# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1472 | 0 | 1.0000 | Incidence and antibiotic susceptibility profile of uropathogenic Escherichia coli positive for extended spectrum β-lactamase among HIV/AIDS patients in Awka metropolis, Nigeria. BACKGROUND AND OBJECTIVES: This study investigated the incidence and antibiotic susceptibility profile of extended spectrum β-lactamase (ESBL) producing uropathogenic Escherichia coli recovered from HIV/AIDS patients in Awka metropolis, Nigeria. MATERIALS AND METHODS: A total of 363 urine samples were bacteriologically analyzed for the isolation of E. coli isolates which were further characterized using standard microbiology techniques. The isolated uropathogenic E. coli was tested for susceptibility to a range of clinically important antibiotics using the modified disk diffusion technique. All E. coli isolates were phenotypically screened for ESBL production using the combined disk technique, and strains which were positive were further confirmed for the presence of ESBL genes using PCR technique. RESULTS: A total 160 (44.1%) non-duplicate isolates were bacteriologically confirmed to be uropathogenic E. coli (UPEC). The E. coli isolates showed reduced susceptibility to important antibiotics including ceftazidime (76.88%), cefuroxime (77.5%), cefixime (61.88%), amoxicillin-clavulanic (32.5%) and ciprofloxacin (34.38%). Twenty-seven of the UPEC isolates were phenotypically confirmed to be ESBL producers. PCR test confirmed some important genes mediating ESBL production in Gram negative bacteria including bla (TEM) (5.0%) and bla (CTX-M-15) (6.9%) genes. CONCLUSION: We report a high prevalence of ESBL producers among HIV/AIDS patients in Awka, Nigeria. This result is important as antibiotic resistance (ABR) particularly those mediated by multidrug resistant bacteria as reported in this current study could complicate treatment outcome, worsen the individual's health, and even increase cost of treatment and hospitalization. It is therefore important to lookout for ESBL positive UPEC amongst HIV/AIDS patients in Nigeria. | 2022 | 37124857 |
| 987 | 1 | 0.9998 | Characterization of Multidrug Resistant Extended-Spectrum Beta-Lactamase-Producing Escherichia coli among Uropathogens of Pediatrics in North of Iran. Escherichia coli remains as one of the most important bacteria causing infections in pediatrics and producing extended-spectrum beta-lactamases (ESBLs) making them resistant to beta-lactam antibiotics. In this study we aimed to genotype ESBL-producing E. coli isolates from pediatric patients for ESBL genes and determine their association with antimicrobial resistance. One hundred of the E. coli isolates were initially considered ESBL producing based on their MIC results. These isolates were then tested by polymerase chain reaction (PCR) for the presence or absence of CTX, TEM, SHV, GES, and VEB beta-lactamase genes. About 30.5% of isolated E. coli was ESBL-producing strain. The TEM gene was the most prevalent (49%) followed by SHV (44%), CTX (28%), VEB (8%), and GES (0%) genes. The ESBL-producing E. coli isolates were susceptible to carbapenems (66%) and amikacin (58%) and showed high resistance to cefixime (99%), colistin (82%), and ciprofloxacin (76%). In conclusion, carbapenems were the most effective antibiotics against ESBl-producing E. coli in urinary tract infection in North of Iran. The most prevalent gene is the TEM-type, but the other resistant genes and their antimicrobial resistance are on the rise. | 2015 | 26064896 |
| 1128 | 2 | 0.9998 | Molecular detection of ESBLs production and antibiotic resistance patterns in Gram negative bacilli isolated from urinary tract infections. BACKGROUND: β-lactam resistance is more prevalent in Gram negative bacterial isolates worldwide, particularly in developing countries. In order to provide data relating to antibiotic therapy and resistance control, routine monitoring of corresponding antibiotic resistance genes is necessary. AIMS: The aim of this study was the characterization of β-lactam resistance genes and its plasmid profile in bacteria isolated from urinary tract infection samples. MATERIALS AND METHODS: In this study, 298 Gram negative bacteria isolated from 6739 urine specimens were identified by biochemical standard tests. Antimicrobial susceptibility testing was