Emergence of Plasmids Co-Harboring Carbapenem Resistance Genes and tmexCD2-toprJ2 in Sequence Type 11 Carbapenem Resistant Klebsiella pneumoniae Strains. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
153101.0000Emergence of Plasmids Co-Harboring Carbapenem Resistance Genes and tmexCD2-toprJ2 in Sequence Type 11 Carbapenem Resistant Klebsiella pneumoniae Strains. OBJECTIVES: To characterize two plasmids co-harboring carbapenem resistance genes and tmexCD2-toprJ2 in carbapenem-resistant Klebsiella pneumoniae (CRKP) strains. METHODS: Two clinical CRKP strains were isolated and characterized by antimicrobial susceptibility testing, conjugation assays, whole-genome sequencing, and bioinformatics analysis. RESULTS: The two CRKP strains NB4 and NB5 were both resistant to imipenem, meropenem and tigecycline. Whole-genome sequencing revealed that two CRKP strains belonged to the ST11 type and carried multiple resistance genes. The tmexCD2-toprJ2 clusters in both strains were located on the IncFIB(Mar)-like/HI1B-like group of hybrid plasmids, which co-harbored the metallo-β-lactamase gene bla(NDM-1). In addition, the co-existence of bla(NDM-1) and bla(KPC-2) and the presence of tmexCD2-toprJ2 in CRKP strain NB5 was observed. CONCLUSIONS: In this study, tmexCD2-toprJ2 gene clusters were identified in two NDM-1-producing CRKP ST11 strains. These gene clusters will likely spread into clinical high-risk CRKP clones and exacerbate the antimicrobial resistance crisis. In addition, we detected the co-occurrence of bla(NDM-1), bla(KPC-2) and tmexCD2-toprJ2 in a single strain, which will undoubtedly accelerate the formation of a "superdrug resistant" bacteria. Hence, effective control measures should be implemented to prevent the further dissemination of such organisms in clinical settings.202235646740
151710.9996Co-occurrence of blaNDM-1, rmtC, and mcr-9 in multidrug-resistant Enterobacter kobei strain isolated from an infant with urinary tract infection. OBJECTIVES: The co-emergence of mcr and carbapenem resistance genes in Gram-negative bacteria is a serious problem. This study aims to clarify the genetic characteristic of one novel multidrug-resistant Enterobacter kobei EC1382 with mcr-9 causing urinary tract inflammation in an infant. METHODS: Antimicrobial drug susceptibility testing was performed for this isolate using the broth microdilution method. Whole-genome sequencing was performed using the Illumina PacBio RS II platform and HiSeq platform, and the antimicrobial resistance genes, mobile elements, and plasmid replicon types were identified. Conjugation analysis was performed using Escherichia coli C600 as recipients. RESULTS: Enterobacter kobei EC1382 was resistant to carbapenem, aminoglycoside, and cephalosporin. Twenty-five antimicrobial resistance genes were identified, including genes conferring resistance to carbapenem (blaNDM-1), colistin (mcr-9), and aminoglycosides (rmtC). The blaNDM-1 gene, accompanied by bleMBL and rmtC located downstream of an ISCR14 element, was detected in the IncFII(Yp) type plasmid pEC1382-2. Interestingly, although E. kobei EC1382 was susceptible to colistin, it had three identical mcr-9 genes (two in the chromosome and one in the IncHI2-type plasmid pEC1382-1). The backbone (∼12.2-kb genetic fragment) of these mcr-9 (flanked by IS903B and IS481-IS26) regions were conserved in this strain, and they were found to be present in various bacteria as three types, implying a silent distribution. CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the coexistence of blaNDM-1, rmtC, and mcr-9 in E. kobei. The silent prevalence of mcr-9 in bacteria may be a threat to public health.202337062506
152520.9996Genetic Characterization of Enterobacter hormaechei Co-Harboring bla (NDM-1) and mcr-9 Causing Upper Respiratory Tract Infection. PURPOSE: With the spread of multiple drug-resistant bacteria, bla (NDM-1) and mcr-9 have been detected in various bacteria worldwide. However, the simultaneous detection of bla (NDM-1) and mcr-9 in Enterobacter hormaechei has been rarely reported. This study identified an E. hormaechei strain carrying both bla (NDM-1) and mcr-9. We investigated the genetic characteristics of these two resistance genes in detail, elucidating various potential mechanisms by which they may be transmitted. METHODS: Bacterial genomic features and possible origins were assessed by whole-genome sequencing (WGS) with Illumina and PacBio platforms and phylogenetic analysis. Subsequent investigations were performed, including antimicrobial susceptibility testing and multilocus sequence typing (MLST). RESULTS: We isolated an E. hormaechei strain DY1901 