OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
150301.0000OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections. Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of bla(KPC), bla(NDM), bla(VIM), bla(OXA-48,) and bla(IMP) carbapenemase genes. The bla(OXA-48) gene was detected in 24 (77.4%) of the tested isolates while bla(VIM) gene was detected in 8 (25.8%), both bla(KPC) and bla(NDM) genes were co-present in 1 (3.2%) isolate. Plasmids carrying the bla(OXA-48) gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s).202134571766
150210.9999Tunisian Multicenter Study on the Prevalence of Colistin Resistance in Clinical Isolates of Gram Negative Bacilli: Emergence of Escherichia coli Harbouring the mcr-1 Gene. BACKGROUND: Actually, no data on the prevalence of plasmid colistin resistance in Tunisia are available among clinical bacteria. OBJECTIVES: This study aimed to investigate the current epidemiology of colistin resistance and the spread of the mcr gene in clinical Gram-negative bacteria (GNB) isolated from six Tunisian university hospitals. METHODS: A total of 836 GNB strains were inoculated on COL-R agar plates with selective screening agar for the isolation of GNB resistant to colistin. For the selected isolates, mcr genes, beta-lactamases associated-resistance genes and molecular characterisation were screened by PCRs and sequencing. RESULTS: Colistin-resistance was detected in 5.02% (42/836) of the isolates and colistin-resistant isolates harboured an ESBL (bla(CTX-M-15)) and/or a carbapenemase (bla(OXA-48), bla(VIM)) encoding gene in 45.2% of the cases. The mcr-1 gene was detected in four E. coli isolates (0.59%) causing urinary tract infections and all these isolates also contained the bla(TEM-1) gene. The bla(CTX-M-15) gene was detected in three isolates that also carried the IncY and IncFIB replicons. The genetic environment surrounding the mcr-carrying plasmid indicated the presence of pap-2 gene upstream mcr-1 resistance marker with unusual missing of ISApl1 insertion sequence. THE CONCLUSIONS: This study reports the first description of the mcr-1 gene among clinical E. coli isolates in Tunisia and provides an incentive to conduct routine colistin susceptibility testing in GNB clinical isolates.202236290048
91220.9999Carbapenem and colistin-resistant bacteria in North Lebanon: Coexistence of mcr-1 and NDM-4 genes in Escherichia coli. INTRODUCTION: The increasing incidence of infections caused by multidrug-resistant bacteria is considered a global health problem. This study aimed to investigate this resistance in Gram-negative bacteria isolated from patients hospitalized in North-Lebanon. METHODOLOGY: All isolates were identified using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antibiotic susceptibility testing was achieved using disk diffusion, E-test and Broth microdilution methods. Phenotypic detection of carbapenemase was carried out using the CarbaNP test. RT-PCR, standard-PCR and sequencing were performed to detect resistance genes and oprD gene. Conjugal transfer was carried out between our isolates and Escherichia coli J53 to detect the genetic localization of resistance genes. MLST was conducted to determine the genotype of each isolate. RESULTS: Twenty-three carbapenem-resistant Enterobacterales of which eight colistin-resistant Escherichia coli, and Twenty carbapenem-resistant Pseudomonas aeruginosa were isolated. All isolates showed an imipenem MIC greater than 32 mg/mL with MICs for colistin greater than 2 mg/L for E. coli isolates. All the Enterobacterales isolates had at least one carbapenemase-encoding gene, with E. coli isolates coharboring blaNDM-4 and mcr-1 genes. Moreover, 16/20 Pseudomonas aeruginosa harbored the blaVIM-2 gene and 18/20 had mutations in the oprD gene. MLST revealed that the isolates belonged to several clones. CONCLUSIONS: We report here the first description in the world of clinical E. coli isolates coharboring blaNDM-4 and mcr-1 genes, and K. pneumoniae isolates producing NDM-6 and OXA-48 carbapenemases. Also, we describe the emergence of NDM-1-producing E. cloacae in Lebanon. Screening for these isolates is necessary to limit the spread of resistant microorganisms in hospitals.202134343118
