# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1511 | 0 | 1.0000 | Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China. The emergence of extensively drug-resistant (XDR) foodborne pathogens poses grave threats to food safety. This study characterizes the genome of an XDR Salmonella Kentucky isolate (Sal23C1) co-harboring cfr, mcr-1 and tet(A) from Shanghai chicken meat in 2022, which was the only isolate co-harboring these three key resistance genes among 502 screened Salmonella isolates. Genomic analysis revealed that the multidrug resistance gene cfr, which confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A, was identified within a Tn3-IS6-cfr-IS6 structure on the transferable plasmid p3Sal23C1 (32,387 bp), showing high similarity to the Citrobacter braakii plasmid pCE32-2 (99% coverage, 99.98% identity). Concurrently, the mcr-1 gene resided in a pap2-mcr-1 structure on the transferable IncI2 plasmid p2Sal23C1 (63,103 bp). Notably, both genes could be co-transferred to recipient bacteria via conjugative plasmids at frequencies of (1.15 ± 0.98) × 10(-6). Furthermore, a novel ~79 kb multidrug resistance region (MRR) chromosomally inserted at the bcfH locus was identified, carrying fosA3, mph(A), rmtB, qnrS1 and bla(CTX-M-55). Additionally, a novel Salmonella Genomic Island 1 variant (SGI1-KI) harbored aadA7, qacEΔ1, sul1 and the tet(A) variant. The acquisition of these antibiotic resistance genes in this isolate enhanced bacterial resistance to 21 antimicrobials, including resistance to the critical last-resort antibiotics tigecycline and colistin, which left virtually no treatment options for potential infections. Taken together, this is the first comprehensive genomic report of an XDR poultry-derived Salmonella Kentucky isolate co-harboring cfr, mcr-1 and the tet(A) variant. The mobility of these resistance genes, facilitated by IS6 elements and conjugative plasmids, underscores significant public health risks associated with such isolates in the food chain. | 2025 | 40941142 |
| 1524 | 1 | 0.9996 | Characterization of a Novel mcr-8.2-Bearing Plasmid in ST395 Klebsiella pneumoniae of Chicken Origin. The emergence of mobile colistin resistance mcr genes undermines the efficacy of colistin as the last-resort drug for multi-drug resistance infections and constitutes a great public health concern. Plasmids play a critical role in the transmission of mcr genes among bacteria. One colistin-resistant Klebsiella pneumoniae strain of chicken origin was collected and analyzed by antimicrobial susceptibility testing, PCR, conjugation assay and S1-PFGE. Whole-genome sequencing (WGS) approach combining Illumina and MinION platforms was utilized to decipher the underlying colistin resistance mechanism and genetic context. A novel mcr-8.2-bearing plasmid p2019036D-mcr8-345kb with 345 655 bp in size encoding various resistance genes including floR, sul1, aadA16, aadA2, bla (CTX-M-27), bla (DHA-1), tet(D), dfrA12 and qnrB4 was identified responsible for the colistin resistance phenotype. Plasmid comparison has shown that the mcr-8.2-bearing plasmid differed from other reported plasmids positive for mcr-8.2 but shared the same core mcr-8.2-bearing conserved region. This study demonstrates the emergence of mcr-8.2-bearing K. pneumoniae of animal origin is a potential risk to humans. | 2020 | 32606828 |
| 1731 | 2 | 0.9996 | Prevalence of Colistin Resistance in Escherichia coli in Eastern Turkey and Genomic Characterization of an mcr-1 Positive Strain from Retail Chicken Meat. Colistin is one of the most effective antibiotics against multidrug resistant Gram-negative bacteria. However, the recent emergence of plasmid-borne mobilized colistin resistance (mcr) genes is considered a serious antimicrobial resistance challenge worldwide. In this study, we report detection of an mcr-1 carrying Escherichia coli isolate (named ATAVET mcr-1 Turkey) from retail raw chicken meat in Turkey. Of the 11 (from 500 total tested) phenotypically colistin-resistant isolates, 1 was shown to carry the mcr-1 gene by PCR. Whole-genome sequencing indicated that mcr-1 was located on a ∼13 kb-long contig that was almost identical to the corresponding part in pZJ1635, an IncI2 plasmid encoding mcr-1 in the same genetic context in another E. coli strain. In addition, ATAVET mcr-1 Turkey harbored bla(CTX-M-8), qnrB19, mdf(A), tet(A), sul2, aph(3″)-Ib, aph(6)-Id, and floR resistance genes. Phylogenetic analysis based on whole genome and multilocus sequence typing indicated that ATAVET mcr-1 Turkey was more closely related to mcr-1 carrying E. coli isolates from food and human clinical samples previously reported from different parts of the world than to those from Turkey. These findings further emphasize the worldwide emergence and spread of mcr meditated colistin resistance in bacteria with zoonotic potential within animals and the food chain. | 2021 | 32721263 |