carrying both bla (NDM-1) and mcr-9 from the sputum sample. Susceptibility testing showed that the isolate was multidrug-resistant. Multiple antibiotic resistance genes and virulence genes are widely distributed in DY1901. S1-PFGE, Southern blotting, and plasmid replicon typing showed that DY1901 carried four plasmids. The plasmid carrying mcr-9 was 259Kb in size and belonged to IncHI2, while the plasmid carrying bla (NDM-1) was 45Kb in length and belonged to IncX3. CONCLUSION: The E. hormaechei strain isolated in this study has a broad antibiotic resistance spectrum, posing a challenge to clinical treatment. Plasmids carrying mcr-9 are fusion plasmids, and those taking NDM are widely disseminated in China, suggesting that we should conduct routine genomic surveillance on such plasmids to curb the spread of drug-resistant bacteria in the region.202236068833
152430.9996Characterization of a Novel mcr-8.2-Bearing Plasmid in ST395 Klebsiella pneumoniae of Chicken Origin. The emergence of mobile colistin resistance mcr genes undermines the efficacy of colistin as the last-resort drug for multi-drug resistance infections and constitutes a great public health concern. Plasmids play a critical role in the transmission of mcr genes among bacteria. One colistin-resistant Klebsiella pneumoniae strain of chicken origin was collected and analyzed by antimicrobial susceptibility testing, PCR, conjugation assay and S1-PFGE. Whole-genome sequencing (WGS) approach combining Illumina and MinION platforms was utilized to decipher the underlying colistin resistance mechanism and genetic context. A novel mcr-8.2-bearing plasmid p2019036D-mcr8-345kb with 345 655 bp in size encoding various resistance genes including floR, sul1, aadA16, aadA2, bla (CTX-M-27), bla (DHA-1), tet(D), dfrA12 and qnrB4 was identified responsible for the colistin resistance phenotype. Plasmid comparison has shown that the mcr-8.2-bearing plasmid differed from other reported plasmids positive for mcr-8.2 but shared the same core mcr-8.2-bearing conserved region. This study demonstrates the emergence of mcr-8.2-bearing K. pneumoniae of animal origin is a potential risk to humans.202032606828
152740.9996Emergence of an Escherichia coli strain co-harbouring mcr-1 and bla(NDM-9) from a urinary tract infection in Taiwan. OBJECTIVES: Multidrug-resistant bacteria have become a serious threat worldwide. In particular, the coexistence of carbapenemase genes and mcr-1 leaves few available treatment options. Here we report a multidrug-resistant Escherichia coli isolate harbouring both mcr-1 and bla(NDM-9) from a patient with a urinary tract infection. METHODS: Antimicrobial susceptibility and resistance genes of the E. coli isolate were characterised. Furthermore, the assembled genome sequences of mcr-1- and bla(NDM-9)-carrying plasmids were determined and comparative genetic analysis with closely related plasmids was carried out. RESULTS: Three contigs were assembled comprising the E. coli chromosome and two plasmids harbouring mcr-1 (p5CRE51-MCR-1) and bla(NDM-9) (p5CRE51-NDM-9), respectively. Whole-genome sequencing revealed that the two antimicrobial resistance genes are located on individual plasmids. CONCLUSIONS: The emergence of coexistence of carbapenemase genes and mcr-1 in Enterobacteriaceae highlights a serious threat to antimicrobial therapy.201930312830
84150.9996blaOXA-48 carrying clonal colistin resistant-carbapenem resistant Klebsiella pneumoniae in neonate intensive care unit, India. Bacteria resistant to colistin, a last resort antibiotic reflect the pre-antibiotic era. In this study, colistin resistance carbapenem-resistant K. pneumoniae (COL(R)- CRKP) strains from neonate's intensive care unit were evaluated. Molecular analysis showed that all the four colistin resistant K. pneumoniae isolates were clonally related with strong biofilm formation ability and harbored bla(SHV-34) and bla(OXA-48) genes. Our result suggested the need of proper surveillance and adequate infection control to limiting the spread of these organisms.201627622347
