation). | 2009 | 19136439 |
| 1548 | 1 | 0.9999 | Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics. Since about twenty years, following the introduction into therapeutic of news beta-lactam antibiotics (broad-spectrum cephalosporins, monobactams and carbapenems), a very significant number of new beta-lactamases appeared. These enzymes confer to the bacteria which put them, the means of resisting new molecules. The genetic events involved in this evolution are of two types: evolution of old enzymes by mutation and especially appearance of new genes coming for some, from bacteria of the environment. Numerous mechanisms of enzymatic resistance to the carbapenems have been described in Pseudomonas aeruginosa. The important mechanism of inactivation carbapenems is production variety of b-lactam hydrolysing enzymes associated to carbapenemases. The metallo-beta-enzymes (IMP, VIM, SPM, GIM types) are the most clinically significant carbapenemases. P. aeruginosa posses MBLs and seem to have acquired them through transmissible genetic elements (plasmids or transposons associated with integron) and can be transmission to other bacteria. They have reported worldwide but mostly from South East Asia and Europe. The enzymes, belonging to the molecular class B family, are the most worrisome of all beta-lactamases because they confer resistance to carbapenems and all the beta-lactams (with the exception of aztreonam) and usually to aminoglycosides and quinolones. The dissemination of MBLs genes is thought to be driven by regional consumption of extended--spectrum antibiotics (e.g. cephalosporins and carbapenems), and therefore care must be taken that these drugs are not used unnecessarily. | 2008 | 18519228 |
| 1546 | 2 | 0.9999 | Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Multidrug resistance has been increasing among Gram-negative bacteria and is strongly associated with the production of both chromosomal- and plasmid-encoded beta-lactamases, whose number now exceeds 890. Many of the newer enzymes exhibit broad-spectrum hydrolytic activity against most classes of beta-lactams. The most important plasmid-encoded beta-lactamases include (a) AmpC cephalosporinases produced in high quantities, (b) the expanding families of extended-spectrum beta-lactamases such as the CTX-M enzymes that can hydrolyze the advanced-spectrum cephalosporins and monobactams, and (c) carbapenemases from multiple molecular classes that are responsible for resistance to almost all beta-lactams, including the carbapenems. Important plasmid-encoded carbapenemases include (a) the KPC beta-lactamases originating in Klebsiella pneumoniae isolates and now appearing worldwide in pan-resistant Gram-negative pathogens and (b) metallo-beta-lactamases that are produced in organisms with other deleterious beta-lactamases, causing resistance to all beta-lactams except aztreonam. beta-Lactamase genes encoding these enzymes are often carried on plasmids that bear additional resistance determinants for other antibiotic classes. As a result, some infections caused by Gram-negative pathogens can now be treated with only a limited number, if any, antibiotics. Because multidrug resistance in Gram-negative bacteria is observed in both nosocomial and community isolates, eradication of these resistant strains is becoming more difficult. | 2010 | 20594363 |
| 1547 | 3 | 0.9998 | The KPC type beta-lactamases: new enzymes that confer resistance to carbapenems in Gram-negative bacilli. Antimicrobial resistance due to the continuous selective pressure from widespread use of antimicrobials in humans, animals and agriculture has been a growing problem for last decades. KPC beta-lactamases hydrolyzed beta-lactams of all classes. Especially, carbapenem antibiotics are hydrolyzed more efficiency than other beta-lactam antibiotics. The KPC enzymes are found most often in Enterobacteriaceae. Recently, these enzymes have been found in isolates of Pseudomonas aeruginosa and Acinetobacter spp. The observations of blaKPC genes isolated from different species in other countries indicate that these genes from common but unknown ancestor may have been mobilized in these areas or that blaKPC-carrying bacteria may have been passively by many vectors. The emergence of carbapenem resistance in Gram-negative bacteria is worrisome because the carbapenem resistance often may be associated with resistance to many beta-lactam and non-beta-lactam antibiotics. Treatment of infections caused by KPC-producing bacteria is extremely difficult because of their multidrug resistance, which results in high mortality rates. Therapeutic options to treat infections caused by multiresistant Gram-negative bacteria producing KPC-carbapenemases could be used polymyxin B or tigecycline. | 2009 | 20430717 |