| 1186 | 3 | 0.9995 | Multidrug-Resistant Escherichia coli Strain Isolated from Swine in China Harbors mcr-3.1 on a Plasmid of the IncX1 Type That Cotransfers with mcr-1.1. An Escherichia coli strain isolated from the feces of swine at a pork slaughterhouse in Henan province China was found to possess two colistin-resistance genes, mcr-1 and mcr-3, plus 16 additional resistance genes. Genes mcr-1.1 and mcr-3.1 were identified on IncHI2 and IncX1 type plasmids, respectively. Transconjugants (containing mcr-3, mcr-1&mcr-3) were obtained that were 64- and 512-fold higher than the minimum inhibitory concentration of colistin on the recipient bacteria (E. coli C600), respectively. The IncX1 plasmid containing mcr-3.1 displayed a very specific structure compared with previous mcr-3. Variable and stable regions were similar across different plasmids, multiple insertion sequences and transposases. | 2020 | 32077761 |
| 1514 | 4 | 0.9995 | Widespread prevalence and molecular epidemiology of tet(X4) and mcr-1 harboring Escherichia coli isolated from chickens in Pakistan. The emergence and spread of plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 in Escherichia coli (E. coli) pose a potential threat to public health, due to the importance of colistin and tigecycline for treating serious clinical infections. However, the characterization of bacteria coharboring both genes was few reported. Here, we described the molecular epidemiology of tet(X4) and mcr-1 harboring E. coli strains of chicken origin in Pakistan, with methods including PCR, antimicrobial susceptibility testing, DNA transfer assays, plasmid replicon typing, whole-genome sequencing and bioinformatics analysis. The tet(X4) gene was identified in 36 isolates exhibiting high levels of tigecycline resistance (MICs, 16-128 mg/L). Worryingly, 24 of the 36 tet(X4)-bearing isolates were confirmed as colistin resistance, positive for plasmid-borne mcr-1. We observed the prevalence of tet(X4)-bearing IncFII plasmid with mcr-1-bearing IncI2 plasmid in 12 E. coli isolates, with a high co-transfer frequency except for one strain PK8233, in which tet(X4)- and mcr-1-bearing plasmids were non-transferable. Coexistence of tet(X4)-bearing IncFII plasmid with mcr-1-carrying multidrug-resistant (MDR) IncHI2 plasmid was also identified in 10 E. coli isolates, and a relatively low co-transfer frequency was obtained except PK8575, in which mcr-1 was non-transferable. The transferability of pPK8275-tetX in PK8275 and pPK8233-tetX in PK8233, that could transfer from E. coli J53 to C600 by conjugation, was interfered by certain factors in PK8275 and PK8233. This may provide new insights to prevent and control the spread of antibiotic resistance genes. Two strains were reported to co-carry tet(X4)-positive IncQ1 plasmid and mcr-1-positive IncI2 plasmid. Convergence of tet(X4) and mcr-1 genes in E. coli by conjugative or mobilizable plasmids may lead to potentially widespread transmission of such resistance genes, which may incur antibiotic-resistance crisis globally. | 2022 | 34599956 |
| 1887 | 5 | 0.9995 | Complete Genetic Analysis of Plasmids Carrying mcr-1 and Other Resistance Genes in Avian Pathogenic Escherichia coli Isolates from Diseased Chickens in Anhui Province in China. Antimicrobial resistance associated with colistin has emerged as a significant concern worldwide, threatening the use of one of the most important antimicrobials for treating human disease. This study aimed to investigate the prevalence of colistin-resistant avian-pathogenic Escherichia coli (APEC) and shed light on the possibility of transmission of mcr-1 (mobilized colistin resistance)-positive APEC. A total of 72 APEC isolates from Anhui Province in China were collected between March 2017 and December 2018 and screened for the mcr-1 gene. Antimicrobial susceptibility testing was performed using the broth dilution method. Pulsed-field gel electrophoresis, Southern blot analysis, and conjugation assay were performed to determine the location and conjugative ability of the mcr-1 gene. Whole-genome sequencing and analysis were performed using Illumina MiSeq and Nanopore MinION platforms. Three APEC isolates (AH25, AH62, and AH65) were found to be positive for the mcr-1 gene and showed multidrug resistance. The mcr-1 genes were located on IncI2 plasmids, and conjugation assays revealed that these plasmids were transferrable. Notably, strains AH62 and AH65, both belonging to ST1788, were collected from different places but carried the same drug