performed by the disk diffusion method. Extended-spectrum β-lactamase (ESBL)-producing strains were also detected by the double-disk synergy test. The presence of blaTEM and blaSHV genes in the strains studied was ascertained by polymerase chain reaction. RESULTS: Of all Gram negative bacteria, Escherichia coli (69.1%) was the most common strain, followed by Klebsiella sp. (12.1%), Enterobacter sp. (8.4%), Proteus sp. (4.4%), Citrobacter (4%) and Pseudomonas sp. (2%). The most antibiotic resistance was shown to tetracycline (95.16%), nalidixic acid (89.78%) and gentamycin (73.20%) antibiotics. Among all the strains tested, 35 isolates (11.75%) expressed ESBL activity. The prevalence of TEM and SHV positivity among these isolates was 34.29%, followed by TEM (31.43%), TEM and SHV negativity (20.0%) and SHV (14.29%), respectively. CONCLUSIONS: Regular monitoring of antimicrobial drug resistance seems necessary to improve our guidelines in the use of the empirical antibiotic therapy. | 2014 | 24943757 |
| 1471 | 3 | 0.9998 | Antimicrobial Resistance Pattern and Genetic Characteristics of ESBL and Carbapenemase-producing Escherichia coli at a Tertiary Care Hospital in Bangladesh. Uropathogenic Escherichia coli is frequently resistant to different antibiotic leading to a critical condition of the patients. The purpose of the present study was to see antibiotic resistance pattern and genetic characteristics of ESBL and Carbapenemase-producing Escherichia coli. This cross sectional study was conducted in the Department of Microbiology at Mymensingh Medical College, Mymensingh, Bangladesh from October 2014 to December 2015. Patients presented with clinically diagnosed urinary tract infection at any age with both sexes who attended in the OPD of Mymensingh Medical College Hospital and the Doctors Diagnostic Centre in Mymensingh, Bangladesh was selected as study population. Non duplicate clinical isolates from urine were collected in full aseptic precaution for culture of bacteria. Escherichia coli were confirmed by PCR Stargetingadk. Antimicrobial susceptibility was measured by broth microdilution test. Minimum inhibitory concentrations against 18 antimicrobial agents were measured. Beta-lactamase genes were detected by multiplex PCR. For all the isolates showing resistance to imipenem and/or meropenem, presence of carbapenemase genes was confirmed by multiplex/uniplex PCR using primers. A total of 233 non-duplicate clinical isolates of Escherichia coli were collected from patients of which dominant phylogenetic group was B2 which was 78(33.5%) isolates of which 71 isolates were B2a and 7 isolates were B2b. Furthermore, Group A was in 29.6% isolates and Group D was in 26.6% isolates. E. coli showed significantly higher resistance rates to piperacillin, cephalosporins, and some other antimicrobials. Meropenem-resistance was detected in 8.2% of E. coli. The detection rate of blaTEM was 41.6% in E. coli. Carbapenemase genes were detected in 9(3.9%) isolates of E. coli and identified as genes encoding NDM-1, -5, and 7 and OXA-181. All the blaNDM-positive E. coli isolates carried also blaCTX-M-15, except for a group B1 isolate. E. coli is significantly higher resistance rates to piperacillin, cephalosporins, and some other antimicrobials and possesses different ESBL and carbapenemase genes. | 2020 | 31915333 |
| 1446 | 4 | 0.9998 | One-Day Prevalence of Extended-Spectrum β-Lactamase (ESBL) and Carbapenemase-Producing Bacteria in Fecal Samples from Surgical Patients: A Concerning Trend of Antibiotic Resistance. PURPOSE: Extended-spectrum β-lactamase (ESBL) and carbapenemase producing bacteria are of increasing concern due to their multidrug resistance and infection potential. This study determines the one-day prevalence of faecal carriage of ESBL and carbapenemase producing Gram-negative bacilli. METHODS: Fecal samples were collected from 30 post-surgery patients (hospitalized for at least 48 hours) in each of the four hospitals involved in the study and were analyzed for antibiotic-resistant bacteria. Identification was done using Maldi Tof mass spectrometry, and antibiotic susceptibility was tested using disk diffusion and specialized tests for ESBL (double disk synergy technique) and carbapenem (NG-TEST CARBA 5) resistance detection. PCR was conducted on isolates to detect betalactam resistance