Coexistence of blaKPC-2 and blaNDM-1 in one IncHI5 plasmid confers transferable carbapenem resistance from a clinical isolate of Klebsiella michiganensis in China. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
149301.0000Coexistence of blaKPC-2 and blaNDM-1 in one IncHI5 plasmid confers transferable carbapenem resistance from a clinical isolate of Klebsiella michiganensis in China. OBJECTIVES: This study firstly identified an IncHI5 plasmid pK254-KPC_NDM co-carrying two different class carbapenemase genes blaKPC-2 and blaNDM-1 in Klebsiella michiganensis K254. METHODS: The strain K254 was sequenced by high-throughput genome sequencing. A detailed genomic and phenotypic characterization of pK254-KPC_NDM was performed. RESULTS: pK254-KPC_NDM displayed the conserve IncHI5 backbone and carried a resistant accessory region: Tn1696-related transposon Tn7414 containing blaKPC-2 and blaNDM-1. A sequence comparison was applied to a collection of four Tn1696-related transposons (Tn7414-Tn7417) harbouring carbapenemase genes. For all these four transposons, the blaNDM-1 was carried by Tn125 derivatives within three different mobile genetic elements. Tn7414 further acquired another carbapenemase gene, blaKPC-2, because of the integration of the local blaKPC-2 genetic environment from Tn6296, resulting in the high-level carbapenem resistance of K. michiganensis K254. The conjugal transfer and plasmid stability experiments confirmed that pK254-KPC_NDM could be transferred intercellularly and keep the stable vertical inheritance in different bacteria, which would contribute to the further dissemination of multiple carbapenemase genes and enhance the adaption and survival of K. michiganensis under complex and diverse antimicrobial selection pressures. CONCLUSION: This study was the first to report the K. michiganensis isolate coharbouring blaKPC-2 and blaNDM-1 in the Tn1696-related transposon in IncHI5 plasmid. The emergence of novel transposons simultaneously carrying multiple carbapenemase genes might contribute to the further dissemination of high-level carbapenem resistance in the isolates of the hospital settings and pose new challenges for the treatment of nosocomial infection.202337714378
151910.9987Epidemiology and resistance mechanisms of tigecycline- and carbapenem-resistant Enterobacteriaceae in China: a multicentre genome-based study. OBJECTIVES: To elucidate the molecular epidemiology of tigecycline and carbapenem-resistant Enterobacteriaceae isolates and mechanisms of tigecycline resistance. METHODS: We gathered 31 unduplicated strains of tigecycline-resistant Enterobacteriaceae from six hospitals nationwide. Antimicrobial susceptibility testing, phenotypic detection, and PCR identification were performed first, followed by homology analysis using MLST and PFGE. Conjugation transfer experiments using resistance gene plasmids were carried out, and the conjugates' growth curves were examined. All strains were sequenced using the Illumina HiSeq technology, and we identified a strain KP28 carrying a complete gene cluster tmexCD2-toprJ2. Then, its plasmid was further constructed using the PacBio platforms to complete the frame. The genetic connection of the tmexCD2-toprJ2 gene cluster carried by KP28 was established using core genome analyses. RESULTS: All 31 tigecycline-resistant Enterobacteriaceae strains (TG-CRE) were multidrug resistant. PFGE classified strains of CRKP, CRECL, and CRKAE into 16 distinct spectra, 6 distinct spectra, and 3 distinct spectra. MLST results showed a high concentration of ST11 in CRKP strains and a predominance of ST116 in CRECL strains, suggesting possible clonal transmission or selective dominance. The findings of the plasmid conjugation assay revealed that three strains expressing carbapenem resistance genes were effectively transmitted to the recipient cell E. coli EC600. WGS data revealed that these 31 strains include 79 resistance genes, with one strain (KP28) carrying the whole tigecycline resistance gene cluster, tmexC2D2-toprJ2. This resistance gene is contained in a large IncHI5 plasmid, which is difficult to transfer. CONCLUSION: The overall carriage rate of the tmexC2D2-toprJ2 gene cluster was found to be low among the five Chinese hospitals investigated. Conversely, tet(A) mutations were present in most of the strains. Bacteria with the carbapenem resistance genes bla (KPC) and bla (NDM) are vulnerable to horizontal transmission. Increasing the risk of transmission of antibiotic-resistant genes.202540400686
