# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1530 | 0 | 1.0000 | OXA-204 Carbapenemase in Clinical Isolate of Pseudomonas guariconensis, Tunisia. We report an OXA-204-producing Pseudomonas guariconensis clinical isolate in Tunisia, proving the spread of OXA-48 variants beyond Enterobacterales. The bla(OXA-204) gene was carried on a 119-kb chromosomally integrated plasmid fragment, along with multiple additional resistance genes. Surveillance, diagnostic tools, and antimicrobial drug access are needed to mitigate spread of carbapenem-resistant pathogens. | 2025 | 40439456 |
| 1661 | 1 | 0.9996 | Novel mcr-3 variant, encoding mobile colistin resistance, in an ST131 Escherichia coli isolate from bloodstream infection, Denmark, 2014. A novel variant of the plasmid-borne colistin resistance gene mcr-3 was detected on an IncHI2 plasmid in an ST131 CTX-M-55-producing Escherichia coli isolate from a Danish patient with bloodstream infection in 2014. The discovery of novel plasmid-borne genes conferring resistance to colistin is of special interest since colistin has reemerged as an important drug in the treatment of infections with multidrug-resistant Gram-negative bacteria. | 2017 | 28797324 |
| 838 | 2 | 0.9996 | KPC and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the United States. To characterize the genomic context of New Delhi metallo-β-lactamase-1 (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC), we sequenced 78 Enterobacteriaceae isolates from Pakistan and the United States encoding KPC, NDM-1, or no carbapenemase. High similarities of the results indicate rapid spread of carbapenem resistance between strains, including globally disseminated pathogens. | 2015 | 25988236 |
| 1526 | 3 | 0.9996 | Carbapenem resistance determinants and their transmissibility among clinically isolated Enterobacterales in Lebanon. BACKGROUND: The occurrence of carbapenem-resistant bacterial infections has increased significantly over the years with Gram-negative bacteria exhibiting the broadest resistance range. In this study we aimed to investigate the genomic characteristics of clinical carbapenem-resistant Enterobacterales (CRE). METHODS: Seventeen representative multi-drug resistant (MDR) isolates from a hospital setting showing high level of resistance to carbapenems (ertapenem, meropenem and imipenem) were chosen for further characterization through whole-genome sequencing. Resistance mechanisms and transferability of plasmids carrying carbapenemase-encoding genes were also determined in silico and through conjugative mating assays. RESULTS: We detected 18 different β-lactamases, including four carbapenemases (bla(NDM-1), bla(NDM-5), bla(NDM-7), bla(OXA-48)) on plasmids with different Inc groups. The combined results from PBRT and in silico replicon typing revealed 20 different replicons linked to plasmids ranging in size between 80 and 200 kb. The most prevalent Inc groups were IncFIB(K) and IncM. OXA-48, detected on 76-kb IncM1 conjugable plasmid, was the most common carbapenemase. We also detected other conjugative plasmids with different carbapenemases confirming the role of horizontal gene transfer in the dissemination of antimicrobial resistance genes. CONCLUSION: Our findings verified the continuing spread of carbapenemases in Enterobacterales and revealed the types of mobile elements circulating in a hospital setting and contributing to the spread of resistance determinants. The occurrence and transmission of plasmids carrying carbapenemase-encoding genes call for strengthening active surveillance and prevention efforts to control antimicrobial resistance dissemination in healthcare settings. | 2023 | 37871361 |