genes, carbapenemase genes and quinolone resistance genes. FINDINGS: Out of the 120 patients enrolled, 38.33% (n = 46) and 49.16.33% (n = 59) were found to carry ESBL- and carbapenemase-producing bacteria, respectively, in their fecal samples. Among the isolates, 51.08% (n = 47) exhibited ESBL production, with Escherichia coli (44.56%) being the most common species. The identification of bacteria with resistance to carbapenems showed a predominance of the species Escherichia coli (44.45%) followed by the species Klebsiella pneumoniae (16.06%) and Acinetobacter baumanii (13.58%). The study of the association of variables shows a high degree of association (p < 0.05) for the factors independent walking and use of a wheelchair with ESBL production. The most frequently detected genes among ESBL producing bacteria were bla(CTXM-1) (91.49%), qnrB (70.21%) and qnrs (63.82%). bla(NDM) (54.68%) was the most detected carbapenemase genes among carbapenemase producing isolates. CONCLUSION: This study demonstrates, for the first time, a significant prevalence of ESBL and carbapenemase producing gram-negative bacteria among surgical patients in Benin, with multiple resistance genes detected. Findings should be interpreted in light of the cross-sectional design and >48-hour hospitalization criterion. | 2025 | 40635768 |
| 1466 | 5 | 0.9998 | Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. BACKGROUND: Beta lactams are the most commonly used group of antimicrobials worldwide. The presence of extended-spectrum lactamases (ESBL) affects significantly the treatment of infections due to multidrug resistant strains of gram-negative bacilli. The aim of this study was to characterize the beta-lactamase resistance genes in Escherichia coli isolated from nosocomial infections in Cotonou, Benin. METHODS: Escherichia coli strains were isolated from various biological samples such as urine, pus, vaginal swab, sperm, blood, spinal fluid and catheter. Isolated bacteria were submitted to eleven usual antibiotics, using disc diffusion method according to NCCLS criteria, for resistance analysis. Beta-lactamase production was determined by an acidimetric method with benzylpenicillin. Microbiological characterization of ESBL enzymes was done by double disc synergy test and the resistance genes TEM and SHV were screened by specific PCR. RESULTS: ESBL phenotype was detected in 29 isolates (35.5%). The most active antibiotic was imipenem (96.4% as susceptibility rate) followed by ceftriaxone (58.3%) and gentamicin (54.8%). High resistance rates were observed with amoxicillin (92.8%), ampicillin (94%) and trimethoprim/sulfamethoxazole (85.7%). The genotype TEM was predominant in ESBL and non ESBL isolates with respectively 72.4% and 80%. SHV-type beta-lactamase genes occurred in 24.1% ESBL strains and in 18.1% of non ESBL isolates. CONCLUSION: This study revealed the presence of ESBL producing Eschericiha coli in Cotonou. It demonstrated also high resistance rate to antibiotics commonly used for infections treatment. Continuous monitoring and judicious antibiotic usage are required. | 2015 | 25595314 |
| 1124 | 6 | 0.9998 | Molecular Identification of Extended-Spectrum β-lactamase and Integron Genes in Klebsiella Pneumonia. INTRODUCTION: Infections caused by Gram negative bacteria, producing extended-spectrum β-lactamase, including Klebsiella pneumoniae are increasing all over the world with high morbidity and mortality. The aim of the present study was determined antimicrobial profile susceptibility and the prevalence of antibiotic resistance genes by multiplex PCR. METHODS: In the present study, we obtained one-hundred isolates of K. pneumoniae from different clinical samples. The antibiotic susceptibility testing was done in thirteen antibiotic and, therefore, M-PCRs were conducted using the DNA amplification for detection of ESBLs (blaTEM, blaCTX-M, blaSHV) and int (I, II, III) genes. RESULTS: The results of resistance to amoxicillin/clavulanate, ciprofloxacin, amikacin, trimethoprim-sulfamethoxazole, cefotaxime, ampicillin, aztreonam, imipenem, gentamicin, ceftazidime, Cefepime, ceftriaxone and levofloxacin were obtained 37%, 37%, 93%, 84%, 52%, 87%, 59%, 8%, 24%, 67%, 52%, 43% and 26%, respectively. The frequency of the extended-spectrum β-lactamase K. pneumoniae was obtained 37%. The prevalence of resistance genes of ESBLs in the M-PCR method showed that the blaTEM, blaCTX and blaSHV were 38%, 24% and 19%, respectively, however, only 8 (8%) out of 100 isolates were found to have positive outcomes for the existence of class 1 integrons and there were no detected class 2 or class 3 integrons. CONCLUSIONS: Our results recommend the likely co-carriage of some ESBLs genes and antibiotic resistance integrons on the same plasmids harboring the MDR genes. | 2016 | 27935927 |