resistance genes and shared highly similar plasmids. This study highlights the potential for a possible epidemic of mcr-1-positive APEC and the urgent need for continuous active monitoring.IMPORTANCE In this study, three plasmids carrying mcr-1 were isolated and characterized from APEC isolates from Anhui Province in China. The mcr-1 genes were located on IncI2 plasmids, and these plasmids were transferrable. These three IncI2 plasmids had high homology with the plasmids harbored by pathogenic bacteria isolated from other species. This finding showed that IncI2 plasmids poses a risk for the exchange of genetic material between different niches. Although colistin has been banned for use in food-producing animals in China, the coexistence of the broad-spectrum β-lactamase and mcr-1 genes on a plasmid can also lead to the stable existence of mcr-1 genes. The findings illustrated the need to improve the monitoring of drug resistance in poultry systems so as to curb the transmission or persistence of multidrug-resistant bacteria. | 2021 | 33853876 |
| 1727 | 6 | 0.9995 | Coexistence and genomics characterization of mcr-1 and extended-spectrum-β-lactamase-producing Escherichia coli, an emerging extensively drug-resistant bacteria from sheep in China. The emergence of pathogens harboring multiple resistance genes poses a great threat to global public health. However, the coexistence of mobile resistance genes that provide resistance to both third-generation cephalosporins and colistin in sheep-origin Escherichia coli has not been previously investigated in China. This study is the first to characterize five E. coli isolates from sheep in Shaanxi province that harbor both Extended-Spectrum β-Lactamase (ESBL) and mcr-1 resistance genes. The isolates were identified and characterized by Illumina sequencing, nanopore sequencing, bioinformatic analysis, conjugation experiments, and antimicrobial susceptibility testing. Genetic analysis revealed that bla(CTX-M-55) gene, mediated by the IS26, was located on the IncFIB-IncFIC plasmid, while the mcr-1 gene was located on the IncI2(Delta) plasmid. Notably, two copies of bla(CTX-M-55) gene were also identified on the chromosome of one isolate (SX45), facilitated by the ISEcp1 insertion sequence. Additionally, the plasmid pSX23-2 was identified as a complex plasmid derived through homologous recombination of pMG337 from E. coli (MK878890) and pZY-1 from Citrobacter freundii (CP055248). Data mining of publicly available databases revealed that isolates carrying both bla(CTX-M-55) and mcr-1 genes have been found in humans, animals, and the environment, indicating the widespread presence of these critical resistance genes across different niches. Antimicrobial susceptibility testing showed that the five isolates were resistant to a nearly all tested antibiotics, except meropenem. Conjugative transfer experiments demonstrated that the IncFIB-IncFIC and IncI2(Delta) plasmids carrying mcr-1 and bla(CTX-M-55) were capable of transferring between different sequence types (STs) of sheep-origin E. coli, including ST10, ST162, and ST457. This finding suggests the potential for wide dissemination of these resistance markers among diverse E. coli strains. Overall, the characterization of these ESBL and mcr-1 co-harboring isolates enhances our understanding of the spread of these resistance genes in sheep-origin E. coli. Global surveillance of these isolates, particularly within the One Health framework, is essential to monitor and mitigate the risks posed by the dissemination of these resistance genes across various settings. | 2024 | 39426540 |
| 891 | 7 | 0.9995 | Identification of mobile colistin resistance genes (mcr-1.1, mcr-5 and mcr-8.1) in Enterobacteriaceae and Alcaligenes faecalis of human and animal origin, Nigeria. Colistin is a last-resort drug used to treat infections caused by multidrug-resistant Gram-negative bacteria that have developed carbapenem resistance. Emergence and rapid dissemination of the nine plasmid-mediated mobile colistin resistance genes (mcr-1 to mcr-9) has led to fear of pandrug-resistant infections worldwide. To date, there is only limited information on colistin resistance in African countries where the drug is widely used in agriculture. In this Nigerian study, 583 non-duplicate bacterial strains were isolated from 1119 samples from humans, camels, cattle, dogs, pigs and poultry using colistin-supplemented MacConkey agar, among which 17.0% (99/583) were colistin-resistant. PCR (mcr-1 to mcr-9) and whole-genome sequencing (WGS) identified mcr in 21.2% (21/99) of colistin-resistant isolates: mcr-1.1 (n = 13), mcr-8.1 (n = 5), mcr-1.1 and mcr-8.1 (n = 2), and mcr-1.1 and mcr-5 (n = 1). Of the 21 