152320.9986The characterization of an IncN-IncR fusion plasmid co-harboring bla(TEM-40), bla(KPC-2), and bla(IMP-4) derived from ST1393 Klebsiella pneumoniae. Plasmids, as important genetic elements apart from chromosomes, often carry multiple resistance genes and various mobile genetic elements, enabling them to acquire more exogenous genes and confer additional resistance phenotypes to bacteria. Various carbapenem resistance genes are often located on IncN plasmids, and several reports have linked fusion plasmids to IncN plasmids. Therefore, this study aims to explore the emergence, molecular structure characteristics, and resistance features mediated by IncN fusion plasmids carrying multiple carbapenem resistance genes. In this study, species identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Polymerase chain reaction (PCR) was employed to detect the presence of carbapenem resistance genes in the strains. PCR-based replicon typing (PBRT) was used to identify IncN plasmids. Plasmids were analyzed through S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation experiments, and stability tests. Whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST) were conducted to characterize the target strains. Four strains containing IncN plasmids were identified: two Klebsiella pneumoniae, one Escherichia coli, and one Enterobacter cloacae, all harboring carbapenem resistance genes. Among them, two IncN plasmids (pFAHZZU7605-KPC-IMP and pFAHZZU7865-IMP) contained blaIMP-4 and exhibited similar molecular structure characteristics. Notably, the pFAHZZU7605-KPC-IMP plasmid harbored both IncN and IncR replicons. We hypothesize that the pFAHZZU7605-KPC-IMP fusion plasmid resulted from the recombination of a pFAHZZU7865-IMP-like plasmid and an IncR-like plasmid. Further analysis of the plasmid's genetic elements revealed that insertion sequences ISKpn19 and ISKpn27 played crucial roles in the plasmid recombination and fusion process. In clinical settings, plasmids carrying different resistance genes can undergo fusion, mediated by genetic elements, thereby expanding the resistance spectrum of host bacteria. Hence, it is essential to enhance the monitoring and research of transposable elements to control the spread of multidrug-resistant bacteria.202439496788
153130.9985Emergence of Plasmids Co-Harboring Carbapenem Resistance Genes and tmexCD2-toprJ2 in Sequence Type 11 Carbapenem Resistant Klebsiella pneumoniae Strains. OBJECTIVES: To characterize two plasmids co-harboring carbapenem resistance genes and tmexCD2-toprJ2 in carbapenem-resistant Klebsiella pneumoniae (CRKP) strains. METHODS: Two clinical CRKP strains were isolated and characterized by antimicrobial susceptibility testing, conjugation assays, whole-genome sequencing, and bioinformatics analysis. RESULTS: The two CRKP strains NB4 and NB5 were both resistant to imipenem, meropenem and tigecycline. Whole-genome sequencing revealed that two CRKP strains belonged to the ST11 type and carried multiple resistance genes. The tmexCD2-toprJ2 clusters in both strains were located on the IncFIB(Mar)-like/HI1B-like group of hybrid plasmids, which co-harbored the metallo-β-lactamase gene bla(NDM-1). In addition, the co-existence of bla(NDM-1) and bla(KPC-2) and the presence of tmexCD2-toprJ2 in CRKP strain NB5 was observed. CONCLUSIONS: In this study, tmexCD2-toprJ2 gene clusters were identified in two NDM-1-producing CRKP ST11 strains. These gene clusters will likely spread into clinical high-risk CRKP clones and exacerbate the antimicrobial resistance crisis. In addition, we detected the co-occurrence of bla(NDM-1), bla(KPC-2) and tmexCD2-toprJ2 in a single strain, which will undoubtedly accelerate the formation of a "superdrug resistant" bacteria. Hence, effective control measures should be implemented to prevent the further dissemination of such organisms in clinical settings.202235646740
152840.9985First Report of Coexistence of bla (SFO-1) and bla (NDM-1) β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Many antimicrobial resistance genes usually located on transferable plasmids are responsible for multiple antimicrobial resistance among multidrug-resistant (MDR) Gram-negative bacteria. The aim of this study is to characterize a carbapenemase-producing Enterobacter hormaechei 1575 isolate from the blood sample in a tertiary hospital in Wuhan, Hubei Province, China. Antimicrobial susceptibility test showed that 1575 was an MDR isolate. The whole genome sequencing (WGS) and comparative genomics were used to deeply analyze the molecular information of the 1575 and to explore the location and structure of antibiotic resistance genes. The three key resistance genes (bla (SFO-1), bla (NDM-1), and mcr-9) were verified by PCR, and the