| 1457 | 7 | 0.9998 | Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. BACKGROUND: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (bla(TEM) and bla(CTX-M)) in the clinical samples from patients. METHODS: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby-Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes bla(TEM) and bla(CTX-M). RESULTS: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the bla(CTX-M) gene and 41.6% (5/12) tested positive for the bla(TEM) gene. CONCLUSION: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance. | 2021 | 33562276 |
| 1460 | 8 | 0.9998 | Emergence of Multidrug Resistance and Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated from Patients in Shiraz, Iran. BACKGROUND: Metallo-beta-lactamase (MβL) enzymes production is one of the most important resistance mechanisms against carbapenems in some bacteria including Acinetobacter baumannii. AIMS: This study was aimed to determine the antimicrobial susceptibility and the prevalence of MβL among carbapenem-resistant isolates of A. baumannii. MATERIALS AND METHODS: In this cross-sectional study from October 2012 to April 2013, 98 isolates were identified as A. baumannii using Microgen™ kits and confirmed by molecular method. These isolates were tested for antimicrobial susceptibilities by disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. Carbapenem-resistant isolates were further detected phenotypically by MβL minimal inhibitory concentration (MIC)-test strips, and subsequently positive MβL isolates were confirmed by polymerase chain reaction (PCR). RESULTS: Overall, 98% (96/98) of A. baumannii isolates were detected as carbapenem-resistant by MIC test. Highest sensitivity to the tested antibiotic with 42.9% (42/98) was observed to colistin. Of 96 carbapenem-resistant isolates, 43 were phenotypically positive for MβL; out of 43 isolates, 37 were confirmed for the presence of MβL genes by PCR. CONCLUSION: The frequency of drug resistance among the clinical samples of A. baumannii isolated in our study against most of the antibiotics was very high. Moreover, all MβL producing isolates were multidrug resistance. Therefore, systematic surveillance to detect MβL producing bacteria and rational prescription and use of carbapenems could be helpful to prevent the spread of carbapenem resistance. | 2016 | 27398247 |
| 1123 | 9 | 0.9998 | Molecular detection of blaSHV gene in multidrug resistance of Klebsiella pneumoniae isolated from chicken egg shell swab from a traditional market in Surabaya. BACKGROUND: Contamination with Klebsiella pneumoniae in food ingredients, including eggs, causes various dangers because it threatens public health, because it acts as a multidrug resistance (MDR) bacteria, especially the extended-spectrum beta-lactamase (ESBL) strain. The ESBL blaSHV gene is part of a broad-spectrum ESBL that is often found in Gram-negative bacteria. AIM: This study aimed to identify the ESBL blaSHV gene in K. pneumoniae MDR from chicken eggshells. METHODS: This study used 160 samples of chicken eggshell swabs isolated on 1% BPW media from 10 traditional Surabaya markets. Samples were isolated using MCA media and were identified using Gram staining and biochemical tests. Detection of MDR using Muller-Hinton Agar. RESULTS: Confirmation of ESBL in multidrug-resistant (MDR) isolates was performed using polymerase chain reaction to detect ESBL genes. The results showed that the isolation and identification of K. pneumoniae bacteria were 25.62% (41/160). Amoxicillin antibiotics showed the highest level of resistance at a percentage of 100% (41/41), followed by antibiotic resistance to erythromycin (90.24% (37/41), Streptomycin antibiotics were 26.82% (11/41), ciprofloxacin (14.63% (6/41), and Tetracycline antibiotic resistance was 7.31% (3/41). The results of MDR from K. pneumoniae showed 34.14% (14/41) of the isolates were then tested by PCR, which showed positive results for the blaSHV gene of 71.42% (10/14). CONCLUSION: The data from this study confirm the existence of K. pneumoniae bacteria isolated from egg shell swabs carrying the blaSHV gene from MDR isolates. | 2025 | 40557075 |