| 1524 | 4 | 0.9996 | Characterization of a Novel mcr-8.2-Bearing Plasmid in ST395 Klebsiella pneumoniae of Chicken Origin. The emergence of mobile colistin resistance mcr genes undermines the efficacy of colistin as the last-resort drug for multi-drug resistance infections and constitutes a great public health concern. Plasmids play a critical role in the transmission of mcr genes among bacteria. One colistin-resistant Klebsiella pneumoniae strain of chicken origin was collected and analyzed by antimicrobial susceptibility testing, PCR, conjugation assay and S1-PFGE. Whole-genome sequencing (WGS) approach combining Illumina and MinION platforms was utilized to decipher the underlying colistin resistance mechanism and genetic context. A novel mcr-8.2-bearing plasmid p2019036D-mcr8-345kb with 345 655 bp in size encoding various resistance genes including floR, sul1, aadA16, aadA2, bla (CTX-M-27), bla (DHA-1), tet(D), dfrA12 and qnrB4 was identified responsible for the colistin resistance phenotype. Plasmid comparison has shown that the mcr-8.2-bearing plasmid differed from other reported plasmids positive for mcr-8.2 but shared the same core mcr-8.2-bearing conserved region. This study demonstrates the emergence of mcr-8.2-bearing K. pneumoniae of animal origin is a potential risk to humans. | 2020 | 32606828 |
| 1686 | 5 | 0.9996 | Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. The emergence and dissemination of carbapenemases, bacterial enzymes able to inactivate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concurrent spread of resistance against colistin, an antibiotic of last resort, further compounds this challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid and accurate detection/characterization of existing and emergent resistance determinants, an essential aspect of public health surveillance and response activities to combat the spread of antimicrobial resistant bacteria. In the current study, WGS data was used to characterize the genomic content of antimicrobial resistance genes, including those encoding carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan. These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-relevant antimicrobials were determined by broth microdilution; resistant phenotypes were observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically, 8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates, respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromosomal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive isolates. The application of WGS to molecular epidemiology and surveillance studies, as exemplified here, will provide both a more complete understanding of the global distribution of MDR isolates and a robust surveillance tool useful for detecting emerging threats to public health. | 2018 | 29883490 |
| 1499 | 6 | 0.9996 | Expansion of KPC-producing Enterobacterales in four large hospitals in Hanoi, Vietnam. OBJECTIVES: The incidence of carbapenem resistance among nosocomial Gram-negative bacteria in Vietnam is high and increasing, including among Enterobacterales. In this study, we assessed the presence of one of the main carbapenemase genes, bla(KPC), among carbapenem-resistant Enterobacterales (CRE) from four large hospitals in Hanoi, Vietnam, between 2010 and 2015, and described their key molecular characteristics. METHODS: KPC-producing Enterobacterales were detected using conventional PCR and were further analysed using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting and whole-genome sequencing (WGS) for sequence typing and genetic characterisation. RESULTS: bla(KPC) genes were detected in 122 (20.4%) of 599 CRE isolates. bla(KPC)-carrying plasmids were diverse in size. Klebsiella pneumoniae harbouring bla(KPC) genes belonged to ST15 and ST11, whereas KPC-producing Escherichia coli showed more diverse sequence types including ST3580, ST448, ST709 and ST405. Genotypic relationships supported the hypothesis of circulation of a population of 'resident' resistant bacteria in one hospital through the years and of transmission among these hospitals via patient transfer. WGS results revealed co-carriage of several other antimicrobial resistance genes and three different genetic contexts of bla(KPC-2). Among these, the combination of ISEcp1-bla(CTX-M) and ISKpn27-bla(KPC)-ΔISKpn6 on the same plasmid is reported for the first time. CONCLUSION: We describe the dissemination of bla(KPC)-expressing Enterobacterales in four large hospitals in Hanoi, Vietnam, since 2010, which may have started earlier, along with their resistance patterns, sequence types, genotypic relationship, plasmid sizes and genetic context, thereby contributing to the overall picture of the antimicrobial resistance situation in Enterobacterales in Vietnam. | 2021 | 34607061 |