149960.9996Expansion of KPC-producing Enterobacterales in four large hospitals in Hanoi, Vietnam. OBJECTIVES: The incidence of carbapenem resistance among nosocomial Gram-negative bacteria in Vietnam is high and increasing, including among Enterobacterales. In this study, we assessed the presence of one of the main carbapenemase genes, bla(KPC), among carbapenem-resistant Enterobacterales (CRE) from four large hospitals in Hanoi, Vietnam, between 2010 and 2015, and described their key molecular characteristics. METHODS: KPC-producing Enterobacterales were detected using conventional PCR and were further analysed using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting and whole-genome sequencing (WGS) for sequence typing and genetic characterisation. RESULTS: bla(KPC) genes were detected in 122 (20.4%) of 599 CRE isolates. bla(KPC)-carrying plasmids were diverse in size. Klebsiella pneumoniae harbouring bla(KPC) genes belonged to ST15 and ST11, whereas KPC-producing Escherichia coli showed more diverse sequence types including ST3580, ST448, ST709 and ST405. Genotypic relationships supported the hypothesis of circulation of a population of 'resident' resistant bacteria in one hospital through the years and of transmission among these hospitals via patient transfer. WGS results revealed co-carriage of several other antimicrobial resistance genes and three different genetic contexts of bla(KPC-2). Among these, the combination of ISEcp1-bla(CTX-M) and ISKpn27-bla(KPC)-ΔISKpn6 on the same plasmid is reported for the first time. CONCLUSION: We describe the dissemination of bla(KPC)-expressing Enterobacterales in four large hospitals in Hanoi, Vietnam, since 2010, which may have started earlier, along with their resistance patterns, sequence types, genotypic relationship, plasmid sizes and genetic context, thereby contributing to the overall picture of the antimicrobial resistance situation in Enterobacterales in Vietnam.202134607061
152670.9996Carbapenem resistance determinants and their transmissibility among clinically isolated Enterobacterales in Lebanon. BACKGROUND: The occurrence of carbapenem-resistant bacterial infections has increased significantly over the years with Gram-negative bacteria exhibiting the broadest resistance range. In this study we aimed to investigate the genomic characteristics of clinical carbapenem-resistant Enterobacterales (CRE). METHODS: Seventeen representative multi-drug resistant (MDR) isolates from a hospital setting showing high level of resistance to carbapenems (ertapenem, meropenem and imipenem) were chosen for further characterization through whole-genome sequencing. Resistance mechanisms and transferability of plasmids carrying carbapenemase-encoding genes were also determined in silico and through conjugative mating assays. RESULTS: We detected 18 different β-lactamases, including four carbapenemases (bla(NDM-1), bla(NDM-5), bla(NDM-7), bla(OXA-48)) on plasmids with different Inc groups. The combined results from PBRT and in silico replicon typing revealed 20 different replicons linked to plasmids ranging in size between 80 and 200 kb. The most prevalent Inc groups were IncFIB(K) and IncM. OXA-48, detected on 76-kb IncM1 conjugable plasmid, was the most common carbapenemase. We also detected other conjugative plasmids with different carbapenemases confirming the role of horizontal gene transfer in the dissemination of antimicrobial resistance genes. CONCLUSION: Our findings verified the continuing spread of carbapenemases in Enterobacterales and revealed the types of mobile elements circulating in a hospital setting and contributing to the spread of resistance determinants. The occurrence and transmission of plasmids carrying carbapenemase-encoding genes call for strengthening active surveillance and prevention efforts to control antimicrobial resistance dissemination in healthcare settings.202337871361
151980.9995Epidemiology and resistance mechanisms of tigecycline- and carbapenem-resistant Enterobacteriaceae in China: a multicentre genome-based study. OBJECTIVES: To elucidate the molecular epidemiology of tigecycline and carbapenem-resistant Enterobacteriaceae isolates and mechanisms of tigecycline resistance. METHODS: We gathered 31 unduplicated strains of tigecycline-resistant Enterobacteriaceae from six hospitals nationwide. Antimicrobial susceptibility testing, phenotypic detection, and PCR identification were performed first, followed by homology analysis using MLST and PFGE. Conjugation transfer experiments using resistance gene plasmids were carried out, and the conjugates' growth curves were examined. All strains were sequenced using the Illumina HiSeq technology, and we identified a strain KP28 carrying a complete gene cluster tmexCD2-toprJ2. Then, its plasmid was further constructed using the PacBio platforms to complete the frame. The genetic connection of the tmexCD2-toprJ2 gene cluster carried by KP28 was established using core genome analyses. RESULTS: All 31 tigecycline-resistant Enterobacteriaceae strains (TG-CRE) were multidrug resistant. PFGE classified strains of CRKP, CRECL, and CRKAE into 16 distinct spectra, 6 distinct spectra, and 3 distinct spectra. MLST results showed a high concentration