| 1544 | 4 | 0.9998 | Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. During the past 15 years, emergence and dissemination of beta-lactam resistance in nosocomial Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii, became a serious problem worldwide. Especially the increasing resistance to 3rd and 4th generation cephalosporins and carbapenems is of particular concern. Gram-negative bacteria pursue various molecular strategies for development of resistance to these antibiotics: (a) generation of extended-spectrum beta-lactamases (ESBL) according to the original definition due to extension of the spectrum of already widely disseminated plasmid-encoded beta-lactamases by amino acid substitution; (b) acquisition of genes encoding ESBL from environmental bacteria as, for instance the CTX-M-type beta-lactamases from Kluyvera spp.; (c) high-level expression of chromosome-encoded beta-lactamase (bla) genes as bla(OXA) or bla(ampC) genes due to modifications in regulatory genes, mutations of the beta-lactamase promoter sequence as well as integration of insertion sequences containing an efficient promoter for intrinsic bla genes; (d) mobilization of bla genes by incorporation in integrons and horizontal transfer into other Gram-negative species such as the transfer of the ampC gene from Citrobacter freundii to Klebsiella spp.; (e) dissemination of plasmid-mediated carbapenemases as KPC and metallo-beta-lactamases, e.g. VIM and IMP; (f) non-expression of porin genes and/or efflux pump-based antibiotic resistance. This mini-review summarizes the historical emergence of beta-lactam resistance and beta-lactamases as major resistance mechanism in enteric bacteria, and also highlights recent developments such as multidrug- and carbapenem resistance. | 2010 | 20537585 |
| 1559 | 5 | 0.9998 | Resistance in gram-negative bacteria: enterobacteriaceae. The emergence and spread of resistance in Enterobacteriaceae are complicating the treatment of serious nosocomial infections and threatening to create species resistant to all currently available agents. Approximately 20% of Klebsiella pneumoniae infections and 31% of Enterobacter spp infections in intensive care units in the United States now involve strains not susceptible to third-generation cephalosporins. Such resistance in K pneumoniae to third-generation cephalosporins is typically caused by the acquisition of plasmids containing genes that encode for extended-spectrum beta-lactamases (ESBLs), and these plasmids often carry other resistance genes as well. ESBL-producing K pneumoniae and Escherichia coli are now relatively common in healthcare settings and often exhibit multidrug resistance. ESBL-producing Enterobacteriaceae have now emerged in the community as well. Salmonella and other Enterobacteriaceae that cause gastroenteritis may also be ESBL producers, which is of relevance when children require treatment for invasive infections. Resistance of Enterobacter spp to third-generation cephalosporins is most typically caused by overproduction of AmpC beta-lactamases, and treatment with third-generation cephalosporins may select for AmpC-overproducing mutants. Some Enterobacter cloacae strains are now ESBL and AmpC producers, conferring resistance to both third- and fourth-generation cephalosporins. Quinolone resistance in Enterobacteriaceae is usually the result of chromosomal mutations leading to alterations in target enzymes or drug accumulation. More recently, however, plasmid-mediated quinolone resistance has been reported in K pneumoniae and E coli, associated with acquisition of the qnr gene. The vast majority of Enterobacteriaceae, including ESBL producers, remain susceptible to carbapenems, and these agents are considered preferred empiric therapy for serious Enterobacteriaceae infections. Carbapenem resistance, although rare, appears to be increasing. Particularly troublesome is the emergence of KPC-type carbapenemases in New York City. Better antibiotic stewardship and infection control are needed to prevent further spread of ESBLs and other forms of resistance in Enterobacteriaceae throughout the world. | 2006 | 16735147 |
| 1558 | 6 | 0.9998 | Resistance in gram-negative bacteria: Enterobacteriaceae. The emergence and spread of resistance in Enterobacteriaceae are complicating the treatment of serious nosocomial infections and threatening to create species resistant to all currently available agents. Approximately 20% of Klebsiella pneumoniae infections and 31% of Enterobacter spp infections in intensive care units in the United States now involve strains not susceptible to third-generation cephalosporins. Such resistance in K pneumoniae to third-generation cephalosporins is typically caused by the acquisition of plasmids containing genes that encode for extended-spectrum beta-lactamases (ESBLs), and these plasmids often carry other resistance genes as well. ESBL-producing K pneumoniae and Escherichia coli are now relatively common in healthcare settings and often exhibit multidrug resistance. ESBL-producing Enterobacteriaceae have now emerged in the community as well. Salmonella and other Enterobacteriaceae that cause gastroenteritis may also be ESBL producers, which is of relevance when