amplicons were subsequently sequenced. Moreover, the conjugation assay was also performed to determine the transferability of those resistance genes. Plasmid files were determined by the S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). WGS revealed that p1575-1 plasmid was a conjugative plasmid that possessed the rare coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 genes and complete conjugative systems. And p1575-1 belonged to the plasmid incompatibility group IncHI2 and multilocus sequence typing ST102. Meanwhile, the pMLST type of p1575-1 was IncHI2-ST1. Conjugation assay proved that the MDR p1575-1 plasmid could be transferred to other recipients. S1-PFGE confirmed the location of plasmid with molecular weight of 342,447 bp. All these three resistant genes were flanked by various mobile elements, indicating that the bla (SFO-1), bla (NDM-1), and mcr-9 could be transferred not only by the p1575-1 plasmid but also by these mobile elements. Taken together, we report for the first time the coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 on a transferable plasmid in a MDR clinical isolate E. hormaechei, which indicates the possibility of horizontal transfer of antibiotic resistance genes.202134220761
245150.9984Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. Conjugation is a type of horizontal gene transfer (HGT) that serves as the primary mechanism responsible for accelerating the spread of antibiotic resistance genes in Gram-negative bacteria. The present study aimed to elucidate the mechanisms underlying the conjugation-mediated gene transfer from the extensively drug-resistant Acinetobacter baumannii (XDR-AB) and New Delhi Metallo-beta-lactamase-1-producing Acinetobacter baumannii (NDM-AB) to environmental isolates of Acinetobacter spp. Conjugation experiments demonstrated that resistance to ticarcillin and kanamycin could be transferred from four donors to two sodium azide-resistant A. baumannii strains, namely, NU013R and NU015R. No transconjugants were detected on Mueller-Hinton Agar (MHA) plates containing tetracycline. Plasmids obtained from donors as well as successful transconjugants were characterized by PCR-based replicon typing and S1-nuclease pulsed-field gel electrophoresis (S1-PFGE). Detection of antibiotic resistance genes and integrase genes (int) was performed using PCR. Results revealed that the donor AB364 strain can transfer the blaOXA-23 and blaPER-1 genes to both recipients in association with int1. A 240-kb plasmid was successfully transferred from the donor AB364 to recipients. In addition, the aphA6 and blaPER-1 genes were co-transferred with the int1 gene from the donor strains AB352 and AB405. The transfer of a 220-kb plasmid from the donors to recipient was detected. The GR6 plasmid containing the kanamycin resistance gene (aphA6) was successfully transferred from the donor strain AB140 to both recipient strains. However, the blaNDM-1 and tet(B) genes were not detected in all transconjugants. Our study is the first to demonstrate successful in vitro conjugation, which indicated that XDR-AB contained combination mechanisms of the co-transfer of antimicrobial resistance elements with integron cassettes or with the plasmid group GR6. Thus, conjugation could be responsible for the emergence of new types of antibiotic-resistant strains.201830521623
189660.9984Difference analysis and characteristics of incompatibility group plasmid replicons in gram-negative bacteria with different antimicrobial phenotypes in Henan, China. BACKGROUND: Multi-drug-resistant organisms (MDROs) in gram-negative bacteria have caused a global epidemic, especially the bacterial resistance to carbapenem agents. Plasmid is the common vehicle for carrying antimicrobial resistance genes (ARGs), and the transmission of plasmids is also one of the important reasons for the emergence of MDROs. Different incompatibility group plasmid replicons are highly correlated with the acquisition, dissemination, and evolution of resistance genes. Based on this, the study aims to identify relevant characteristics of various plasmids and provide a theoretical foundation for clinical anti-infection treatment. METHODS: 330 gram-negative strains with different antimicrobial phenotypes from a tertiary hospital in Henan Province were included in this study to clarify the difference in incompatibility group plasmid replicons. Additionally, we combined the information from the PLSDB database to elaborate on the potential association between different plasmid replicons and ARGs. The VITEK mass spectrometer was used for species identification, and the VITEK-compact 2 automatic