of ST11 in CRKP strains and a predominance of ST116 in CRECL strains, suggesting possible clonal transmission or selective dominance. The findings of the plasmid conjugation assay revealed that three strains expressing carbapenem resistance genes were effectively transmitted to the recipient cell E. coli EC600. WGS data revealed that these 31 strains include 79 resistance genes, with one strain (KP28) carrying the whole tigecycline resistance gene cluster, tmexC2D2-toprJ2. This resistance gene is contained in a large IncHI5 plasmid, which is difficult to transfer. CONCLUSION: The overall carriage rate of the tmexC2D2-toprJ2 gene cluster was found to be low among the five Chinese hospitals investigated. Conversely, tet(A) mutations were present in most of the strains. Bacteria with the carbapenem resistance genes bla (KPC) and bla (NDM) are vulnerable to horizontal transmission. Increasing the risk of transmission of antibiotic-resistant genes.202540400686
83990.9995Molecular characterization of carbapenemase-producing Enterobacterales in a tertiary hospital in Lima, Peru. Carbapenemase-producing Enterobacterales (CPE) are a growing threat to global health and the economy. Understanding the interactions between resistance and virulence mechanisms of CPE is crucial for managing difficult-to-treat infections and informing outbreak prevention and control programs. Here, we report the characterization of 21 consecutive, unique clinical isolates of CPE collected in 2018 at a tertiary hospital in Lima, Peru. Isolates were characterized by phenotypic antimicrobial susceptibility testing and whole-genome sequencing to identify resistance determinants and virulence factors. Seven Klebsiella pneumoniae isolates were classified as extensively drug-resistant. The remaining Klebsiella, Enterobacter hormaechei, and Escherichia coli isolates were multidrug-resistant. Eighteen strains carried the metallo-β-lactamase NDM-1, two the serine-carbapenemase KPC-2, and one isolate had both carbapenemases. The bla(NDM-1) gene was located in the truncated ΔISAba125 element, and the bla(KPC-2) gene was in the Tn4401a transposon. ST147 was the most frequent sequence type among K. pneumoniae isolates. Our findings highlight the urgent need to address the emergence of CPE and strengthen control measures and antibiotic stewardship programs in low- and middle-income settings.IMPORTANCEGenomic surveillance of antimicrobial resistance contributes to monitoring the spread of resistance and informs treatment and prevention strategies. We characterized 21 carbapenemase-producing Enterobacterales collected at a Peruvian tertiary hospital in 2018, which exhibited very high levels of resistance and carried numerous resistance genes. We detected the coexistence of carbapenemase-encoding genes (bla(NDM-1) and bla(KPC-2)) in a Klebsiella pneumoniae isolate that also had the PmrB(R256G) mutation associated with colistin resistance. The bla(KPC-2) genes were located in Tn4401a transposons, while the bla(NDM-1) genes were in the genetic structure Tn125 (ΔISAba125). The presence of high-risk clones among Klebsiella pneumoniae (ST11 and ST147) and Escherichia coli (ST410) isolates is also reported. The study reveals the emergence of highly resistant bacteria in a Peruvian hospital, which could compromise the effectiveness of current treatments and control.202438193666
1506100.9995Detection of Five mcr-9-Carrying Enterobacterales Isolates in Four Czech Hospitals. The aim of this study was to report the characterization of the first mcr-positive Enterobacterales isolated from Czech hospitals. In 2019, one Citrobacter freundii and four Enterobacter isolates were recovered from Czech hospitals. The production of carbapenemases was examined by a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) imipenem hydrolysis assay. Additionally, bacteria were screened for the presence of carbapenemase-encoding genes and plasmid-mediated colistin resistance genes by PCR. To define the genetic units carrying mcr genes, the genomic DNAs of mcr-carrying clinical isolates were sequenced on the PacBio Sequel I platform. Results showed that all isolates carried bla(VIM)- and mcr-like genes. Analysis of whole-genome sequencing (WGS) data revealed that all isolates carried mcr-9-like alleles. Furthermore, the three sequence type 106 (ST106) Enterobacter hormaechei isolates harbored the bla(VIM-1) gene, while the ST764 E. hormaechei and ST95 C. freundii included bla(VIM-4) Analysis of plasmid sequences showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. Additionally, at least one multidrug resistance (MDR) region was identified in each