children require treatment for invasive infections. Resistance of Enterobacter spp to third-generation cephalosporins is most typically caused by overproduction of AmpC beta-lactamases, and treatment with third-generation cephalosporins may select for AmpC-overproducing mutants. Some Enterobacter cloacae strains are now ESBL and AmpC producers, conferring resistance to both third- and fourth-generation cephalosporins. Quinolone resistance in Enterobacteriaceae is usually the result of chromosomal mutations leading to alterations in target enzymes or drug accumulation. More recently, however, plasmid-mediated quinolone resistance has been reported in K pneumoniae and E coli, associated with acquisition of the qnr gene. The vast majority of Enterobacteriaceae, including ESBL producers, remain susceptible to carbapenems, and these agents are considered preferred empiric therapy for serious Enterobacteriaceae infections. Carbapenem resistance, although rare, appears to be increasing. Particularly troublesome is the emergence of KPC-type carbapenemases in New York City. Better antibiotic stewardship and infection control are needed to prevent further spread of ESBLs and other forms of resistance in Enterobacteriaceae throughout the world. | 2006 | 16813978 |
| 1545 | 7 | 0.9998 | Carbapenemases: Partners in crime. Carbapenemases, β-lactamases that inactivate carbapenems and most β-lactam antibiotics, are most widely known for their ability to confer resistance to β-lactams. They include serine carbapenemases, such as the widespread KPC family of enzymes, and the metallo-β-lactamases that contain the IMP, NDM and VIM enzyme families acquired by Gram-negative bacteria on transferable elements. These enzymes are almost always produced by organisms that encode at least one other β-lactamase, with as many as eight different β-lactamase genes detected in a single isolate. This consortium of β-lactamases includes a full spectrum of molecular and biochemical characteristics, providing the producing organism with a range of catalytic activities. In addition to the variety of β-lactamases found in carbapenemase-producing Gram-negative pathogens are multiple other resistance factors, especially aminoglycoside-modifying enzymes and 16S rRNA methylases that confer resistance to aminoglycosides. Other acquired genes encode fluoroquinolone, trimethoprim, sulfonamide, rifampicin and chloramphenicol resistance determinants on mobile elements that travel together with β-lactamase genes. Thus, the recent proliferation of transferable carbapenemases serves to magnify resistance to virtually all antibiotic classes. Judicial use of current antibiotics and a quest for novel antibacterial agents are necessary, as multidrug-resistant bacteria continue to multiply. | 2013 | 27873609 |
| 1542 | 8 | 0.9998 | Genetics of extended-spectrum beta-lactamases. Bacteria have adapted to the introduction of aztreonam, cefotaxime, ceftazidime, ceftriaxone and other oxyimino-beta-lactams by altering existing plasmid-mediated class A and class D beta-lactamases so as to expand their spectrum of activity. In the TEM and SHV families of extended-spectrum beta-lactamases, relative activity toward oxyimino-substrates increases with the number of amino acid substitutions but at the price of lowered intrinsic efficiency, so that compensatory up-promoter events are often associated with increased enzyme expression. Another new mechanism of resistance is the capture on plasmids of normally chromosomal genes from Enterobacter cloacae, Citrobacter freundii or Pseudomonas aeruginosa, which upon transfer can provide Klebsiella pneumoniae or Escherichia coli with resistance to alpha-methoxy-beta-lactams, such as cefoxitin or cefotetan, as well as to oxyimino-beta-lactams. | 1994 | 7821301 |
| 9930 | 9 | 0.9998 | Extended-spectrum beta-lactamases and other enzymes providing resistance to oxyimino-beta-lactams. Bacteria have once again demonstrated their remarkably versatility in meeting the introduction of new classes of beta-lactam antibiotics by modifying available plasmid mediated beta-lactamases to expand their spectrum of action and by incorporating chromosomal beta-lactamase genes onto plasmids that permit their spread to new hosts. Such resistance is more common than presently is appreciated because current NCCLS breakpoints for resistance underestimate its prevalence. A number of risk factors for acquisition of ESBL-producing K. pneumoniae have been defined, but most will be no easier to control than those for infection by MRSA or VRE. More clinical and animal model studies are needed to evaluate options for treatment. Most strains remain susceptible to imipenem and other carbapenems, but carbapenem resistance has appeared either by spread of metallo-beta-lactamase or by production of an AmpC enzyme combined with loss of an outer membrane porin channel. Attack on our adversaries' latest biological weapons is likely to require enhanced versatility on our part as well. | 1997 | 9421705 |