| 909 | 7 | 0.9996 | First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin. | 2018 | 30404152 |
| 870 | 8 | 0.9996 | Dissemination of multiple carbapenem-resistant clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia. It has previously been shown that carbapenem-resistant Acinetobacter baumannii are frequently detected in Saudi Arabia. The present study aimed to identify the epidemiology and distribution of antibiotic resistance determinants in these bacteria. A total of 83 A. baumannii isolates were typed by pulsed-field gel electrophoresis (PFGE), and screened by PCR for carbapenemase genes and insertion sequences. Antibiotic sensitivity to imipenem, meropenem, tigecycline, and colistin were determined. Eight different PFGE groups were identified, and were spread across multiple hospitals. Many of the PFGE groups contained isolates belonging to World-wide clone 2. Carbapenem resistance or intermediate resistance was detected in 69% of isolates. The bla VIM gene was detected in 94% of isolates, while bla OXA-23-like genes were detected in 58%. The data demonstrate the co-existence and wide distribution of a number of clones of carbapenem-resistant A. baumannii carrying multiple carbapenem-resistance determinants within hospitals in the Eastern Region of Saudi Arabia. | 2015 | 26191044 |
| 927 | 9 | 0.9996 | Prevalence of carbapenemase-producing organisms at the Kidney Center of Rawalpindi (Pakistan) and evaluation of an advanced molecular microarray-based carbapenemase assay. AIM: A DNA microarray-based assay for the detection of antimicrobial resistance (AMR) genes was used to study carbapenemase-producing organisms at the Kidney Center of Rawalpindi, Pakistan. METHODS: The evaluation of this assay was performed using 97 reference strains with confirmed AMR genes. Testing of 7857 clinical samples identified 425 Gram-negative bacteria out of which 82 appeared carbapenem resistant. These isolates were analyzed using VITEK-2 for phenotyping and the described AMR assay for genotyping. RESULTS: The most prevalent carbapenemase gene was blaNDM and in 12 isolates we detected two carbapenemase genes (e.g., blaNDM/blaOXA-48). CONCLUSION: Our prevalence data from Pakistan show that - as in other parts of the world - carbapenemase-producing organisms with different underlying resistance mechanisms are emerging, and this warrants intensified and constant surveillance. | 2018 | 29938540 |
| 1527 | 10 | 0.9996 | Emergence of an Escherichia coli strain co-harbouring mcr-1 and bla(NDM-9) from a urinary tract infection in Taiwan. OBJECTIVES: Multidrug-resistant bacteria have become a serious threat worldwide. In particular, the coexistence of carbapenemase genes and mcr-1 leaves few available treatment options. Here we report a multidrug-resistant Escherichia coli isolate harbouring both mcr-1 and bla(NDM-9) from a patient with a urinary tract infection. METHODS: Antimicrobial susceptibility and resistance genes of the E. coli isolate were characterised. Furthermore, the assembled genome sequences of mcr-1- and bla(NDM-9)-carrying plasmids were determined and comparative genetic analysis with closely related plasmids was carried out. RESULTS: Three contigs were assembled comprising the E. coli chromosome and two plasmids harbouring mcr-1 (p5CRE51-MCR-1) and bla(NDM-9) (p5CRE51-NDM-9), respectively. Whole-genome sequencing revealed that the two antimicrobial resistance genes are located on individual plasmids. CONCLUSIONS: The emergence of coexistence of carbapenemase genes and mcr-1 in Enterobacteriaceae highlights a serious threat to antimicrobial therapy. | 2019 | 30312830 |