mcr-9-carrying IncHI2 plasmid. The bla(VIM-4) gene was found in the MDR regions of p48880_MCR_VIM and p51929_MCR_VIM. In the three remaining isolates, bla(VIM-1) was localized on plasmids (∼55 kb) exhibiting repA-like sequences 99% identical to the respective gene of pKPC-CAV1193. In conclusion, to the best of our knowledge, these 5 isolates were the first mcr-9-positive bacteria of clinical origin identified in the Czech Republic. Additionally, the carriage of the bla(VIM-1) on pKPC-CAV1193-like plasmids is described for the first time. Thus, our findings underline the ongoing evolution of mobile elements implicated in the dissemination of clinically important resistance determinants.IMPORTANCE Infections caused by carbapenemase-producing bacteria have led to the revival of polymyxins as the "last-resort" antibiotic. Since 2016, several reports describing the presence of plasmid-mediated colistin resistance genes, mcr, in different host species and geographic areas were published. Here, we report the first detection of Enterobacterales carrying mcr-9-like alleles isolated from Czech hospitals in 2019. Furthermore, the three ST106 Enterobacter hormaechei isolates harbored bla(VIM-1), while the ST764 E. hormaechei and ST95 Citrobacter freundii isolates included bla(VIM-4) Analysis of WGS data showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. bla(VIM-4) was found in the MDR regions of IncHI2 plasmids, while bla(VIM-1) was localized on pKPC-CAV1193-like plasmids, described here for the first time. These findings underline the ongoing evolution of mobile elements implicated in dissemination of clinically important resistance determinants. Thus, WGS characterization of MDR bacteria is crucial to unravel the mechanisms involved in dissemination of resistance mechanisms.202033298573
910110.9995Analysis of Antimicrobial Resistance Genes (ARGs) in Enterobacterales and A. baumannii Clinical Strains Colonizing a Single Italian Patient. The dramatic increase in infections caused by critically multidrug-resistant bacteria is a global health concern. In this study, we characterized the antimicrobial resistance genes (ARGs) of K. pneumoniae, P. mirabilis, E. cloacae and A. baumannii isolated from both surgical wound and rectal swab of a single Italian patient. Bacterial identification was performed by MALDI-TOF MS and the antimicrobial susceptibility was carried out by Vitek 2 system. The characterization of ARGs was performed using next-generation sequencing (NGS) methodology (MiSeq Illumina apparatus). K. pneumoniae, P. mirabilis and E. cloacae were resistant to most β-lactams and β-lactam/β-lactamases inhibitor combinations. A. baumannii strain was susceptible only to colistin. The presence of plasmids (IncN, IncR, IncFIB, ColRNAI and Col (MGD2)) was detected in all Enterobacterales but not in A. baumannii strain. The IncN plasmid and bla(NDM-1) gene were found in K. pneumoniae, P. mirabilis and E. cloacae, suggesting a possible transfer of this gene among the three clinical species. Conjugation experiments were performed using K. pneumoniae (1 isolate), P. mirabilis (2 isolates) and E. cloacae (2 isolates) as donors and E. coli J53 as a recipient. The bla(NDM-1) gene was identified by PCR analysis in all transconjugants obtained. The presence of four different bacterial species harboring resistance genes to different classes of antibiotics in a single patient substantially reduced the therapeutic options.202336978306
838120.9995KPC and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the United States. To characterize the genomic context of New Delhi metallo-β-lactamase-1 (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC), we sequenced 78 Enterobacteriaceae isolates from Pakistan and the United States encoding KPC, NDM-1, or no carbapenemase. High similarities of the results indicate rapid spread of carbapenem resistance between strains, including globally disseminated pathogens.201525988236