microbial system was used for the antimicrobial susceptibility test (AST). PCR-based replicon typing (PBRT) detected the plasmid profiles, and thirty-three different plasmid replicons were determined. All the carbapenem-resistant organisms (CROs) were tested for the carbapenemase genes. RESULTS: 21 plasmid replicon types were detected in this experiment, with the highest prevalence of IncFII, IncFIB, IncR, and IncFIA. Notably, the detection rate of IncX3 plasmids in CROs is higher, which is different in strains with other antimicrobial phenotypes. The number of plasmid replicons they carried increased with the strain resistance increase. Enterobacterales took a higher number of plasmid replicons than other gram-negative bacteria. The same strain tends to have more than one plasmid replicon type. IncF-type plasmids tend to be associated with MDROs. Combined with PLSDB database analysis, IncFII and IncX3 are critical platforms for taking bla(KPC-2) and bla(NDM). CONCLUSIONS: MDROs tend to carry more complex plasmid replicons compared with non-MDROs. The plasmid replicons that are predominantly prevalent and associated with ARGs differ in various species. The wide distribution of IncF-type plasmids and their close association with MDROs should deserve our attention. Further investigation into the critical role of plasmids in the carriage, evolution, and transmission of ARGs is needed.202438373913
152770.9984Emergence of an Escherichia coli strain co-harbouring mcr-1 and bla(NDM-9) from a urinary tract infection in Taiwan. OBJECTIVES: Multidrug-resistant bacteria have become a serious threat worldwide. In particular, the coexistence of carbapenemase genes and mcr-1 leaves few available treatment options. Here we report a multidrug-resistant Escherichia coli isolate harbouring both mcr-1 and bla(NDM-9) from a patient with a urinary tract infection. METHODS: Antimicrobial susceptibility and resistance genes of the E. coli isolate were characterised. Furthermore, the assembled genome sequences of mcr-1- and bla(NDM-9)-carrying plasmids were determined and comparative genetic analysis with closely related plasmids was carried out. RESULTS: Three contigs were assembled comprising the E. coli chromosome and two plasmids harbouring mcr-1 (p5CRE51-MCR-1) and bla(NDM-9) (p5CRE51-NDM-9), respectively. Whole-genome sequencing revealed that the two antimicrobial resistance genes are located on individual plasmids. CONCLUSIONS: The emergence of coexistence of carbapenemase genes and mcr-1 in Enterobacteriaceae highlights a serious threat to antimicrobial therapy.201930312830
152680.9984Carbapenem resistance determinants and their transmissibility among clinically isolated Enterobacterales in Lebanon. BACKGROUND: The occurrence of carbapenem-resistant bacterial infections has increased significantly over the years with Gram-negative bacteria exhibiting the broadest resistance range. In this study we aimed to investigate the genomic characteristics of clinical carbapenem-resistant Enterobacterales (CRE). METHODS: Seventeen representative multi-drug resistant (MDR) isolates from a hospital setting showing high level of resistance to carbapenems (ertapenem, meropenem and imipenem) were chosen for further characterization through whole-genome sequencing. Resistance mechanisms and transferability of plasmids carrying carbapenemase-encoding genes were also determined in silico and through conjugative mating assays. RESULTS: We detected 18 different β-lactamases, including four carbapenemases (bla(NDM-1), bla(NDM-5), bla(NDM-7), bla(OXA-48)) on plasmids with different Inc groups. The combined results from PBRT and in silico replicon typing revealed 20 different replicons linked to plasmids ranging in size between 80 and 200 kb. The most prevalent Inc groups were IncFIB(K) and IncM. OXA-48, detected on 76-kb IncM1 conjugable plasmid, was the most common carbapenemase. We also detected other conjugative plasmids with different carbapenemases confirming the role of horizontal gene transfer in the dissemination of antimicrobial resistance genes. CONCLUSION: Our findings verified the continuing spread of carbapenemases in Enterobacterales and revealed the types of mobile elements circulating in a hospital setting and contributing to the spread of resistance determinants. The occurrence and transmission of plasmids carrying carbapenemase-encoding genes call for strengthening active surveillance and prevention efforts to control antimicrobial resistance dissemination in healthcare settings.202337871361