99630.9999Rapid Detection of New Delhi Metallo-β-Lactamase Gene Using Recombinase-Aided Amplification Directly on Clinical Samples From Children. New Delhi metallo-β-lactamase, a metallo-β-lactamase carbapenemase type, mediates resistance to most β-lactam antibiotics including penicillins, cephalosporins, and carbapenems. Therefore, it is important to detect bla (NDM) genes in children's clinical samples as quickly as possible and analyze their characteristics. Here, a recombinase-aided amplification (RAA) assay, which operates in a single one-step reaction tube at 39°C in 5-15 min, was established to target bla (NDM) genes in children's clinical samples. The analytical sensitivity of the RAA assay was 20 copies, and the various bacterial types without bla (NDM) genes did not amplify. This method was used to detect bla (NDM) genes in 112 children's stool samples, 10 of which were tested positive by both RAA and standard PCR. To further investigate the characteristics of carbapenem-resistant bacteria carrying bla (NDM) in children, 15 carbapenem-resistant bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Citrobacter freundii, Klebsiella oxytoca, Acinetobacter junii, and Proteus mirabilis) were isolated from the 10 samples. Notably, more than one bacterial type was isolated from three samples. Most of these isolates were resistant to cephalosporins, cefoperazone-sulbactam, piperacillin-tazobactam, ticarcillin-clavulanic acid, aztreonam, co-trimoxazole, and carbapenems. bla (NDM) (-) (1) and bla (NDM) (-) (5) were the two main types in these samples. These data show that the RAA assay has potential to be a sensitive and rapid bla (NDM) gene screening test for clinical samples. The common existence of bla (NDM) and multi-drug resistance genes presents major challenges for pediatric treatment.202134367092
92240.9999Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems-A Pilot Study. Carbapenem-resistant Acinetobacter baumannii is one of the major problems among hospitalized patients. The presence of multiple virulence factors results in bacteria persistence in the hospital environment. It facilitates bacterial transmission between patients, causing various types of infections, mostly ventilator-associated pneumonia and wound and bloodstream infections. A. baumannii has a variable number of resistance mechanisms, but the most commonly produced are carbapenem-hydrolyzing class D β-lactamases (CHDLs). In our study, the presence of bla(OXA-23), bla(OXA-40) and bla(OXA-51) genes was investigated among 88 clinical isolates of A. baumannii, including 53 (60.2%) strains resistant to both carbapenems (meropenem and imipenem) and 35 (39.8%) strains susceptible to at least meropenem. Among these bacteria, all the isolates carried the bla(OXA-51) gene. The bla(OXA-23) and bla(OXA-40) genes were detected in two (5.7%) and three (8.6%) strains, respectively. Among the OXA-23 carbapenemase-producing A. baumannii strains (n = 55), insertion sequences (ISAba1) were detected upstream of the bla(OXA-23) gene in fifty-two (94.5%) carbapenem-resistant and two (3.6%) meropenem-susceptible isolates. A. baumannii clinical strains from Poland have a similar antimicrobial resistance profile as those worldwide, with the presence of ISAba1 among bla(OXA-23)-positive isolates also being quite common. Carbapenem resistance among A. baumannii strains is associated with the presence of CHDLs, especially when insertion sequences are present.202439458366
212650.9999Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections.201424707481
90960.9999First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin.201830404152
150170.9999High-level and novel mechanisms of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria. To determine the occurrence and molecular basis of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria, 182 non-duplicate Gram-negative bacterial isolates were investigated for antimicrobial susceptibility, presence of carbapenemases (tested phenotypically and genotypically), random amplified polymorphic DNA (RAPD) typing, plasmid sizing and replicon typing. Minimum inhibitory concentrations of carbapenems showed a high degree of resistance, with 67 isolates (36.8%) being resistant to all carbapenems, of which 40 (59.7%) produced enzymes able to hydrolyse imipenem. PCR and sequencing identified only 10 isolates (5.5%) carrying known carbapenemase genes, including bla(NDM), bla(VIM) and bla(GES). The majority of phenotypically carbapenem-resistant and carbapenemase-producing isolates did not carry a known carbapenemase gene. Transconjugant or transformant plasmid sizes were estimated to be 115 kb for bla(NDM)- and 93 kb for bla(VIM)-carrying plasmids. These plasmids were untypeable for replicon/incompatibility and transferred various other genes including plasmid-mediated quinolone resistance (PMQR) genes and bla(CTX-M-15). Typing showed that the isolates in this study were not clonally related. There is a high level of carbapenem resistance in Nigeria. As well as the globally relevant carbapenemases (bla(NDM), bla(VIM) and bla(GES)), there are other unknown gene(s) or variant(s) in circulation able to hydrolyse carbapenems and confer high-level resistance.201424613608