887130.9995Characterization of fosfomycin resistance and molecular epidemiology among carbapenem-resistant Klebsiella pneumoniae strains from two tertiary hospitals in China. BACKGROUND: Fosfomycin has been proven to be a vital choice to treat infection caused by multidrug resistance bacteria, especially carbapenem-resistant Klebsiella pneumoniae (CRKP). However, fosfomycin resistant cases has been reported gradually. In this study, we reported the fosfomycin-resistant rate in CRKP strains and further revealed the molecular mechanisms in resistance gene dissemination. RESULTS: A total of 294 non-duplicated CRKP strains were collected. And 55 fosfomyin-resistant strains were detected, 94.5% of which were clustered to sequence type (ST) 11 by PCR followed up sequencing. PFGE further revealed two major groups and four singletons. The positive rates of genes responsible to fosfomycin and carbapenem resistance were 81.8% (fosA3), 12.7% (fosA5) and 94.5% (bla(KPC-2)), respectively. Genomic analysis confirmed insertion sequence (IS) 26 was the predominant structure surrounding fosA3. The fosA3 genes in six isolates were located on plasmids which were able to transfer to E. coli J53 recipient cells by means of conjugation. CONCLUSIONS: Although the resistant rate of CRKP to fosfomycin is relatively low in our area, considering its gene is located on transferrable plasmid and inserted in IS structure, continuous monitoring is still needed.202133838639
1523140.9995The characterization of an IncN-IncR fusion plasmid co-harboring bla(TEM-40), bla(KPC-2), and bla(IMP-4) derived from ST1393 Klebsiella pneumoniae. Plasmids, as important genetic elements apart from chromosomes, often carry multiple resistance genes and various mobile genetic elements, enabling them to acquire more exogenous genes and confer additional resistance phenotypes to bacteria. Various carbapenem resistance genes are often located on IncN plasmids, and several reports have linked fusion plasmids to IncN plasmids. Therefore, this study aims to explore the emergence, molecular structure characteristics, and resistance features mediated by IncN fusion plasmids carrying multiple carbapenem resistance genes. In this study, species identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Polymerase chain reaction (PCR) was employed to detect the presence of carbapenem resistance genes in the strains. PCR-based replicon typing (PBRT) was used to identify IncN plasmids. Plasmids were analyzed through S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation experiments, and stability tests. Whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST) were conducted to characterize the target strains. Four strains containing IncN plasmids were identified: two Klebsiella pneumoniae, one Escherichia coli, and one Enterobacter cloacae, all harboring carbapenem resistance genes. Among them, two IncN plasmids (pFAHZZU7605-KPC-IMP and pFAHZZU7865-IMP) contained blaIMP-4 and exhibited similar molecular structure characteristics. Notably, the pFAHZZU7605-KPC-IMP plasmid harbored both IncN and IncR replicons. We hypothesize that the pFAHZZU7605-KPC-IMP fusion plasmid resulted from the recombination of a pFAHZZU7865-IMP-like plasmid and an IncR-like plasmid. Further analysis of the plasmid's genetic elements revealed that insertion sequences ISKpn19 and ISKpn27 played crucial roles in the plasmid recombination and fusion process. In clinical settings, plasmids carrying different resistance genes can undergo fusion, mediated by genetic elements, thereby expanding the resistance spectrum of host bacteria. Hence, it is essential to enhance the monitoring and research of transposable elements to control the spread of multidrug-resistant bacteria.202439496788
840150.9994Outbreak of colistin and carbapenem-resistant Klebsiella pneumoniae ST16 co-producing NDM-1 and OXA-48 isolates in an Iranian hospital. BACKGROUND: Colistin and carbapenem-resistant Klebsiella pneumoniae (Col-CRKP) represent a significant and constantly growing threat to global public health. We report here an outbreak of Col-CRKP infections during the fifth wave of COVID-19 pandemic. METHODS: The outbreak occurred in an intensive care unit with 22 beds at a teaching university hospital, Isfahan, Iran. We collected eight Col-CRKP strains from seven patients and characterized these strains for their antimicrobial susceptibility, determination of hypermucoviscous phenotype, capsular serotyping, molecular detection of virulence and resistance genes. Clonal relatedness of the isolates was performed using MLST. RESULTS: The COVID-19 patients were aged 24-75 years with at least 50% pulmonary involvement and were admitted to the intensive care unit. They all had superinfection caused by Col-CRKP, and poor responses to antibiotic treatment and died. With the exception of one isolate that belonged to the ST11, all seven representative Col-CRKP strains belonged to the ST16. Of these eight isolates, one ST16 isolate carried the iucA and ybtS genes was identified as serotype K20 hypervirulent Col-CRKP. The bla(SHV) and bla(NDM-1) genes were the most prevalent resistance genes, followed by bla(OXA-48) and bla(CTX-M-15) and bla(TEM) genes. Mobilized colistin-resistance genes were not detected in the isolates. CONCLUSIONS: The continual emergence of ST16 Col-CRKP strains is a major threat to public health worldwide due to multidrug-resistant and highly transmissible characteristics. It seems that the potential dissemination of these clones highlights the importance of appropriate monitoring and strict infection control measures to prevent the spread of resistant bacteria in hospitals.202438368365