| 1470 | 10 | 0.9998 | Occurrence of extended-spectrum beta-lactamase (ESBL) in Gram-negative bacterial isolates from high vaginal swabs in a teaching hospital in Nigeria. OBJECTIVE: This study aims to determine the antibiotic susceptibility pattern and incidence of extended-spectrum beta-lactamase (ESBL) genes in isolates from vaginal discharge of symptomatic female patients. STUDY DESIGN: Cross-sectional study. PARTICIPANT: Pregnant and non-pregnant women between 18 and 50 years who presented with genital tract infection and had not received antimicrobial therapy in the two weeks prior. INTERVENTIONS: The study determines the prevalence of bacteria in the vaginal discharge of female patients of reproductive age, the antibiotic susceptibility pattern of the isolates and the incidence of ESBL genes in Gram-negative isolates from the sample. RESULTS: Bacteria were found in 74 (80.4%) and 88 (81.5%) samples from pregnant and non-pregnant women, respectively. Escherichia coli (n=48; 27.6%) occurred mostly in the samples, followed by Staphylococcus aureus (n=38; 21.8%). Among the Gram-positive, all Streptococcus. pneumoniae and Staphylococcus. epidermidis were sensitive to imipenem and meropenem (100%). S. aureus was the most resistant to cephalexin (71.4%), cefoxitin (60.5%) carbenicillin (60.5%) and ceftazidime (57.9%). Escherichia coli was highly resistant to carbenicillin (85.4%), cephalexin (64.6%) and cefotaxime (56.3%). Klebsiella pneumoniae showed the highest level of imipenem resistance (31.6%), followed by E. coli (29.2%). The prevalence of ESBL genes in Gram-negative isolates from pregnant women was 25.6% (11/43), compared to 30.3% (23/76) in non-pregnant women. Both bla (TEM) and bla (SHV) had the highest occurrence of 14.3% (17/119) of the isolates. CONCLUSION: This study found Gram-negative pathogens isolated from the vaginal tract of both pregnant and non-pregnant women to be resistant to multiple antibiotics and have ESBL genes. FUNDING: None declared. | 2024 | 40585516 |
| 997 | 11 | 0.9998 | Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted. | 2016 | 27221683 |
| 945 | 12 | 0.9998 | Extended Spectrum Beta Lactamase (ESBL), bla(TEM),bla(SHV) and bla(CTX-M), Resistance Genes in Community and Healthcare Associated Gram Negative Bacteria from Osun State, Nigeria. BACKGROUND: Extended Spectrum Beta Lactamase (ESBL) production in gram negative bacteria confers multiple antibiotic resistance, adversely affecting antimicrobial therapy in infected individuals. ESBLs result from mutations in β-lactamases encoded mainly by the bla(TEM),bla(SHV) and bla(CTX-M) genes. The prevalence of ESBL producing bacteria has been on the increase globally, especially its upsurge among isolates from community-acquired infections has been observed. AIM: To determine ESBL prevalence and identify ESBL genes among clinical isolates in Osun State, Nigeria. MATERIAL AND METHODS: A cross-sectional study was carried out from August 2016 - July 2017 in Osun State, Nigeria. Three hundred and sixty Gram-negative bacteria recovered from clinical samples obtained from both community and healthcare-associated infections were tested. They included 147 Escherichia coli (40.8%), 116 Klebsiella spp (32.2%), 44 Pseudomonas aeruginosa (12.2%) and 23 Proteus vulgaris (6.4%) isolates. Others were Acinetobacter baumannii, Serratia rubidae, Citrobacter spp, Enterobacter spp and Salmonella typhi. Disk diffusion antibiotic susceptibility testing was carried out, isolates were screened for ESBL production and confirmed using standard laboratory procedures. ESBLs resistance genes were identified by Polymerase Chain Reaction (PCR). RESULTS: All isolates demonstrated multiple antibiotic resistance. Resistance to ampicillin, amoxicillin with clavulanate and erythromycin was 100%, whereas resistance to Imipenem was very low (5.0%). The overall prevalence of ESBL producers was 41.4% with Klebsiella spp as the highest ESBL producing Enterobacteriacaea. ESBL producers were more prevalent among the hospital pathogens than community pathogens, 58% vs. 29.5% (p=0.003). ESBL genes were detected in all ESBL producers with the bla(CTX-M) gene predominating (47.0%) followed by bla(TEM) (30.9%) and bla(SHV) gene was the least, 22.1%. The bla(CTX-M) gene was also the most prevalent in the healthcare pathogens (62%) but it accounted for only 25% in those of community origin. CONCLUSION: A high prevalence of ESBL producing gram-negative organisms occurs both in healthcare and in the community in our environment with the CTX-M variant predominating. Efforts to control the spread of these pathogens should be addressed. | 2021 | 32729432 |