91780.9999Virulence characterization and clonal analysis of uropathogenic Escherichia coli metallo-beta-lactamase-producing isolates. BACKGROUND: Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infection (UTI); however, treatment of UTI has been challenging due to increased antimicrobial resistance (AMR). One of the most important types of AMR is carbapenem resistance (CR). CR bacteria are known as an important threat to global public health today. Class B metallo-beta-lactamases (MBLs) are one of the major factors for resistance against carbapenems. We aimed to investigate the characteristics of UPEC isolates producing MBL. METHODS: A cross-sectional study was conducted from October 2018 to December 2019 in Ahvaz; Iran. UPEC isolates were identified by biochemical and molecular methods. Metallo-beta-lactamase-producing isolates were detected using modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) tests. MBL genes, phylogenetic group, and virulence genes profile of carbapenem resistant isolates were determined. Conjugation assay and plasmid profiling were conducted to evaluate the ability of transferring of CR to other E. coli isolates. Clonal similarity of isolates were assessed using Enterobacterial intergenic repetitive element sequence (ERIC)-PCR. RESULTS: Among 406 UPEC isolates, 12 (2.95%) carbapenem-resistant were detected of which 11 were phenotypically MBL-producing strains. Four isolates were resistant to all investigated antimicrobial agents and were considered possible pandrug-resistant (PDR). bla(NDM), bla(OXA-48), bla(IMP-1), and bla(IMP-2) genes were found in 9, 5, 1, and 1 isolates, respectively. Among 30 virulence genes investigated, the traT, fyuA followed by fimH, and iutA with the frequency of 8 (66.7%), 8 (66.7%), 7 (58.3%), and 7 (58.3%) were the most identified genes, respectively. Siderophore production was the main virulence trait among carbapenem-resistant UPEC isolates. Except for two, all other isolates showed weak to moderate virulence index. In all recovered isolates, CR was readily transmitted via plasmids to other isolates during conjugation experiments. CONCLUSION: MBL and carbapenemase genes, especially bla(NDM) and bla(OXA-48) are spreading rapidly among bacteria, which can be a threat to global public health. Therefore monitoring the emergence and dissemination of new AMR is necessary to continuously refine guidelines for empiric antimicrobial therapy. Understanding the mechanisms of resistance and virulence in this group of bacteria can play an effective role in providing new therapeutic methods.202134344363
91590.9999Detection of Plasmid-Mediated Mobile Colistin Resistance Gene (mcr-1) in Enterobacterales Isolates from a University Hospital. PURPOSE: Colistin represents one of the last treatment options for infections caused by multi-drug resistant (MDR) Enterobacterales. The emergence of a plasmid-mediated mobile colistin resistance-1 (mcr-1) gene has raised serious concerns about its potential dissemination among bacteria. METHODS: In this study, we evaluated the chromogenic medium, CHROMID(®) Colistin Resistance (COLR) agar, for the rapid detection of colistin-resistant Enterobacterales using broth microdilution (BMD) as a reference method. We also attempted to detect mcr-1, -2, -3, -4, and -5 genes, as well as the insertion sequence ISApl1 via polymerase chain reaction (PCR), followed by sequencing of mcr gene(s). RESULTS: Among the 100 studied Enterobacterales isolates, 53% of them were colistin-resistant, with higher rate among Klebsiella pneumoniae (75%) as compared to Escherichia coli (44.4%). The COLR agar showed 83.2% sensitivity and 97.9% specificity for the detection of colistin resistance. Among colistin-resistant isolates, mcr-1 gene was only detected in four (7.5%) E. coli isolates. The ISApl1 was not found among mcr-1 positive isolates. Sequencing of mcr-1 gene revealed nucleotide sequence homogeneity with the wild-type mcr-1 gene in BLAST. CONCLUSION: The COLR agar is a promising phenotypic method for the detection of colistin-resistant Enterobacterales. Multiplex PCR followed by sequencing can be used for mcr genes' detection and characterization.202134408450