mcr-positive strains, 9 were isolated from human samples, with 8 being Klebsiella pneumoniae, and 6 of these human K. pneumoniae had a high colistin MIC (>64 μg/mL). In contrast, 9 of the 12 mcr-positive animal isolates were Escherichia coli, of which only 2 had a colistin MIC of >64 μg/mL. This study is the first to report mcr-1 in Alcaligenes faecalis and the emergence of mcr-5 and mcr-8 in Nigeria. WGS determined that mcr-1 was localised on an IncX4 plasmid and that 95.2% of mcr-1 harbouring isolates (20/21) transferred colistin resistance successfully by conjugation. These findings highlight the global spread of colistin resistance and emphasise the urgent need for co-ordinated global action to combat resistant bacteria. | 2020 | 32721596 |
| 1726 | 8 | 0.9995 | Molecular epidemiology and population genomics of tet(X4), bla(NDM) or mcr-1 positive Escherichia coli from migratory birds in southeast coast of China. The emergence of multidrug-resistant (MDR) bacteria harboring tet(X4), bla(NDM) or mcr-1 posed a serious threat to public health. Wild birds, especially migratory birds, were considered as one of important transmission vectors for antibiotic resistance genes (ARGs) globally, however, few studies were performed on the genomic epidemiology of critical resistance genes among them. Isolates harboring tet(X4), mcr-1 or bla(NDM) from migratory birds were identified and characterized by PCR, antimicrobial susceptibility testing, conjugation assays, whole genome sequencing and bioinformatics analysis. A total of 14 tet(X4)-bearing E. coli, 4 bla(NDM)-bearing E. coli and 23 mcr-1-bearing E. coli isolates were recovered from 1060 fecal samples of migratory birds. All isolates were MDR bacteria and most plasmids carrying tet(X4), bla(NDM) or mcr-1 were conjugative. We first identified an E. coli of migratory bird origin carrying bla(NDM-4), which was located on a conjugative IncHI2 plasmid and embedded on a novel MDR region flanked by IS26 that could generate the circular intermediate. The emergency of E. coli isolates co-harboring mcr-1 and bla(NDM-5) in migratory birds indicated the coexistence of ARGs in migratory birds was a novel threat. This study revealed the prevalence and molecular characteristics of three important ARGs in migratory birds, provided evidence that migratory birds were potential vectors of novel resistance genes and highlighted the monitoring of ARGs in migratory birds should be strengthened to prevent the spread of ARGs in a One Health strategy. | 2022 | 36084501 |
| 1504 | 9 | 0.9995 | Identification and Genomic Analyses of a Multidrug Resistant Avian Pathogenic Escherichia coli Coharboring mcr-1, bla (TEM-176) and bla (CTX-M-14) Genes. The emergence and transmission of the colistin-resistance gene mcr and extended-spectrum β-lactamase (ESBL) encoding genes pose a significant threat to global public health. In recent years, it has been reported that mcr-1 and ESBL genes can coexist in single bacteria strain. The objective of this study was to characterize a multidrug-resistant (MDR) avian pathogenic Escherichia coli (APEC) isolate carrying mcr and ESBL encoding genes in China. A total of 200 APEC isolates were collected for antimicrobial susceptibility testing by Kirby-Bauer (K-B) disk method. The MDR strain EC012 were then further analyzed for minimum inhibitory concentrations, antimicrobials resistance genes (ARGs) detection, conjugation, and whole-genome sequencing (WGS). Among all APEC isolates determined by K-B disk method, strain EC012 was resistant to almost all the antimicrobials, including polymyxin B, cefotaxime, and ceftazidime. Moreover, EC012 harbored ARGs mcr-1, bla (TEM-176), and bla (CTX-M-14). WGS analysis revealed that EC012 belonged to epidemic APEC serotype O1:H16 and multilocus sequence type ST295. EC012 consisted of one chromosome and six plasmids, encoding a broad ARGs. The bla (CTX-M-14), mcr-1 or bla (TEM-176) genes were located on conjugative plasmids pEC012-1 or pEC012-5, respectively. These plasmids were successfully transferred to transconjugants and resulted in the resistance to polymyxin B, cefotaxime, and ceftazidime. This study indicated that APEC was a potential reservoir of colistin-resistance gene mcr-1 and ESBL encoding genes, and highlighted the necessity for enhanced monitoring of ARGs dissemination among bacteria from different origins. | 2024 | 40303132 |