| 1465 | 13 | 0.9998 | Detection of TEM, SHV and CTX-M in Mymensingh region in Bangladesh. The development of antibiotic resistance in bacteria following introduction of antimicrobial agents has emerged as an important medical problem everywhere in the world including Bangladesh. Extended spectrum β-lactamases (ESBLs) are rapidly evolving group of β-lactamase enzymes produced by the Gram negative bacteria. This study was undertaken to characterize ESBL producing gram negative bacilli from urine, skin wound (pus and wound infection). A total of 300 gram negative bacilli were screened for resistance to third generation Cephalosporins (3GCs) by disc diffusion test. The ESBL status was confirmed by double disc diffusion test (DDDT), minimum inhibitory concentration (MIC) by agar dilution method as recommended by Clinical Laboratory Standard Institute 2010 (CLSI) and multiplex PCR for TEM, SHV and CTX-M, CTX-M-3, CTX-M-14 genes. The present study revealed a higher occurrence of multi drugs resistant ESBLs production among gram negative isolates where Klebsiella spp. were the leading bacteria 36/45 (80%), followed by Proteus spp. 40/55 (72.7%), Esch. coli 105/156 (67.3%) and others 25/35 (71.4 %). Rate of TEM, SHV and CTX-M genes present in study population were 50.46%, 18.69% and 46.72% respectively. Among the CTX-M positive genes CTX-M-3 and CTX-M-14 were 78.0% (39/50) and 80.0% (40/50) respectively. Results indicate that routine ESBL detection should be made mandatory and irrational use of third generation cephalosporins must be discouraged to reduce multi drugs resistance bacteria, to increase patients' compliance and to make an antibiotic policy. | 2013 | 23982534 |
| 2110 | 14 | 0.9998 | First report of carbapenems encoding multidrug-resistant gram-negative bacteria from a pediatric hospital in Gaza Strip, Palestine. BACKGROUND: The worldwide prevalence of multi-drug resistance (MDR) in Gram-negative bacteria (GNB), particularly related to extended-spectrum beta-lactamases (ESBLs) and carbapenemases, poses significant global public health and clinical challenges. OBJECTIVES: To characterize ESBL-producing Gram-negative bacilli, within a pediatric hospital in Gaza using whole genome sequencing (WGS). METHODS: A total of 158 clinical isolates of Gram-negative bacilli were collected from Al-Nasser Pediatric Hospital. These isolates were tested for ESBL production using the double disk synergy test. The antibiotic susceptibility profile was determined using the Kirby Bauer method following the Clinical and Laboratory Standard Institute guidelines. Selected 15 phenotypically MDR isolates were whole-genome sequenced and characterized for their genome-based species identity and antibiotic resistance gene profile. RESULTS: Of the 158 isolates, 93 (58.9%) were positive for ESBL production. The frequency of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Proteus mirabilis, and Serratia marcescens was 50%, 22.7%, 22.7%, 1.8%, 1.2%, and 1.2% respectively. The prevalence of ESBL among urine, pus, blood, and sputum was 64%, 44%, 23%, and 63.6%, respectively. Chloramphenicol, Imipenem, and Meropenem were the most effective antibiotics against ESBL producers. In sequenced isolates, an average of six anti-microbial resistance (AMR) genes were noted per isolate, where one of them carried up to 13 antibiotic resistance genes. Carbapenem resistance genes such as bla(KPC-2)(6.6%), bla(PDC-36/12) (6.6%), and bla(POM-1) (6.6%) were detected. All the sequenced E. coli isolates (n = 8) showed multiple resistance genes, mainly against β-lactamase (25.0%), aminoglycosides (37.5%), sulfonamides (37.5%), and genes conferring resistance to tetracyclines (25.0). CONCLUSION: Our results showed a high prevalence of ESBL-producing GNB isolated from a pediatric hospital in the Gaza Strip. Various antibiotic resistance genes were identified, including those encoding ESBL and carbapenems. The results highlight the significant challenge posed by MDR in GNB and emphasize the need for effective antibiotic strategies. Given the high endemicity observed in various studies from Palestine, it is important to conduct clinical and molecular epidemiology research to identify risk factors, transmission patterns, and clinical outcomes associated with GNB strains that carry ESBL and carbapenem resistance genes. | 2024 | 39379824 |