| 837 | 11 | 0.9996 | Diversity of Carbapenem Resistance Mechanisms in Clinical Gram-Negative Bacteria in Pakistan. Antibiotic resistance is a health challenge worldwide. Carbapenem resistance in Gram-negative bacteria is a major problem since treatment options are very limited. Tigecycline and colistin are drugs of choice in this case, but resistance to these drugs is also high. The aim of this study was to describe the diversity of resistance mechanisms in carbapenem-resistant clinical Gram-negative bacteria from Pakistan. Carbapenem-hydrolyzing enzyme-encoding genes were detected using PCR and DNA sequencing and clonal types determined by multilocus sequence typing (MLST). Forty-four carbapenem-resistant isolates were collected from the microbiology laboratory of Fauji Foundation Hospital and Al-Syed Hospital, Rawalpindi, Pakistan, including Klebsiella spp., Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Achromobacter xylosoxidans. bla(NDM-1), bla(NDM-4,) bla(NDM-5,) bla(NDM-7), bla(OXA-48), and bla(OXA-181) were detected in Enterobacteriaceae; bla(OXA-23,) bla(OXA-72), and bla(NDM-1) in A. baumannii, and bla(VIM-6) and bla(VIM-11) in P. aeruginosa. MLST analysis revealed several predominant clonal types: ST167 in E. coli, ST147 in Klebsiella pneumoniae, ST2 in Acinetobacter, and ST664 in P. aeruginosa. In Acinetobacter, a new clonal type was observed for the first time. To the best of our knowledge, this is the first study describing the clonality and resistance mechanisms of carbapenem-resistant Gram-negative bacteria in Pakistan. | 2021 | 33211640 |
| 901 | 12 | 0.9996 | Emergence of plasmid-borne bla (oxa-181) gene in Ochrobactrum intermedium: first report from India. Wastewater has become a potential habitat for multi-drug-resistant bacteria. The present study aims to screen for the presence of carbapenem-resistant bacteria in sewage water samples collected from hospital and non-hospital sources. From a total of 19 sewage water samples collected, 100 carbapenem-resistant non-lactose-fermenting Gram-negative bacteria (CR-NF-GNB) were isolated using MacConkey agar cultured with 8 mg l(-1) of meropenem. On screening for beta-lactamase resistance genes (bla (NDM), bla (OXA-48-like), bla (IMP), bla (VIM) and bla (KPC)), one isolate, Ochrobactrum intermedium , was found to carry the plasmid-borne bla (OXA-48-like) gene. To the best of our knowledge, we provide the first report of the rare and emerging opportunistic pathogen Ochrobactrum intermedium encoding the OXA-181 gene in its plasmid. | 2019 | 32974517 |
| 910 | 13 | 0.9996 | Analysis of Antimicrobial Resistance Genes (ARGs) in Enterobacterales and A. baumannii Clinical Strains Colonizing a Single Italian Patient. The dramatic increase in infections caused by critically multidrug-resistant bacteria is a global health concern. In this study, we characterized the antimicrobial resistance genes (ARGs) of K. pneumoniae, P. mirabilis, E. cloacae and A. baumannii isolated from both surgical wound and rectal swab of a single Italian patient. Bacterial identification was performed by MALDI-TOF MS and the antimicrobial susceptibility was carried out by Vitek 2 system. The characterization of ARGs was performed using next-generation sequencing (NGS) methodology (MiSeq Illumina apparatus). K. pneumoniae, P. mirabilis and E. cloacae were resistant to most β-lactams and β-lactam/β-lactamases inhibitor combinations. A. baumannii strain was susceptible only to colistin. The presence of plasmids (IncN, IncR, IncFIB, ColRNAI and Col (MGD2)) was detected in all Enterobacterales but not in A. baumannii strain. The IncN plasmid and bla(NDM-1) gene were found in K. pneumoniae, P. mirabilis and E. cloacae, suggesting a possible transfer of this gene among the three clinical species. Conjugation experiments were performed using K. pneumoniae (1 isolate), P. mirabilis (2 isolates) and E. cloacae (2 isolates) as donors and E. coli J53 as a recipient. The bla(NDM-1) gene was identified by PCR analysis in all transconjugants obtained. The presence of four different bacterial species harboring resistance genes to different classes of antibiotics in a single patient substantially reduced the therapeutic options. | 2023 | 36978306 |