| 5698 | 10 | 0.9998 | Evolutionary Trajectories toward High-Level β-Lactam/β-Lactamase Inhibitor Resistance in the Presence of Multiple β-Lactamases. β-Lactam antibiotics are the first choice for the treatment of most bacterial infections. However, the increased prevalence of β-lactamases, in particular extended-spectrum β-lactamases, in pathogenic bacteria has severely limited the possibility of using β-lactam treatments. Combining β-lactam antibiotics with β-lactamase inhibitors can restore treatment efficacy by negating the effect of the β-lactamase and has become increasingly important against infections caused by β-lactamase-producing strains. Not surprisingly, bacteria with resistance to even these combinations have been found in patients. Studies on the development of bacterial resistance to β-lactam/β-lactamase inhibitor combinations have focused mainly on the effects of single, chromosomal or plasmid-borne, β-lactamases. However, clinical isolates often carry more than one β-lactamase in addition to multiple other resistance genes. Here, we investigate how the evolutionary trajectories of the development of resistance to three commonly used β-lactam/β-lactamase inhibitor combinations, ampicillin-sulbactam, piperacillin-tazobactam, and ceftazidime-avibactam, were affected by the presence of three common β-lactamases, TEM-1, CTX-M-15, and OXA-1. First-step resistance was due mainly to extensive gene amplifications of one or several of the β-lactamase genes where the amplification pattern directly depended on the respective drug combination. Amplifications also served as a stepping-stone for high-level resistance in combination with additional mutations that reduced drug influx or mutations in the β-lactamase gene bla(CTX-M-15). This illustrates that the evolutionary trajectories of resistance to β-lactam/β-lactamase inhibitor combinations are strongly influenced by the frequent and transient nature of gene amplifications and how the presence of multiple β-lactamases shapes the evolution to higher-level resistance. | 2022 | 35652643 |
| 9931 | 11 | 0.9998 | New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Of the 340 discrete beta-lactamases that have been identified, the most important groups of enzymes that are continuing to proliferate include the plasmid-encoded cephalosporinases, the metallo-beta-lactamases, and the extended-spectrum beta-lactamases. Resistance to specific beta-lactam-containing antimicrobial agents frequently can be traced to a single beta-lactamase, but this task is becoming more difficult for the clinical microbiology laboratory. Other factors, such as multiple beta-lactamase production, transferable multidrug-resistance genes, alterations in outer-membrane porins, and possible antibiotic efflux, all may contribute to a resistance phenotype. Appreciation of these factors may help the physician make a more informed decision when choosing therapy to try to avoid selection of even more pathogenic strains. | 2001 | 11264037 |
| 9932 | 12 | 0.9998 | Beta-lactam resistance mechanisms in gram-negative bacteria. Beta-lactam antibiotics are commonly used to treat a variety of bacterial infections. Gram-negative bacteria have evolved several resistance mechanisms including altered permeability and beta-lactamase production. New trends in resistance are emerging amongst clinical isolates which may reflect the choice of beta-lactam employed. | 1986 | 2856616 |
| 2508 | 13 | 0.9998 | Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Proteus spp. are commensal Enterobacterales of the human digestive tract. At the same time, P. mirabilis is commonly involved in urinary tract infections (UTI). P. mirabilis is naturally resistant to several antibiotics including colistin and shows reduced susceptibility to imipenem. However higher levels of resistance to imipenem commonly occur in P. mirabilis isolates consecutively to the loss of porins, reduced expression of penicillin binding proteins (PBPs) PBP1a, PBP2, or acquisition of several antibiotic resistance genes, including carbapenemase genes. In addition, resistance to non-β-lactams is also frequently reported including molecules used for treating UTI infections (e.g., fluoroquinolones, nitrofurans). Emergence and spread of multidrug resistant P. mirabilis isolates, including those producing ESBLs, AmpC cephalosporinases and carbapenemases, are being more and more frequently reported. This review covers Proteus spp. with a focus on the different genetic mechanisms involved in the acquisition of resistance genes to multiple antibiotic classes turning P. mirabilis into a dreadful pandrug resistant bacteria and resulting in difficult to treat infections. | 2020 | 32153540 |