| 1889 | 10 | 0.9995 | Widespread Dissemination of Plasmid-Mediated Tigecycline Resistance Gene tet(X4) in Enterobacterales of Porcine Origin. The emergence of the plasmid-mediated high levels of the tigecycline resistance gene has drawn worldwide attention and has posed a major threat to public health. In this study, we investigated the prevalence of the tet(X4)-positive Enterobacterales isolates collected from a pig slaughterhouse and farms. A total of 101 tigecycline resistance strains were isolated from 353 samples via a medium with tigecycline, of which 33 carried tet(X4) (9.35%, 33/353) and 2 carried tet(X6) (0.57%, 2/353). These strains belong to seven different species, with Escherichia coli being the main host bacteria. Importantly, this report is the first one to demonstrate that tet(X4) was observed in Morganella morganii. Whole-genome sequencing results revealed that tet(X4)-positive bacteria can coexist with other resistance genes, such as bla(NDM-1) and cfr. Additionally, we were the first to report that tet(X4) and bla(NDM-1) coexist in a Klebsiella quasipneumoniae strain. The phylogenetic tree of 533 tet(X4)-positive E. coli strains was constructed using 509 strains from the NCBI genome assembly database and 24 strains from this study, which arose from 8 sources and belonged to 135 sequence types (STs) worldwide. We used Nanopore sequencing to interpret the selected 21 nonclonal and representative strains and observed that 19 tet(X4)-harboring plasmids were classified into 8 replicon types, and 2 tet(X6) genes were located on integrating conjugative elements. A total of 68.42% of plasmids carrying tet(X4) were transferred successfully with a conjugation frequency of 10(-2) to 10(-7). These findings highlight that diverse plasmids drive the widespread dissemination of the tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. IMPORTANCE Tigecycline is considered to be the last resort of defense against diseases caused by broad-spectrum resistant Gram-negative bacteria. In this study, we systematically analyzed the prevalence and genetic environments of the resistance gene tet(X4) in a pig slaughterhouse and farms and the evolutionary relationship of 533 tet(X4)-positive Escherichia coli strains, including 509 tet(X4)-positive E. coli strains selected from the 27,802 assembled genomes of E. coli from the NCBI between 2002 and 2022. The drug resistance of tigecycline is widely prevalent in pig farms where tetracycline is used as a veterinary drug. This prevalence suggests that pigs are a large reservoir of tet(X4) and that tet(X4) can spread horizontally through the food chain via mobile genetic elements. Furthermore, tetracycline resistance may drive tigecycline resistance through some mechanisms. Therefore, it is important to monitor tigecycline resistance, develop effective control measures, and focus on tetracycline use in the pig farms. | 2022 | 36125305 |
| 1733 | 11 | 0.9995 | Dissemination and Comparison of Genetic Determinants of mcr-Mediated Colistin Resistance in Enterobacteriaceae via Retailed Raw Meat Products. The global food chain may significantly promote the dissemination of bacteria resistant to antibiotics around the world. This study was aimed at determining the prevalence and genetic characteristics of Enterobacteriaceae with mcr-mediated colistin (CT) resistance in retail meat of different origins. Bacteria of the Enterobacteriaceae family carrying the mcr-1 gene were detected in 21% (18/86) of the examined samples, especially in turkey meat and liver originating from EU and non-EU countries (19%) and in rabbit meat imported from China (2%). The examined samples of the meat and liver of chicken and other poultry and of pork and beef were negative for the presence of bacteria carrying the mcr-1 to mcr-5 genes. A huge number of isolates belonging to Escherchia coli (n = 54), Klebsiella pneumoniae (n = 6), and Citrobacter braakii (n = 1) carrying the mcr-1 gene were obtained. Despite the high heterogeneity of the tested isolates, the mcr-1 gene was localized on only three types of plasmids (IncX4, IncHI2, and IncI2). The most frequent type of plasmid was IncX4, which carried the mcr-1 gene in 77% of E. coli and K. pneumoniae isolates from turkey meat and liver samples from the Czechia, Germany, Poland, and Brazil. Our findings indicate highly probable interspecies transfer of IncX4 and IncI2 plasmids within one meat sample. The co-resistance of plasmid-mediated CT resistance encoded by the mcr-1 and ESBL genes was detected in 18% of the isolates. Another noteworthy finding was the fosA3 gene coding for fosfomycin resistance in a multidrug-resistant isolate of E. coli from rabbit meat imported from China. The observed high level of Enterobacteriaceae with plasmids carrying the mcr-1 gene in retail meat reflects the need for Europe-wide monitoring of mcr-mediated CT resistance throughout the whole food chain. | 2019 | 31921017 |
