Detection of bla (CTX-M15) and bla (OXA-48) genes in Gram-negative isolates from neonatal sepsis in central of Iran. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
146701.0000Detection of bla (CTX-M15) and bla (OXA-48) genes in Gram-negative isolates from neonatal sepsis in central of Iran. BACKGROUND AND OBJECTIVES: The aim of this study was to determine the prevalence of neonatal sepsis with a focus on antibiotic resistance and the frequency of the bla (CTX-M-15) and bla (OXA-48) genes in Gram-negative isolates. MATERIALS AND METHODS: A total of 108 Umbilical Cord Blood (UCB) and 153 peripheral blood samples were cultured via BACTEC from May 2017 to June 2018. The bacterial isolates were identified using phenotypic and genotypic analyses. The antibiotic susceptibility profile of the isolates was determined by disk diffusion. PCR was used to determine the frequency of β-lactamase genes. RESULTS: Among the 153 infants, 21 (13.7%) proved positive for sepsis. Escherichia coli, Staphylococcus epidermidis and Klebsiella pneumoniae were the most frequent isolates in the peripheral blood cultures. E. coli and Stenotrophomonas maltophilia were isolated from two UCB cultures. The highest resistance among the Gram-positive strains was to cefixime, ceftriaxone, cefotaxime and clindamycin. In the Gram-negative bacteria the highest rates of resistance were to ampicillin (91.7%). The frequency of bla (OXA-48) and bla (CTX-M-15) genes was 25% and 50%, respectively. CONCLUSION: The high antibiotic resistance among the isolates reveals the importance of monitoring antibiotic consumption and improving control standards in the health care system, especially in neonatal wards.201931719958
112810.9999Molecular detection of ESBLs production and antibiotic resistance patterns in Gram negative bacilli isolated from urinary tract infections. BACKGROUND: β-lactam resistance is more prevalent in Gram negative bacterial isolates worldwide, particularly in developing countries. In order to provide data relating to antibiotic therapy and resistance control, routine monitoring of corresponding antibiotic resistance genes is necessary. AIMS: The aim of this study was the characterization of β-lactam resistance genes and its plasmid profile in bacteria isolated from urinary tract infection samples. MATERIALS AND METHODS: In this study, 298 Gram negative bacteria isolated from 6739 urine specimens were identified by biochemical standard tests. Antimicrobial susceptibility testing was performed by the disk diffusion method. Extended-spectrum β-lactamase (ESBL)-producing strains were also detected by the double-disk synergy test. The presence of blaTEM and blaSHV genes in the strains studied was ascertained by polymerase chain reaction. RESULTS: Of all Gram negative bacteria, Escherichia coli (69.1%) was the most common strain, followed by Klebsiella sp. (12.1%), Enterobacter sp. (8.4%), Proteus sp. (4.4%), Citrobacter (4%) and Pseudomonas sp. (2%). The most antibiotic resistance was shown to tetracycline (95.16%), nalidixic acid (89.78%) and gentamycin (73.20%) antibiotics. Among all the strains tested, 35 isolates (11.75%) expressed ESBL activity. The prevalence of TEM and SHV positivity among these isolates was 34.29%, followed by TEM (31.43%), TEM and SHV negativity (20.0%) and SHV (14.29%), respectively. CONCLUSIONS: Regular monitoring of antimicrobial drug resistance seems necessary to improve our guidelines in the use of the empirical antibiotic therapy.201424943757
146820.9999Phenotypic and Molecular Characterization of Multidrug Resistant Klebsiella pneumoniae Isolated from Different Clinical Sources in Al-Najaf Province-Iraq. BACKGROUND AND OBJECTIVE: Burns infections and urinary tract infections are the most important prevalent diseases in Asian countries, such as Iraq. Klebsiella pneumoniae is one of the most important bacteria cause this type of infections especially in hospitals. Therefore, the aim of this study was to investigate the prevalence of multi-drug resistance K. pneumoniae and extended-spectrum beta-lactamases producing K. pneumoniae isolates from inpatients with urinary tract infection and burns infections in Al-Kufa hospital in Al-Najaf province, Iraq. MATERIALS AND METHODS: A total of 285 clinical samples were collected from in-patients infected with urinary tract infection (141 urine samples) and burns infections (144 burns swabs). Fourteen different antibiotics were used by disc diffusion method and 13 antimicrobials resistance genes were used by PCR technique. RESULTS: A total of 43 K. pneumoniae strains were isolated. The highest resistance rate was observed for amoxicillin 25 μg and amoxicillin+clavulanic acid 20+10 μg (97.67%) while the lowest resistance rate was observed for imipenem 10 μg (9.30%). The most common resistance associated-genes were blaSHV (86.04%) and at lower prevalence were IMP (9.30%). CONCLUSION: Klebsiella pneumoniae strains isolated from burns infections were more virulent than those isolated from urinary tract infections.201729023034