152590.9984Genetic Characterization of Enterobacter hormaechei Co-Harboring bla (NDM-1) and mcr-9 Causing Upper Respiratory Tract Infection. PURPOSE: With the spread of multiple drug-resistant bacteria, bla (NDM-1) and mcr-9 have been detected in various bacteria worldwide. However, the simultaneous detection of bla (NDM-1) and mcr-9 in Enterobacter hormaechei has been rarely reported. This study identified an E. hormaechei strain carrying both bla (NDM-1) and mcr-9. We investigated the genetic characteristics of these two resistance genes in detail, elucidating various potential mechanisms by which they may be transmitted. METHODS: Bacterial genomic features and possible origins were assessed by whole-genome sequencing (WGS) with Illumina and PacBio platforms and phylogenetic analysis. Subsequent investigations were performed, including antimicrobial susceptibility testing and multilocus sequence typing (MLST). RESULTS: We isolated an E. hormaechei strain DY1901 carrying both bla (NDM-1) and mcr-9 from the sputum sample. Susceptibility testing showed that the isolate was multidrug-resistant. Multiple antibiotic resistance genes and virulence genes are widely distributed in DY1901. S1-PFGE, Southern blotting, and plasmid replicon typing showed that DY1901 carried four plasmids. The plasmid carrying mcr-9 was 259Kb in size and belonged to IncHI2, while the plasmid carrying bla (NDM-1) was 45Kb in length and belonged to IncX3. CONCLUSION: The E. hormaechei strain isolated in this study has a broad antibiotic resistance spectrum, posing a challenge to clinical treatment. Plasmids carrying mcr-9 are fusion plasmids, and those taking NDM are widely disseminated in China, suggesting that we should conduct routine genomic surveillance on such plasmids to curb the spread of drug-resistant bacteria in the region.202236068833
5423100.9983Characterization of mobile genetic elements in multidrug-resistant Bacteroides fragilis isolates from different hospitals in the Netherlands. OBJECTIVES: Five human clinical multidrug-resistant (MDR) Bacteroides fragilis isolates, including resistance to meropenem and metronidazole, were recovered at different hospitals in the Netherlands between 2014 and 2020 and sent to the anaerobic reference laboratory for full characterization. METHODS: Isolates were recovered from a variety of clinical specimens from patients with unrelated backgrounds. Long- and short-read sequencing was performed, followed by a hybrid assembly to study the presence of mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs). RESULTS: A cfxA gene was present on a transposon (Tn) similar to Tn4555 in two isolates. In two isolates a novel Tn was present with the cfxA gene. Four isolates harbored a nimE gene, located on a pBFS01_2 plasmid. One isolate contained a novel plasmid carrying a nimA gene with IS1168. The tetQ gene was present on novel conjugative transposons (CTns) belonging to the CTnDOT family. Two isolates harbored a novel plasmid with tetQ. Other ARGs in these isolates, but not on an MGE, were: cfiA, ermF, mef(EN2), and sul2. ARGs harboured differed between isolates and corresponded with the observed phenotypic resistance. CONCLUSIONS: Novel CTns, Tns, and plasmids were encountered in the five MDR B. fragilis isolates, complementing our knowledge on MDR and horizontal gene transfer in anaerobic bacteria.202337001724
1521110.9983Fusion plasmid carrying the colistin resistance gene mcr of Escherichia coli isolated from healthy residents. OBJECTIVES: The extensive spread of colistin resistance represents an enormous concern to infectious disease treatment, because colistin is one of the few effective antibiotics against multidrug-resistant bacterial infections, including carbapenem-resistant bacteria. This dissemination can be caused by plasmid transfer containing the colistin resistance gene mcr. Therefore, the plasmid host range affects horizontal gene transfer. This study reports a fusion plasmid of different incompatibility types, which could easily expand the plasmid host range, allowing widespread mcr prevalence in the microbial community. METHODS: Genome sequences of colistin-resistant Escherichia coli isolates from stool specimens of healthy human residents in Ecuador were determined using the DNBSEQ and MinION platforms. Hybrid genome assembly was performed using Unicycler, and the genomes were annotated using DFAST. Genome analysis was performed using the Geneious Prime software. RESULTS: Two colistin-resistant E. coli strains isolated separately from different residents presented mcr-carrying plasmids with fused different incompatibility types, IncFIA, IncHIIA, and IncHIIB. The phylogenies of these host bacteria were different. The sizes of the mcr-carrying fusion plasmids pLR-06 and pLR-50 with the full Tn6330 mcr-transposon were 260 Kbp and 198 Kbp, respectively. Both fusion plasmids possessed other resistance genes, including tet(B), tet(M), bla(TEM-1b), sul3, cmlA1, aadA1, aadA2, fosA3, and dfrA12. CONCLUSION: This is the first report of a fusion plasmid comprising different incompatibility types with mcr from colistin-resistant E. coli strains isolated from community residents. The mcr fusion plasmid may play a crucial role in achieving horizontal mcr transmission and the evolution of the multidrug resistance plasmid among hosts.202235705132