| 1513 | 12 | 0.9995 | Occurrence and Characterization of NDM-1-Producing Shewanella spp. and Acinetobacter portensis Co-Harboring tet(X3) in a Chinese Dairy Farm. Bacteria with carbapenem or tigecycline resistance have been spreading widely among humans, animals and the environment globally, being great threats to public health. However, bacteria co-carrying drug resistance genes of carbapenem and tigecycline in Shewanella and Acinetobacter species remain to be investigated. Here, we detected nine bla(NDM-1)-carrying Shewanella spp. isolates as well as three A. portensis isolates co-harboring tet(X3) and bla(NDM-1) from seventy-two samples collected from a dairy farm in China. To explore their genomic characteristic and transmission mechanism, we utilized various methods, including PCR, antimicrobial susceptibility testing, conjugation experiment, whole-genome sequencing, circular intermediate identification and bioinformatics analysis. Clonal dissemination was found among three A. portensis, of which tet(X3) and bla(NDM-1) were located on a novel non-conjugative plasmid pJNE5-X3_NDM-1 (333,311 bp), and the circular intermediate ΔISCR2-tet(X3)-bla(NDM-1) was identified. Moreover, there was another copy of tet(X3) on the chromosome of A. portensis. It was verified that bla(NDM-1) could be transferred to Escherichia coli C600 from Shewanella spp. by conjugation, and self-transmissible IncA/C(2) plasmids mediated the transmission of bla(NDM-1) in Shewanella spp. strains. Stringent surveillance was warranted to curb the transmission of such vital resistance genes. | 2022 | 36290080 |
| 1890 | 13 | 0.9995 | Emergence and Characterization of Tigecycline Resistance Gene tet(X4) in ST609 Escherichia coli Isolates from Wastewater in Turkey. Emergence of pathogens harboring tigecycline resistance genes incurs great concerns. Wastewater is recognized as the important reservoir of antimicrobial resistance genes. Here we characterized the phenotypes and genotypes of bacteria carrying tet(X4) from wastewater in Turkey for the first time. Four tet(X4)-positive Escherichia coli isolates were identified and characterized by PCR, Sanger sequencing, antimicrobial susceptibility testing, conjugation assays, Illumina sequencing, nanopore sequencing and bioinformatic analysis. Four tet(X4)-harboring isolates were multidrug-resistant (MDR) bacteria and the tet(X4) gene was nontransferable in four isolates. Genetic analysis revealed that tet(X4) genes in four isolates were located on plasmids co-harboring two replicons IncFIA(HI1) and IncFIB(K). However, none of the four plasmids carried genes associated with horizontal transfer of plasmids. The coexistence of bla(SHV-12)-bearing IncX3-type plasmid and tet(X4)-harboring plasmid was also found in one isolate. These findings indicate that continuous surveillance of the tet(X4)-bearing isolates in different environments worldwide should be strengthened. IMPORTANCE The emergence of tigecycline resistance genes in humans and animals in China seriously threatens the clinical utility of tigecycline, but the molecular epidemiology of tigecycline-resistant bacteria in other countries remained largely unknown. Therefore, it is necessary to learn the prevalence and molecular characteristics of bacteria carrying tigecycline resistance genes, particularly the mobilizable tet(X4), in other countries. In the study, we first described the presence and molecular characteristics of the tet(X4)-positive E. coli isolates from wastewater in Turkey. Four tet(X4)-bearing isolates belonged to ST609, an E. coli clone commonly found from humans, animals and the environment. These findings highlight the importance of monitoring the tet(X4) gene in different settings globally. | 2022 | 35863037 |
| 2004 | 14 | 0.9995 | Deciphering the Structural Diversity and Classification of the Mobile Tigecycline Resistance Gene tet(X)-Bearing Plasmidome among Bacteria. The emergence of novel plasmid-mediated resistance genes constitutes a great public concern. Recently, mobile tet(X) variants were reported in diverse pathogens from different sources. However, the diversity of tet(X)-bearing plasmids remains largely unknown. In this study, the phenotypes and genotypes of all the tet(X)-positive tigecycline-resistant strains isolated from a slaughterhouse in China were characterized by antimicrobial susceptibility testing, conjugation, pulsed-field gel electrophoresis with S1 nuclease (S1-PFGE), and PCR. The diversity and polymorphism of tet(X)-harboring strains and plasmidomes were investigated by whole-genome sequencing (WGS) and single-plasmid-molecule analysis. Seventy-four tet(X4)-harboring Escherichia coli strains and one tet(X6)-bearing Providencia rettgeri strain were identified. The tet(X4)-bearing elements in 27 strains could be transferred to the recipient strain via