| 888 | 14 | 0.9996 | Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. BACKGROUND: To investigate the presence of metallo-β-lactamase (MBL) genes and the genetic environment of the New Delhi metallo-β-lactamase gene bla(NDM-1) in bacteria of food animal origin. METHODOLOGY/PRINCIPAL FINDINGS: Gram-negative bacteria with low susceptibility to imipenem (MIC>8 µg/mL) were isolated from swab samples collected from 15 animal farms and one slaughterhouse in eastern China. These bacteria were selected for phenotypic and molecular detection of known MBL genes and antimicrobial susceptibility testing. For the bla(NDM-1) positive isolate, conjugation and transformation experiments were carried out to assess plasmid transfer. Southern blotting was conducted to localize the bla(NDM-1) genes, and DNA sequencing was performed to determine the sequences of bla(NDM-1) and the flanking genes. In total, nine gram-negative bacteria of four different species presented a MBL phenotype. bla(NDM-1) was identified on a mobile plasmid named pAL-01 in an Acinetobacter lwoffii isolate of chicken origin. Transfer of pAL-01 from this isolate to E. coli J53 and JM109 resulted in resistance to multiple β-lactams. Sequence analysis revealed that the bla(NDM-1) gene is attached to an intact insertion element ISAba125, whose right inverted repeat (IR-R) overlaps with the promoter sequence of bla(NDM-1). Thus, insertion of ISAba125 likely enhances the expression of bla(NDM-1). CONCLUSION: The identification of a bla(NDM-1)- carrying strain of A. lwoffii in chickens suggests the potential for zoonotic transmission of bla(NDM-1) and has important implications for food safety. | 2012 | 22629360 |
| 841 | 15 | 0.9995 | blaOXA-48 carrying clonal colistin resistant-carbapenem resistant Klebsiella pneumoniae in neonate intensive care unit, India. Bacteria resistant to colistin, a last resort antibiotic reflect the pre-antibiotic era. In this study, colistin resistance carbapenem-resistant K. pneumoniae (COL(R)- CRKP) strains from neonate's intensive care unit were evaluated. Molecular analysis showed that all the four colistin resistant K. pneumoniae isolates were clonally related with strong biofilm formation ability and harbored bla(SHV-34) and bla(OXA-48) genes. Our result suggested the need of proper surveillance and adequate infection control to limiting the spread of these organisms. | 2016 | 27622347 |
| 1667 | 16 | 0.9995 | Colistin Resistance Gene mcr-8 in a High-Risk Sequence Type 15 Klebsiella pneumoniae Isolate from Kenya. The emergence and rise of mobile colistin resistance genes are of great global concern due to the ease of transfer of resistance to other bacteria. This report describes the genome of a colistin- and multidrug-resistant Klebsiella pneumoniae isolate bearing mcr-8, obtained from a hospitalized patient in Kenya. | 2020 | 32972937 |
| 839 | 17 | 0.9995 | Molecular characterization of carbapenemase-producing Enterobacterales in a tertiary hospital in Lima, Peru. Carbapenemase-producing Enterobacterales (CPE) are a growing threat to global health and the economy. Understanding the interactions between resistance and virulence mechanisms of CPE is crucial for managing difficult-to-treat infections and informing outbreak prevention and control programs. Here, we report the characterization of 21 consecutive, unique clinical isolates of CPE collected in 2018 at a tertiary hospital in Lima, Peru. Isolates were characterized by phenotypic antimicrobial susceptibility testing and whole-genome sequencing to identify resistance determinants and virulence factors. Seven Klebsiella pneumoniae isolates were classified as extensively drug-resistant. The remaining Klebsiella, Enterobacter hormaechei, and Escherichia coli isolates were multidrug-resistant. Eighteen strains carried the metallo-β-lactamase NDM-1, two the serine-carbapenemase KPC-2, and one isolate had both carbapenemases. The bla(NDM-1) gene was located in the truncated ΔISAba125 element, and the bla(KPC-2) gene was in the Tn4401a transposon. ST147 was the most frequent sequence type among K. pneumoniae isolates. Our findings highlight the urgent need to address the emergence of CPE and strengthen control measures and antibiotic stewardship programs in low- and middle-income settings.IMPORTANCEGenomic surveillance of antimicrobial resistance contributes to monitoring the spread of resistance and informs treatment