| 1163 | 15 | 0.9998 | A Three-Year Look at the Phylogenetic Profile, Antimicrobial Resistance, and Associated Virulence Genes of Uropathogenic Escherichia coli. Uropathogenic Escherichia coli is the most common cause of urinary tract infections, resulting in about 150 million reported annual cases. With multidrug resistance on the rise and the need for global and region surveillance, this investigation looks at the UPEC isolates collected for a 3-year period, with a view of ascertaining their antimicrobial susceptibility patterns and associated virulence determinants. The identification of bacteria isolates, antimicrobial susceptibility, and extended-spectrum beta-lactamases (ESBLs) production was determined with a Vitek 2 Compact Automated System (BioMerieux, Marcy L'Etoile, France). ESBLs were confirmed by the combined disc test (CDT) and basic biochemical test. The isolates were distributed into A (11%), B1 (6%), B2 (62.4%), and D (20.6%). Resistance to the penicillin group was high, between 88% and 100%. Additionally, resistance was high to cephalosporins (100%) in 2017 and 2018. The isolates were all sensitive to tigecycline, while resistance against imipenem and meropenem was low, at 4-12% in 2017 and 2018 and 0% in 2019. The results also showed that ESBL isolates were seen in 2017 and 2018. They were confirmed positive to CTX/CLA (88.5%) and CAZ/CLA (85%). By 2019, the number of resistant isolates reduced, showing only 4% ESBL isolates. Two virulence genes, fimH (46%) and papE/F (15%), were detected among the isolates by PCR. In conclusion, this study found that phylogroups B2 and D carried the most virulence genes as well as MDR and ESBL characteristics, suggesting the UPEC strains to be extraintestinal pathogens responsible for UTIs. | 2022 | 35745485 |
| 1161 | 16 | 0.9998 | Detection of extended-spectrum β-lactamase-producing Escherichia coli genes isolated from cat rectal swabs at Surabaya Veterinary Hospital, Indonesia. BACKGROUND AND AIM: Escherichia coli causes a bacterial illness that frequently affects cats. Diseases caused by E. coli are treated using antibiotics. Because of their proximity to humans, cats possess an extremely high risk of contracting antibiotic resistance genes when their owners touch cat feces containing E. coli that harbor resistance genes. This study was conducted to identify multidrug-resistant E. coli and extended-spectrum β-lactamase (ESBL)-producing genes from cat rectal swabs collected at Surabaya City Veterinary Hospital to determine antibiotic sensitivity. MATERIALS AND METHODS: Samples of cat rectal swabs were cultured in Brilliant Green Bile Lactose Broth medium and then streaked on eosin methylene blue agar medium for bacterial isolation, whereas Gram-staining and IMViC tests were conducted to confirm the identification results. The Kirby-Bauer diffusion test was used to determine antibiotic sensitivity, and the double-disk synergy test was used to determine ESBL-producing bacteria. Molecular detection of the genes TEM and CTX-M was performed using a polymerase chain reaction. RESULTS: Based on morphological culture, Gram-staining, and biochemical testing, the results of sample inspection showed that of the 100 cat rectal swab samples isolated, 71 (71%) were positive for E. coli. Furthermore, 23 E. coli isolates (32.39%) demonstrated the highest resistance to ampicillin. Four isolates were confirmed to be multidurg-resistant and ESBL-producing strains. Molecular examination revealed that three E. coli isolates harbored TEM and CTX-M. CONCLUSION: In conclusion, pet owners must be educated on the use of antibiotics to improve their knowledge about the risks of antibiotic resistance. | 2023 | 37859949 |