| 4860 | 14 | 0.9998 | The rise of carbapenem-resistant Acinetobacter baumannii. Acinetobacter spp. are Gram-negative bacteria that have become one of the most difficult pathogens to treat. The species A. baumannii, largely unknown 30 years ago, has risen to prominence particularly because of its ability to cause infections in immunocompromised patients. It is now a predominant pathogen in many hospitals as it has acquired resistance genes to virtually all antibiotics capable of treating Gram-negative bacteria, including the fluoroquinolones and the cephalosporins. Some members of the species have accumulated these resistance genes in large resistance islands, located in a "hot-spot" within the bacterial chromosome. The only conventional remaining treatment options were the carbapenems. However, A. baumannii possesses an inherent class D β-lactamase gene (blaOXA-51-like) that can have the ability to confer carbapenem resistance. Additionally, mechanisms of carbapenem resistance have emerged that derive from the importation of the distantly related class D β-lactamase genes blaOXA-23 and blaOXA-58. Although not inducible, the expression of these genes is controlled by mobile promoters carried on ISAba elements. It has also been found that other resistance genes including the chromosomal class C β-lactamase genes conferring cephalosporin resistance are controlled in the same manner. Colistin is now considered to be the final drug capable of treating infections caused by carbapenem-resistant A. baumannii; however, strains are now being isolated that are resistant to this antibiotic as well. The increasing inability to treat infections caused by A. baumannii ensures that this pathogen more than ranks with MRSA or Clostridium difficile as a threat to modern medicine. | 2013 | 22894617 |
| 4842 | 15 | 0.9998 | Plasmid-borne AmpC beta-lactamases. Historically, it was thought that ampC genes encoding class C beta-lactamases were located solely on the chromosome but, within the last 12 years, an increasing number of ampC genes have been found on plasmids. These have mostly been acquired by ampC-deficient pathogenic bacteria, which consequently are supplied with new and additional resistance phenotypes. This review discusses the phylogenetic origin of the plasmid-encoded AmpC beta-lactamases, their occurrence, and mode of spread, as well as their hydrolytic properties. | 2002 | 12166675 |
| 5058 | 16 | 0.9998 | Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene. Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn(2+) and K(+)-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa), whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia). FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance.IMPORTANCE There is a critical need to identify alternate approaches to treat infections caused by extensively drug-resistant (XDR) Gram-negative bacteria. Fosfomycin is an old antibiotic which is routinely used for the treatment of urinary tract infections, although there is substantial interest in expanding its use to systemic infections caused by XDR Gram-negative bacteria. In this study, we show that fosA genes, which encode dimeric Mn(2+)- and K(+)-dependent glutathione S-transferase, are widely distributed in the genomes of Gram-negative bacteria-particularly those belonging to the family Enterobacteriaceae-and confer fosfomycin resistance. This finding suggests that chromosomally located fosA genes represent a vast reservoir of fosfomycin resistance determinants that may be transferred to E. coli Furthermore, they suggest that inhibition of FosA activity may provide a viable strategy to potentiate the activity of fosfomycin against XDR Gram-negative bacteria. | 2017 | 28851843 |
| 2509 | 17 | 0.9998 | Trends in antimicrobial-drug resistance in Japan. Multidrug resistance in gram-positive bacteria has become common worldwide. In Japan until recently, gram-negative bacteria such as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Serratia marcescens were controlled by carbapenems, fluoroquinolones, and aminoglycosides. However, several of these microorganisms have recently developed resistance against many antimicrobial drugs. | 2000 | 11076714 |
| 5024 | 18 | 0.9998 | Colistin Resistance in Enterobacterales Strains - A Current View. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 - mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 – mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin. | 2019 | 31880886 |
| 5017 | 19 | 0.9997 | Evolution of β-lactams resistance in Gram-negative bacteria in Tunisia. Antimicrobial resistance is a major health problem worldwide, but marked variations in the resistance profiles of bacterial pathogens are found between countries and in different patient settings. In Tunisia, the strikingly high prevalence of resistance of bacteria to penicillins and cephalorosporins drugs including fourth generation in clinical isolates of Gram negative bacteria has been reported. During 30 years, the emerging problem of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates is substantial, and some unique enzymes have been found. Recently, evidence that Gram-negative bacteria are resistant to nearly all available antimicrobial agents, including carbapenems, have emerged. | 2011 | 21438848 |