994100.9999Moroccan Hospital Cockroaches: Carriers of Multidrug-Resistant Gram-Negative Bacteria. Antimicrobial resistance in Gram-negative bacteria (GNB) is a growing global health concern, particularly in hospital environments, where cockroaches act as vectors for resistant strains. This study aimed to analyze antimicrobial resistance and biofilm formation in GNB isolated from cockroaches collected in the hospital environment. Cockroaches were collected, and bacterial isolation was performed from their gut contents and external surfaces. GNB strains were tested for antibiotic susceptibility using the disk diffusion method and examined for Extended-spectrum β-lactamases (ESBLs) and carbapenemases production. Molecular characterization of ESBLs and carbapenemases in GNB involved PCR amplification of antibiotic resistance genes, while biofilm formation was studied using a microplate assay. Seventy-five cockroaches were collected from which 165 GNB were isolated. The prevalence of ESBL-producing and carbapenemase-producing GNB was 6.7 and 1.8%, respectively. The predominant ESBL gene was bla(CTX-M-28), while bla(NDM-1) was the only carbapenemase gene detected. The qnrS1 gene was found in one NDM-1-producing Klebsiella pneumoniae and three ESBL-producing Escherichia coli. The qacΔE1 gene was detected in an NDM-1-producing Citrobacter freundii and a CTX-M-28-producing E. coli, whereas one NDM-1-producing Enterobacter cloacae carried both qacΔE1 and acrA genes. Strains harboring qacΔE1 and/or acrA genes exhibited biofilm-forming capabilities, with biofilm formation observed in 81.81% of ESBL-producing isolates and 100% of carbapenemase-producing isolates. The study underscores the role of cockroaches in carrying and disseminating ESBL- and carbapenemase-producing GNB in hospital settings. The coexistence of disinfectant resistance genes and antibiotic resistance suggests co-selection mechanisms, while biofilm formation enhances bacterial survival. These findings underline the urgent need for infection control strategies.202540095169
2124110.9999Evaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City. BACKGROUND & OBJECTIVE: Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide including Iran. The emergence of this pathogen is worrying as carbapenem is one of the 'last-line' antibiotics for treatment of infections caused by multi drug resistant gram- negative bacteria. The main objective of this study was to determine the prevalence of carbapenem-resistant Enterobacteriaceae in a referral hospital in Tehran, Iran. METHODS: In this study, all positive isolates of Enterobacteriaceae recorded in blood, urine, and other body fluids were studied during April 2017 to April 2018 in a referral hospital in Tehran. All cases of resistance to carbapenems were first tested by modified Hodge test. All cases with positive or negative test, after gene extraction, were examined genotypically based on the primers designed for the three Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), and OXA-48 genes by conventional PCR method. RESULTS: 108 isolates (13.6%) were resistant to all cephalosporins as well as to imipenem and meropenem. In a genotypic study, including 45 isolates, 13 isolates were positive for OXA-48 gene, 11 isolates for OXA-48 and NDM genes, 11 isolates for OXA-48, NDM and KPC genes, 4 isolates for OXA-48 genes and KPC, 3 isolates for NDM, one isolate for KPC. On the other hand, two isolates were negative for all three genes examined. CONCLUSION: OXA-48 gene was one of the most common genes resistant to carbapenems in Iran. According to studies, the prevalence of antibiotic resistance in Iran is rising dramatically, which reduces the choice of antibiotics to treat severe infections in the future.202032215024
918120.9999Carbapenem Resistance in Gram-Negative Bacteria: A Hospital-Based Study in Egypt. Background and Objectives: The global spread of carbapenem resistance and the resulting increase in mortality forced the World Health Organization (WHO) to claim carbapenem-resistant enterobacteriaceae (CRE) as global priority pathogens. Our study aimed to determine the prevalence of carbapenemase-encoding genes and major plasmid incompatibility groups among Gram-negative hospital-based isolates in Egypt. Material and Methods: This cross-sectional study was carried out at Mansoura University Hospitals over 12 months, from January to December 2019. All the isolates were tested for carbapenem resistance. The selected isolates were screened by conventional polymerase chain reaction (PCR) for the presence of carbapenemase genes, namely bla(KPC), bla(IMP), bla(VIM), and bla(NDM-1). PCR-based plasmid replicon typing was performed using the