plasmids. All tet(X4)-bearing plasmids isolated in this study and 15 tet(X4)-bearing plasmids reported online were analyzed. tet(X4)-bearing plasmids ranged from 9 to 294 kb and were categorized as ColE2-like, IncQ, IncX1, IncA/C2, IncFII, IncFIB, and hybrid plasmids with different replicons. The core tet(X4)-bearing genetic contexts were divided into four major groups: ISCR2-tet(X4)-abh, △ISCR2-abh-tet(X4)-ISCR2, ISCR2-abh-tet(X4)-ISCR2-virD2-floR, and abh-tet(X4)-ISCR2-yheS-cat-zitR-ISCR2-virD2-floR Tandem repeats of tet(X4) were universally mediated by ISCR2 Different tet(X)-bearing strains existed in the same microbiota. Reorganization of tet(X4)-bearing multidrug resistance plasmids was found to be mediated by IS26 and other homologous regions. Finally, single-plasmid-molecule analysis captured the heterogenous state of tet(X4)-bearing plasmids. These findings significantly expand our knowledge of the tet(X)-bearing plasmidome among microbiotas, which establishes a baseline for investigating the structure and diversity of human, animal, and environmental tigecycline resistomes. Characterization of tet(X) genes among different microbiotas should be performed systematically to understand the evolution and ecology.IMPORTANCE Tigecycline is an expanded-spectrum tetracycline used as a last-resort antimicrobial for treating infections caused by superbugs such as carbapenemase-producing or colistin-resistant pathogens. Emergence of the plasmid-mediated mobile tigecycline resistance gene tet(X4) created a great public health concern. However, the diversity of tet(X4)-bearing plasmids and bacteria remains largely uninvestigated. To cover this knowledge gap, we comprehensively identified and characterized the tet(X)-bearing plasmidome in different sources using advanced sequencing technologies for the first time. The huge diversity of tet(X4)-bearing mobile elements demonstrates the high level of transmissibility of the tet(X4) gene among bacteria. It is crucial to enhance stringent surveillance of tet(X) genes in animal and human pathogens globally. | 2020 | 32345737 |
| 1522 | 15 | 0.9995 | Emergence of Klebsiella variicola positive for NDM-9, a variant of New Delhi metallo-β-lactamase, in an urban river in South Korea. OBJECTIVES: To examine the presence of pathogenic bacteria carrying New Delhi metallo-β-lactamase in the environment and to characterize the genome structures of these strains. METHODS: Phenotypic screening of antimicrobial susceptibility and WGS were conducted on three Klebsiella variicola strains possessing NDM-9 isolated from an urban river. RESULTS: Three carbapenem-resistant K. variicola isolated from Gwangju tributary were found to possess bla NDM-9 genes. Antimicrobial susceptibility testing indicated resistance of these strains to aminoglycosides, carbapenems, cephems, folate pathway inhibitors, fosfomycin and penicillins, but susceptibility to fluoroquinolones, phenicols, tetracyclines and miscellaneous agents. WGS revealed that the 108 kb IncFII(Y)-like plasmids carry bla NDM-9 sandwiched between IS 15 for the GJ1 strain, IS 26 for the GJ2 strain, IS 15D1 for the GJ3 strain and IS Vsa3 , and further bracketed by IS 26 and Tn AS3 along with the mercury resistance operon upstream and the class 1 integron composed of gene cassettes of aadA2 , dfrA12 and sul1 downstream. An aph(3')-Ia gene conferring resistance to aminoglycosides is located after the integrons. Chromosomally encoded bla LEN-13 , fosA , aqxA and oqxB genes, as well as plasmid-mediated bla TEM-1B and bla CTX-M-65 encoding ESBL, ant(3')-Ia and mph (A) genes, were also identified. CONCLUSIONS: The findings of the present study provide us with the information that NDM-9 has been spreading into the environment. Dissemination of NDM-9 in the environment has raised a health risk alarm as this variant of NDM carries MDR genes with highly transferable mobile genetic elements, increasing the possibility of resistance gene transfer among microorganisms in the environment. | 2017 | 28087584 |