and prevention strategies. We characterized 21 carbapenemase-producing Enterobacterales collected at a Peruvian tertiary hospital in 2018, which exhibited very high levels of resistance and carried numerous resistance genes. We detected the coexistence of carbapenemase-encoding genes (bla(NDM-1) and bla(KPC-2)) in a Klebsiella pneumoniae isolate that also had the PmrB(R256G) mutation associated with colistin resistance. The bla(KPC-2) genes were located in Tn4401a transposons, while the bla(NDM-1) genes were in the genetic structure Tn125 (ΔISAba125). The presence of high-risk clones among Klebsiella pneumoniae (ST11 and ST147) and Escherichia coli (ST410) isolates is also reported. The study reveals the emergence of highly resistant bacteria in a Peruvian hospital, which could compromise the effectiveness of current treatments and control. | 2024 | 38193666 |
| 886 | 18 | 0.9995 | Detection of Plasmid-Mediated Resistance against Colistin in Multi-Drug-Resistant Gram-Negative Bacilli Isolated from a Tertiary Hospital. The aim of this study was to determine the prevalence of plasmid-mediated colistin resistance mcr-1 to mcr-5 genes among colistin and multi-drug-resistant Gram-negative bacilli strains isolated from patients in a tertiary hospital in Toluca, Mexico. The presence of mcr genes among the 241 strains collected was assessed by PCR. In the case of mcr-carrying E. coli, further PCR tests were performed to determine the presence of bla(CTX-M) and whether the strains belonged to the O25b-ST131 clone. Conjugation experiments were also carried out to assess the horizontal transmission of colistin resistance. A total of twelve strains (5.0%), of which four were E. coli; four were P. aeruginosa; three were K. pneumoniae, and one E. cloacae, were found to be resistant to colistin. Of these strains, two E. coli isolates were found to carry mcr-1, and Southern blot hybridization demonstrated its presence on an approximately 60 kb plasmid. Both mcr-1-carrying E. coli strains were found to co-express bla(CTX-M), belong to the O25b-ST131 clone, and horizontally transmit their colistin resistance. The results of this study confirm the presence of plasmid-mediated colistin resistance in hospitalized patients in Mexico and demonstrated that the multi-drug-resistant O25b-ST131 E. coli clone can acquire mcr genes and transmit such resistance traits to other bacteria. | 2023 | 37630556 |
| 1502 | 19 | 0.9995 | Tunisian Multicenter Study on the Prevalence of Colistin Resistance in Clinical Isolates of Gram Negative Bacilli: Emergence of Escherichia coli Harbouring the mcr-1 Gene. BACKGROUND: Actually, no data on the prevalence of plasmid colistin resistance in Tunisia are available among clinical bacteria. OBJECTIVES: This study aimed to investigate the current epidemiology of colistin resistance and the spread of the mcr gene in clinical Gram-negative bacteria (GNB) isolated from six Tunisian university hospitals. METHODS: A total of 836 GNB strains were inoculated on COL-R agar plates with selective screening agar for the isolation of GNB resistant to colistin. For the selected isolates, mcr genes, beta-lactamases associated-resistance genes and molecular characterisation were screened by PCRs and sequencing. RESULTS: Colistin-resistance was detected in 5.02% (42/836) of the isolates and colistin-resistant isolates harboured an ESBL (bla(CTX-M-15)) and/or a carbapenemase (bla(OXA-48), bla(VIM)) encoding gene in 45.2% of the cases. The mcr-1 gene was detected in four E. coli isolates (0.59%) causing urinary tract infections and all these isolates also contained the bla(TEM-1) gene. The bla(CTX-M-15) gene was detected in three isolates that also carried the IncY and IncFIB replicons. The genetic environment surrounding the mcr-carrying plasmid indicated the presence of pap-2 gene upstream mcr-1 resistance marker with unusual missing of ISApl1 insertion sequence. THE CONCLUSIONS: This study reports the first description of the mcr-1 gene among clinical E. coli isolates in Tunisia and provides an incentive to conduct routine colistin susceptibility testing in GNB clinical isolates. | 2022 | 36290048 |