1517120.9983Co-occurrence of blaNDM-1, rmtC, and mcr-9 in multidrug-resistant Enterobacter kobei strain isolated from an infant with urinary tract infection. OBJECTIVES: The co-emergence of mcr and carbapenem resistance genes in Gram-negative bacteria is a serious problem. This study aims to clarify the genetic characteristic of one novel multidrug-resistant Enterobacter kobei EC1382 with mcr-9 causing urinary tract inflammation in an infant. METHODS: Antimicrobial drug susceptibility testing was performed for this isolate using the broth microdilution method. Whole-genome sequencing was performed using the Illumina PacBio RS II platform and HiSeq platform, and the antimicrobial resistance genes, mobile elements, and plasmid replicon types were identified. Conjugation analysis was performed using Escherichia coli C600 as recipients. RESULTS: Enterobacter kobei EC1382 was resistant to carbapenem, aminoglycoside, and cephalosporin. Twenty-five antimicrobial resistance genes were identified, including genes conferring resistance to carbapenem (blaNDM-1), colistin (mcr-9), and aminoglycosides (rmtC). The blaNDM-1 gene, accompanied by bleMBL and rmtC located downstream of an ISCR14 element, was detected in the IncFII(Yp) type plasmid pEC1382-2. Interestingly, although E. kobei EC1382 was susceptible to colistin, it had three identical mcr-9 genes (two in the chromosome and one in the IncHI2-type plasmid pEC1382-1). The backbone (∼12.2-kb genetic fragment) of these mcr-9 (flanked by IS903B and IS481-IS26) regions were conserved in this strain, and they were found to be present in various bacteria as three types, implying a silent distribution. CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the coexistence of blaNDM-1, rmtC, and mcr-9 in E. kobei. The silent prevalence of mcr-9 in bacteria may be a threat to public health.202337062506
1721130.9983Convergence of MCR-8.2 and Chromosome-Mediated Resistance to Colistin and Tigecycline in an NDM-5-Producing ST656 Klebsiella pneumoniae Isolate From a Lung Transplant Patient in China. We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded bla(NDM-5) and mcr-8.2 genes. The bla(NDM-5) gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone.202235899054
1563140.9983Intra- and Interspecies Spread of a Novel Conjugative Multidrug Resistance IncC Plasmid Coharboring bla(OXA-181) and armA in a Cystic Fibrosis Patient. A novel multidrug resistance conjugative 177,859-bp IncC plasmid pJEF1-OXA-181 coharboring the carbapenemase-coding bla(OXA181) and the aminoglycoside resistance 16S rRNA methyltransferase-coding armA genes was detected in two unrelated Escherichia coli gut isolates of ST196 and ST648, as well as two ST35 Klebsiella pneumoniae gut and sputum isolates of a cystic fibrosis patient. The armA gene was located within the antimicrobial resistance island ARI-A and the bla(OXA181) gene, which was preceded by IS903 and ISEcp1Δ was inserted within the transfer genes region without affecting conjugation ability. Comparative plasmid analysis with other related IncC plasmids showed the presence of bla(OXA181), as well as its integration site, are thus far unique for these types of plasmids. This study illustrates the potential of a promiscuous multidrug resistance plasmid to acquire antibiotic resistance genes and to disseminate in the gut of the same host. IMPORTANCE Colocalization of carbapenemases and aminoglycoside resistance 16S rRNA methylases on a multidrug resistance conjugative plasmid poses a serious threat to public health. Here, we describe the novel IncC plasmid pJEF1-OXA-181 cocarrying bla(OXA-181) and armA as well as several other antimicrobial resistance genes (ARGs) in different Enterobacterales isolates of the sputum and gut microbiota of a cystic fibrosis patient. IncC plasmids are conjugative, promiscuous elements which can incorporate accessory antimicrobial resistance islands making them key players in ARGs spread. This plasmid was thus far unique among IncC plasmids to contain a bla(OXA-181) which was integrated in the transfer gene region without affecting its conjugation ability. This study highlights that new plasmids may be introduced into a hospital through different species hosted in one single patient. It further emphasizes the need of continuous surveillance of multidrug-resistant bacteria in patients at risk to avoid spread of such plasmids in the health care system.202236154665