| 1507 | 16 | 0.9995 | Characterization of Five Escherichia coli Isolates Co-expressing ESBL and MCR-1 Resistance Mechanisms From Different Origins in China. Present study characterized five Escherichia coli co-expressing ESBL and MCR-1 recovered from food, food-producing animals, and companion animals in China. Antimicrobial susceptibility tests, conjugation experiments, and plasmid typing were performed. Whole genome sequencing (WGS) was undertaken for all five isolates using either PacBio RS II or Illumina HiSeq 2500 platforms. The cefotaxime and colistin resistance encoded by bla (CTX-M) and mcr-1 genes, respectively, was transferable by conjugation either together or separately for all five strains. Interestingly, the ESBL and mcr-1 genes could be co-selected by cefotaxime, while the colistin only selected the mcr-1-carrying plasmids during the conjugation experiments. Five E. coli sequence types (ST88, ST93, ST602, ST162, and ST457) were detected. Although diverse plasmid profiles were identified, IncI2, IncFIB, and IncFII plasmid types were predominant. These five clonally unrelated isolates harbored the mcr-1 gene located on similar plasmid backbones, which showed high nucleotide similarity to plasmid pHNSHP45. The mcr-1 gene can be co-transmitted with bla (CTX-M) genes through IncI2 plasmids with or without ISApl1 in our study. Characterization of these co-existence ESBL and mcr-1 isolates extends our understanding on the dissemination of these resistance markers among bacteria of diverse origins. | 2019 | 31555232 |
| 1853 | 17 | 0.9995 | Dissemination dynamics of colistin resistance genes mcr-9 and mcr-10 across diverse Inc plasmid backbones. BACKGROUND: The polymyxin antibiotic colistin is used as a final line of treatment for life threatening infections caused by multidrug resistant and carbapenem-resistant Gram-negative bacteria. Mobile colistin resistance genes mcr-9 and mcr-10 are increasingly detected in Enterobacteriaceae but their epidemiology is poorly understood. METHODS: The genetic characteristics of mcr-9 and mcr-10, being the only mobile colistin resistance genes detected in a local population of Enterobacter species isolated from bloodstream infections in Dartmouth Hitchcock Medical Center, USA, were elucidated and contextualized against a global dataset of mcr-9/10-bearing plasmids using genomic and phylogenetic tools. RESULTS: Seven out of 59 Enterobacter isolates carry either an mcr-9 or mcr-10 on a plasmid with distinct single and multiple replicon configurations, including IncFIB(pECLA), IncFIB(K), IncFIA(HI1)-IncFIB(K), IncFIB(pECLA)--IncFII(pECLA) and IncFIB(K)--IncFII(pECLA), whereas two genomes harbor mcr-9 on their chromosome. Global contextualization reveals that allelic variants of mcr-9 and mcr-10 are widely disseminated across diverse Inc-type plasmids, transcending geographic and taxonomic boundaries. Plasmid-borne genes conferring resistance to other antimicrobial agents, such as aminoglycoside, tetracycline and trimethoprim, tend to co-occur with mcr-9.1 and mcr-9.2 alleles. CONCLUSIONS: Findings from this study enhance our understanding of the plasmid backgrounds of mcr-9 and mcr-10, their associated antimicrobial resistance gene carriage and co-occurrence. This knowledge may be critical to inform scalable and effective public health interventions aimed at preserving the efficacy of colistin. | 2025 | 40999001 |
| 1725 | 18 | 0.9995 | Letter to the Editor: Escherichia fergusonii Harboring IncHI2 Plasmid Containing mcr-1 Gene-A Novel Reservoir for Colistin Resistance in Brazil. Emergence of colistin-resistant bacteria harboring mobile colistin resistance genes (mcr genes) pose a threat for food-producing animals and humans. In this article, we aim to highlight the emergence of Escherichia fergusonii as an important new reservoir to mcr-1-harboring plasmid in poultry production. Three strains closely related were isolated from cloacal swabs. Their genome contains four plasmids, including a 182,869 bp IncHI2 plasmid harboring the colistin resistance gene mcr-1. These results will contribute to our understanding of plasmid-mediated mcr-1 gene presence and transmission in E. fergusonii. | 2021 | 33001761 |
| 1527 | 19 | 0.9995 | Emergence of an Escherichia coli strain co-harbouring mcr-1 and bla(NDM-9) from a urinary tract infection in Taiwan. OBJECTIVES: Multidrug-resistant bacteria have become a serious threat worldwide. In particular, the coexistence of carbapenemase genes and mcr-1 leaves few available treatment options. Here we report a multidrug-resistant Escherichia coli isolate harbouring both mcr-1 and bla(NDM-9) from a patient with a urinary tract infection. METHODS: Antimicrobial susceptibility and resistance genes of the E. coli isolate were characterised. Furthermore, the assembled genome sequences of mcr-1- and bla(NDM-9)-carrying plasmids were determined and comparative genetic analysis with closely related plasmids was carried out. RESULTS: Three contigs were assembled comprising the E. coli chromosome and two plasmids harbouring mcr-1 (p5CRE51-MCR-1) and bla(NDM-9) (p5CRE51-NDM-9), respectively. Whole-genome sequencing revealed that the two antimicrobial resistance genes are located on individual plasmids. CONCLUSIONS: The emergence of coexistence of carbapenemase genes and mcr-1 in Enterobacteriaceae highlights a serious threat to antimicrobial therapy. | 2019 | 30312830 |