commercial PBRT kit. Results: Out of 150 isolates, only 30 (20.0%) demonstrated carbapenem resistance. Klebsiella pneumoniae was the most resistant of all isolated bacteria, and bla(NDM) was the predominant carbapenemases gene, while the most prevalent plasmid replicons were the F replicon combination (FIA, FIB, and FII) and A/C. Plasmids were detected only in Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. Remarkably, we found a statistically significant association between carbapenemase genes and plasmid replicons, including bla(NDM), IncA/C, and IncX. Conclusions: Our study demonstrated an alarming rise of plasmid-mediated carbapenem-resistant bacteria in our locality. The coexistence of resistance genes and plasmids highlights the importance of a targeted antibiotic surveillance program and the development of alternative therapeutic options at the local and international levels. Based on our results, we suggest a large-scale study with more Enterobacteriaceae isolates, testing other carbapenemase-encoding genes, and comparing the replicon typing method with other plasmid detection methods. We also recommend a national action plan to control the irrational use of antibiotics in Egypt.202336837486
2121130.9999Investigation of VIM, IMP, NDM-1, KPC AND OXA-48 enzymes in Enterobacteriaceae strains. Gram-negative bacteria especially Enterobacteriaceae species have become an increasing etiologic agent of nosocomial infections. The development of resistance to carbapenems have become an increasing problem in the treatment of nosocomial infections. Especially carbapenamases are common for Enterobacteriaceae strains. This study was performed to detect the types of carbapenemases in Enterobacteriaceae strains isolated from various clinical samples. Enterobacteriaceae species were isolated from urine, blood, tracheal aspirates, wound, and other respiratory samples. Susceptibility of isolates to imipenem, meropenem and ertapenem was tested. Carbapenemase genes were studied using HyplexSuperBug ID kit. VIM (1-13), IMP (1-22), NDM-1, KPC(1-10) and OXA-48 genes were investigated. Ninety-five isolates of Enterobacteriaceae spp. were included in the study. Sixty isolates were resistant to imipenem, meropenem and ertapenem and 20 isolates were found resistant to imipenem or ertapenem while 15 were susceptible to all carbapenems. Among the isolates with carbapenem resistance, 57 were positive for one carbapenemase gene and susceptible isolates did not have carbapenemase gene. OXA-48 was found in 49 of the isolates (86%), NDM-1 in 6 (10.5%) isolates, VIM in 2 isolates. IMP and KPC gene loci were not identified. Carbapenemase genes play a crucial role in the development and spread of resistant strains.201526051720
997140.9999Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted.201627221683
1051150.9999Multi-drug Resistance, β-Lactamases Production, and Coexistence of bla (NDM-1) and mcr-1 in Escherichia coli Clinical Isolates From a Referral Hospital in Kathmandu, Nepal. The ability of pathogenic Escherichia coli to produce carbapenemase enzymes is a characteristic that allows them to resist various antibiotics, including last-resort antibiotics like colistin and carbapenem. Our objectives were to identify rapidly developing antibiotic resistance (AR), assess β-lactamases production, and detect mcr-1 and bla (NDM-1) genes in the isolates. A prospective cross-sectional study was carried out in a referral hospital located in Kathmandu from November 2019 to December 2020 using standard laboratory and molecular protocols. Among 77 total E. coli isolates, 64 (83.1%) of them were categorized as MDR. Phenotypically 13 (20.3%) colistin-resistant, 30 (46.9%) ESBL and 8 (12.5%) AmpC producers, and 5 (7.8%) ESBL/AmpC co-producers were distributed among MDR-E. coli. Minimum inhibitory concentrations (MIC) against the majority of MDR isolates were exhibited at 1 g/L. Of these 77 E. coli isolates, 24 (31.2%) were carbapenem-resistant. Among these carbapenem-resistant bacteria, 11 (45.9%) isolates were reported to be colistin-resistant, while 15 (62.5%) and 2 (8.3%) were MBL and KPC producers, respectively. Out of 15 MBL producers, 6 (40%) harbored bla (NDM-1), and 8 (61.5%) out of 13 colistin-resistant pathogens possessed mcr-1. The resistance by colistin- and carbapenem were statistically associated (P < .001). However, only 2 (18.2%) of the co-resistant bacteria were found to have both genes. Our study revealed the highly prevalent MDR and the carbapenem-resistant E. coli and emphasized that the pathogens possess a wide range of capabilities to synthesize β-lactamases. These findings could assist to expand the understanding of AR in terms of enzyme production.202336741474