3011150.9983A novel cfr-carrying Tn7 transposon derivative characterized in Morganella morganii of swine origin in China. OBJECTIVES: To characterize the presence and genetic environment of the multiresistance gene cfr in bacterial isolates from a swine farm. METHODS: A total of 97 bacterial isolates, recovered from 32 faecal swabs obtained on one farm, were tested for the presence of the cfr gene by PCR. Species identification of the one cfr-positive strain was conducted using the BD PhoenixTM 100 Automated Microbiology System. Susceptibility testing was carried out by broth microdilution. The genetic environment of the cfr gene was analysed by WGS. RESULTS: The Morganella morganii isolate BCMM24 was the only cfr-positive strain. The cfr gene, as well as 15 other resistance genes, is located on a novel 111238 bp transposon derived from Tn7, designated as Tn6451, which comprises various genetic materials including a novel class 1 integron with five gene cassettes. The cfr-containing region consists of a novel genetic structure IS26-cfr-ΔTn554 tnpB-ΔTn3 family tnpA-IS26, differing from previous reports. Two-step PCR results show that the structure can be looped out and that Tn6451 cannot be excised from the chromosome. CONCLUSIONS: To the best of our knowledge, we report the cfr gene in M. morganii for the first time. The cfr gene and 15 other resistance genes are located on a novel Tn7 transposon derivative, suggesting that the Tn7 transposon may act as a reservoir for various antimicrobial resistance genes and more Tn7 derivatives carrying multiple resistance genes are likely to be discovered in Gram-negative bacteria of both animal and human origin.201930508103
1524160.9983Characterization of a Novel mcr-8.2-Bearing Plasmid in ST395 Klebsiella pneumoniae of Chicken Origin. The emergence of mobile colistin resistance mcr genes undermines the efficacy of colistin as the last-resort drug for multi-drug resistance infections and constitutes a great public health concern. Plasmids play a critical role in the transmission of mcr genes among bacteria. One colistin-resistant Klebsiella pneumoniae strain of chicken origin was collected and analyzed by antimicrobial susceptibility testing, PCR, conjugation assay and S1-PFGE. Whole-genome sequencing (WGS) approach combining Illumina and MinION platforms was utilized to decipher the underlying colistin resistance mechanism and genetic context. A novel mcr-8.2-bearing plasmid p2019036D-mcr8-345kb with 345 655 bp in size encoding various resistance genes including floR, sul1, aadA16, aadA2, bla (CTX-M-27), bla (DHA-1), tet(D), dfrA12 and qnrB4 was identified responsible for the colistin resistance phenotype. Plasmid comparison has shown that the mcr-8.2-bearing plasmid differed from other reported plasmids positive for mcr-8.2 but shared the same core mcr-8.2-bearing conserved region. This study demonstrates the emergence of mcr-8.2-bearing K. pneumoniae of animal origin is a potential risk to humans.202032606828
1581170.9983Large DNA fragment ISEc9-mediated transposition during natural transformation allows interspecies dissemination of antimicrobial resistance genes. PURPOSE: Antimicrobial resistance poses a significant global health challenge, contributing to a lack of effective therapeutic agents, especially against Gram-negative bacteria. Resistance dissemination is accelerated by horizontal gene transfer (HGT) mechanisms. The extended-spectrum beta lactamases CTX-M confer resistance to several beta-lactams, are usually embedded into plasmids and thought to be mainly disseminated by conjugation. However, an increasing number of isolates carry these enzyme-encoding genes in the chromosome, suggesting that they can spread by other means of HGT. In this study, we aimed to test the involvement of natural transformation in the chromosomal acquisition of a bla(CTX-M) gene. METHODS: Natural transformation assays were performed during motility on wet surfaces. Acquisition of foreign DNA by transformants was screened by antimicrobial susceptibility testing, polymerase-chain reaction (PCR) and whole genome sequencing (WGS). RESULTS: Acinetobacter baumannii A118, a naturally competent clinical strain, was transformed with naked DNA from Salmonella enterica