| 2111 | 17 | 0.9998 | Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients. | 2019 | 31819545 |
| 1052 | 18 | 0.9998 | Extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa in camel in Egypt: potential human hazard. BACKGROUND: The rapid increase of extended-spectrum beta-lactamase (ESBL) producing bacteria are a potential health hazard. Development of antimicrobial resistance in animal pathogens has serious implications for human health, especially when such strains could be transmitted to human. In this study, the antimicrobial resistance due to ESBL producing Pseudomonas aeruginosa in the camel meat was investigated. METHODS: In this study meat samples from 200 healthy camels at two major abattoirs in Egypt (Cairo and Giza) were collected. Following culture on cetrimide agar, suspected P. aeruginosa colonies were confirmed with a Vitek 2 system (bioMe´rieux). P. aeruginosa isolates were phenotypically identified as ESBL by double disk synergy test. Additionally antimicrobial susceptibility testing of ESBL producing P. aeruginosa isolates were done against 11 antimicrobial drugs and carried out by disk diffusion method. The ESBL genotypes were determined by polymerase chain reaction according to the presence of the bla (PER-1), bla (CTX-M), bla (SHV), and bla (TEM). RESULTS: Pseudomonas aeruginosa was isolated from 45 camel meat sample (22.5%). The total percentage of ESBL producing P. aeruginosa was 45% (21/45) from camel meat isolates. Antibiogram results revealed the highest resistance was for c, ceftriaxone and rifampicin followed by cefepime and aztreonam. The prevalence rates of β-lactamase genes were recorded (bla (PER-1) 28.5%, bla (CTX-M) 38%, bla (SHV) 33.3% and bla (TEM) 23.8%). CONCLUSIONS: This study illustrates the presence of high rates of ESBL-P. aeruginosa in camels that represents an increasing alarming for the risk of transmission to human and opens the door for current and future antibiotics therapy failure. Livestock associated ESBL-P. aeruginosa is a growing disaster, therefore, attention has to be fully given to livestock associated ESBL-bacteria which try to find its way to human beings. | 2017 | 28359312 |
| 946 | 19 | 0.9998 | Identification and Characterization of Multidrug-Resistant Extended-Spectrum Beta-Lactamase-Producing Bacteria from Healthy and Diseased Dogs and Cats Admitted to a Veterinary Hospital in Brazil. The objective of this study was to identify the main extended-spectrum beta-lactamase (ESBL)-producing bacteria and to detect the frequency of the major genes responsible to trigger this resistance in hospitalized animals. We collected 106 rectal swabs from cats (n = 25) and dogs (n = 81) to detect ESBL-producing isolates. ESBL-positive samples were submitted to the antimicrobial susceptibility test, and polymerase chain reaction was performed to detect TEM, SHV, and CTX-M genes from different groups. We observed that 44.34% of these samples (11 cats and 36 dogs) were positive for ESBL-producing bacteria. Thirteen animals (27.66%-seven cats and six dogs) were hospitalized for elective castration (healthy animals). Only a single animal was positive for ESBL-producing bacteria at hospital admission (the animal also showed an ESBL-positive isolate after leaving the hospital), whereas 11 were positive only at the hospital discharge. Of the 73 ESBL-producing isolates, 13 were isolated from cats (8 sick and 7 healthy) and 60 from dogs (53 sick and 7 healthy). Escherichia coli was the major ESBL-producing bacterium isolated (53.42%), followed by Pseudomonas aeruginosa (15.07%), Salmonella sp., and Proteus mirabilis (5.48% each one). Antimicrobial resistance profile of ESBL-producing isolates showed that 67 isolates (91.78%) were resistant to 3 or more antibiotic classes, while 13 of them (17.81%-2 healthy cats and 11 sick dogs) were resistant to all tested antimicrobial classes. The bla(TEM) gene exhibited the highest frequency in ESBL-producing isolates, followed by the bla(CTX-M) group 8/25, bla(CTX-M) group 1 and bla(CTX-M) group 9 genes. These results are useful to assess the predominance of ESBL-producing isolates recovered from dogs and in cats in Brazil. Consequently, we draw attention to these animals, as they can act as reservoirs for these microorganisms, which are the major pathogens of nosocomial infections worldwide. | 2021 | 33185513 |