923160.9999Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention.202540066541
2127170.9999Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. The aim of this study was to identify the resistance genes and genetic relationship of carbapenemase-resistant Klebsiella pneumoniae (CRKP) identified in a tertiary university hospital in Turkey. During the study, CRKP was isolated from 137 patients. Resistance genes were studied in 94 isolates. Among these isolates, most of the CRKP produced only oxacillinase (OXA)-48 (91.5%); however, 4.3% of the isolates produced only New Delhi metallo-beta-lactamase 1 (NDM-1), 1% produced both OXA-48 and NDM-1, and 3.2% produced imipenem. This study adds Turkey to the growing list of countries with NDM-1-producing bacteria and shows that NDM-1 may easily spread worldwide.201323623803
919180.9999Molecular Characteristics of Carbapenem-Resistant Enterobacter cloacae in Ningxia Province, China. The emergence of carbapenem-resistant Enterobacteriaceae (CRE) has become a major public health concern worldwide and a new challenge in the treatment of infectious diseases. The molecular characteristics of Enterobacter cloacae in Ningxia China are unknown. In this study, we reported 10 carbapenem-resistant E. cloacae isolates from the General Hospital of Ningxia Medical University, the largest university hospital in Ningxia between January 2012 and December 2013. Bacteria isolates were identified by Vitek2 compact and the identity of non-duplicate E. cloacae isolates was further confirmed by PCR and sequencing. The drug susceptibility and phenotype identification of these isolates were analyzed by agar dilution method, modified Hodge test (MHT), and EDTA synergy test. Beta-lactamase (bla) genes bla(NDM-1) was found in 8 out of 10 isolates. Most isolates harbored multiple resistance genes including bla(ESBL), bla(AmpC), quinolones, aminoglycosides, and disinfectant resistance genes. Pulsed field gel electrophoresis (PFGE) showed that these E. cloacae isolates were grouped into 6 clusters based on a cutoff of 80% genetic similarity. In conjugative assay, 9 out of 10 isolates transferred carbapenem-resistant genes to Escherichia coli. Our study has revealed that NDM-1-producing isolates are the most prevalent carbapenem-resistant E. cloacae in Ningxia. These isolates also carry several other carbapenem-resistant genes and can transfer these genes to other bacteria through conjugation. These findings highlight an urgent need to monitor these isolates to prevent their further spread in this region.201728197140
2173190.9999Antimicrobial susceptibility and integrons detection among extended-spectrum β-lactamase producing Enterobacteriaceae isolates in patients with urinary tract infection. BACKGROUND: Integrons are bacterial mobile genetic components responsible for mediating the antibiotic resistance process by carrying and spreading antimicrobial resistance genes among bacteria through horizontal gene transfer. OBJECTIVES: This cross-sectional hospital-based study aimed to find the prevalence of antibiotic resistance patterns and to detect integrons classes (I, II, and III) among bacterial isolates in patients with urinary tract infections (UTI) in Sulaimani, Iraq. PATIENTS AND METHODS: Mid-stream urine samples (no. = 400) were collected from patients with UTI at three different Hospitals from Sulaimani, Iraq, between September 2021 to January 2022. Urine samples were cultured on various agar media, and grown bacteria were isolated. Antibiotic susceptibility test (AST) and an extended-spectrum β-lactamase (ESBL) screen were done for isolated bacteria. Then, integrons classes were screened using conventional PCR with gene sequencing and uploaded to the National Center for Biotechnology Information (NCBI). RESULTS: The frequency rate of Enterobacteriaceae was 67.03% among positive urine cultures. E. coli (no. = 86) and Klebsiella pneumoniae (no. = 32) isolates were identified. The most sensitive antibiotics were the carbapenem group (85.3%) and nitrofurantoin (NFN) (64.2%), while the most resistant antibiotics were nalidixic acid (NA) and 3(rd) generation cephalosporin. The occurrence rate of ESBL was 56.6% with a predominance of class I integron (54.2%), then class II (15.8%) and no positive record for class III integron were observed. CONCLUSION: Most bacterial isolates from patients with UTI produced class I and II integrons genes with favourable ESBL properties.202337283901