serovar Typhimurium Sal25, which was isolated from swine meat. The transformation occurred at low frequency (2.7 × 10(- 8) ± 2.04 × 10(- 8) transformants per recipient) and bla(CTX-M) was acquired in one transformant, which was named ACI. WGS of the transformant revealed the acquisition of the bla(CTX-M-32) as part of a ca. 36 Kb DNA fragment through an ISEc9-mediated transposition event; various mobile genetic elements and other resistance genes were co-transferred. The bla(CTX-M-32) gene was subsequently transferred within A. baumannii at a higher frequency (1.8 × 10(- 6) ± 2.49 × 10(- 6) transformants per recipient). CONCLUSION: Our results highlight the importance of natural transformation events in the dissemination of antimicrobial resistance genes and mobile genetic elements between and within species.202540304893
1895180.9983Comparative Genome Analysis of Livestock and Human Colistin-Resistant Escherichia coli Isolates from the Same Household. BACKGROUND: Emergence and dissemination of colistin-resistant bacteria that harbor mobile colistin resistance (mcr) genes pose a dire challenge for the treatment of intractable infections caused by multidrug-resistant bacteria. Current findings on colistin-resistant bacteria in both humans and livestock of the same households highlight the need to identify the dissemination mechanisms of colistin-resistant bacteria. METHODS: In this study, a comparative genome analysis of colistin-resistant Escherichia coli isolates from livestock and humans of the same household was performed to clarify the possible dissemination mechanism of mcr genes among bacteria. Pulsed-field gel electrophoresis and whole-genome sequencing followed by sequence typing of the isolates were performed for assessment of the samples. RESULTS: The study revealed that two colistin-resistant E. coli isolates, one each from a pig and a chicken, were phylogenetically similar but not identical to the human isolates obtained from the same household. The comparative genome analysis revealed that the chicken isolate and a human isolate shared the same IncHl2 plasmid harboring the mcr transposon (mcr-1-PAP2). The pig isolate and the other human isolate retained the mcr-1 transposon on the chromosome, with the pig isolate carrying the complete mcr transposon (ISApl1-mcr-1-PAP2-ISApl1) and the human isolate carrying the incomplete mcr transposon (ISApl1-mcr-1-PAP2). CONCLUSION: The results of the study confirm the distribution of colistin-resistant bacteria and subsequent transmission of the resistance gene-carrying transposon between livestock and humans of the same household. To the best of our knowledge, this is the first report on genomic analysis of colistin-resistant E. coli isolates obtained from livestock and residents of the same household.202133688219
1723190.9983High-Level Aminoglycoside Resistance in Human Clinical Klebsiella pneumoniae Complex Isolates and Characteristics of armA-Carrying IncHI5 Plasmids. Aminoglycosides are important options for treating life-threatening infections. However, high levels of aminoglycoside resistance (HLAR) among Klebsiella pneumoniae isolates have been observed to be increasing frequently. In this study, a total of 292 isolates of the K. pneumoniae complex from a teaching hospital in China were analyzed. Among these isolates, the percentage of HLAR strains was 13.7% (40/292), and 15 aminoglycoside resistance genes were identified among the HLAR strains, with rmtB being the most dominant resistance gene (70%, 28/40). We also described an armA-carrying Klebsiella variicola strain KP2757 that exhibited a high-level resistance to all aminoglycosides tested. Whole-genome sequencing of KP2757 demonstrated that the strain contained one chromosome and three plasmids, with all the aminoglycoside resistance genes (including two copies of armA and six AME genes) being located on a conjugative plasmid, p2757-346, belonging to type IncHI5. Comparative genomic analysis of eight IncHI5 plasmids showed that six of them carried two copies of the intact armA gene in the complete or truncated Tn1548 transposon. To the best of our knowledge, for the first time, we observed that two copies of armA together with six AME genes coexisted on the same plasmid in a strain of K. variicola with HLAR. Comparative genomic analysis of eight armA-carrying IncHI5 plasmids isolated from humans and sediment was performed, suggesting the potential for dissemination of these plasmids among bacteria from different sources. These results demonstrated the necessity of monitoring the prevalence of IncHI5 plasmids to restrict their worldwide dissemination.202133897641