909160.9994First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin.201830404152
907170.9994Clonal Dissemination of Plasmid-Mediated Carbapenem and Colistin Resistance in Refugees Living in Overcrowded Camps in North Lebanon. Carbapenem and colistin-resistant bacteria represent a global public health problem. Refugees carrying these bacteria and living in inadequate shelters can spread these microorganisms. The aim of this study was to investigate the intestinal carriage of these bacteria in Syrian refugees in Lebanon. Between June and July 2019, 250 rectal swabs were collected from two refugee camps in North Lebanon. Swabs were cultured on different selective media. Antibiotic susceptibility testing was performed using the disk diffusion method. Carbapenemase-encoding genes and mcr genes were investigated using real-time polymerase chain reaction (RT-PCR) and standard polymerase chain reaction (PCR). Epidemiological relatedness was studied using multilocus sequence typing (MLST). From 250 rectal swabs, 16 carbapenem-resistant, 5 colistin-resistant, and 4 colistin and carbapenem-resistant Enterobacteriaceae were isolated. The isolates exhibited multidrug-resistant phenotypes. Seven Klebsiella pneumoniae isolates harboured the bla(OXA-48) gene, and in addition four K. pneumoniae had mutations in the two component systems pmrA/pmrB, phoP/phoQ and co-harboured the bla(NDM-1) gene. Moreover, the bla(NDM-1) gene was detected in six Escherichia coli and three Enterobacter cloacae isolates. The remaining five E. coli isolates harboured the mcr-1 gene. MLST results showed several sequence types, with a remarkable clonal dissemination. An urgent strategy needs to be adopted in order to avoid the spread of such resistance in highly crowded underserved communities.202134943690
1721180.9994Convergence of MCR-8.2 and Chromosome-Mediated Resistance to Colistin and Tigecycline in an NDM-5-Producing ST656 Klebsiella pneumoniae Isolate From a Lung Transplant Patient in China. We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded bla(NDM-5) and mcr-8.2 genes. The bla(NDM-5) gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone.202235899054
918190.9994Carbapenem Resistance in Gram-Negative Bacteria: A Hospital-Based Study in Egypt. Background and Objectives: The global spread of carbapenem resistance and the resulting increase in mortality forced the World Health Organization (WHO) to claim carbapenem-resistant enterobacteriaceae (CRE) as global priority pathogens. Our study aimed to determine the prevalence of carbapenemase-encoding genes and major plasmid incompatibility groups among Gram-negative hospital-based isolates in Egypt. Material and Methods: This cross-sectional study was carried out at Mansoura University Hospitals over 12 months, from January to December 2019. All the isolates were tested for carbapenem resistance. The selected isolates were screened by conventional polymerase chain reaction (PCR) for the presence of carbapenemase genes, namely bla(KPC), bla(IMP), bla(VIM), and bla(NDM-1). PCR-based plasmid replicon typing was performed using the commercial PBRT kit. Results: Out of 150 isolates, only 30 (20.0%) demonstrated carbapenem resistance. Klebsiella pneumoniae was the most resistant of all isolated bacteria, and bla(NDM) was the predominant carbapenemases gene, while the most prevalent plasmid replicons were the F replicon combination (FIA, FIB, and FII) and A/C. Plasmids were detected only in Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. Remarkably, we found a statistically significant association between carbapenemase genes and plasmid replicons, including bla(NDM), IncA/C, and IncX. Conclusions: Our study demonstrated an alarming rise of plasmid-mediated carbapenem-resistant bacteria in our locality. The coexistence of resistance genes and plasmids highlights the importance of a targeted antibiotic surveillance program and the development of alternative therapeutic options at the local and international levels. Based on our results, we suggest a large-scale study with more Enterobacteriaceae isolates, testing other carbapenemase-encoding genes, and comparing the replicon typing method with other plasmid detection methods. We also recommend a national action plan to control the irrational use of antibiotics in Egypt.202336837486