146930.9999Investigation of Bacterial Infections and Antibiotic Resistance Patterns Among Clinical Isolates in the Center of Iran. Introduction: Bacterial infection is a considerable problem in hospitals. Thus, this study was executed to appraise the rampancy of bacterial infections, antimicrobial susceptibility patterns, and molecular characterization of isolates among patients in Bafgh Hospital in Yazd, Iran, in 2020. Methods: In the current study, we surveyed 103 isolates of 400 clinical specimens from early March 2020 to September 2020 in Bafgh Hospital. We assessed phenotypic traits and antibiotic resistance with standard microbiological methods. Phenotypic methods were also performed to identify extended-spectrum beta-lactamases (ESBLs) in Gram-negative bacilli, inducible clindamycin resistance, and methicillin resistance in Staphylococcus according to CLSI guidelines. Molecular identification of isolates was done by conventional PCR 16S rRNA gene sequencing. Furthermore, we investigated the prevalence of resistant genes including bla (TEM), bla (PER-2), bla (CTX-M), bla (SHV), and bla (VEB-1) in Gram-negative bacteria and the mecA gene in staphylococcal species. Results: From 400 different clinical specimens, 103 isolates of Gram-positive and Gram-negative bacteria were isolated. Based on phenotypic and molecular methods, most common isolates were Escherichia coli (53 isolates), followed by Klebsiella spp. (18 isolates), and Staphylococcus aureus (16 isolates). The highest resistance was found in Gram-positive bacteria to erythromycin (66.67%) and penicillin (55.56%), while considering Gram-negative bacteria, the most resistant was cefixime (49.41%) and trimethoprim-sulfamethoxazole (47.05%). In addition, out of 16 S. aureus isolates, 62.5% and 17.65% were resistant to methicillin and clindamycin, respectively. Among 83 Gram-negative isolates, 22.89% were ESBL-positive. The prevalence of bla (SHV), bla (PER2), bla (TEM), bla (CTX-M), and bla (VEB-1) genes was 78.31%, 59.03%, 40.96%, 30.12%, and 0%, respectively. Conclusions: The outbreak of bacterial infections is relatively high in hospitals. Recognizing risk agents for bacterial infections and restricting the administration of multidrug-resistant antibiotics is a substantial measure that must be taken to prevent patient mortality.202540822981
217640.9999Evaluation of phenotypic and genotypic patterns of aminoglycoside resistance in the Gram-negative bacteria isolates collected from pediatric and general hospitals. The purpose of the current study was to evaluate the phenotypic and genotypic patterns of aminoglycoside resistance among the Gram-negative bacteria (GNB) isolates collected from pediatric and general hospitals in Iran. A total of 836 clinical isolates of GNB were collected from pediatric and general hospitals from January 2018 to the end of December 2019. The identification of bacterial isolates was performed by conventional biochemical tests. Susceptibility to aminoglycosides was evaluated by the disk diffusion method (DDM). The frequency of genes encoding aminoglycoside-modifying enzymes (AMEs) was screened by the PCR method via specific primers. Among all pediatric and general hospitals, the predominant GNB isolates were Acinetobacter spp. (n = 327) and Escherichia coli (n = 144). However, E. coli (n = 20/144; 13.9%) had the highest frequency in clinical samples collected from pediatrics. The DDM results showed that 64.3% of all GNB were resistant to all of the tested aminoglycoside agents. Acinetobacter spp. and Klebsiella pneumoniae with 93.6%, Pseudomonas aeruginosa with 93.4%, and Enterobacter spp. with 86.5% exhibited very high levels of resistance to gentamicin. Amikacin was the most effective antibiotic against E. coli isolates. In total, the results showed that the aac (6')-Ib gene with 59% had the highest frequency among genes encoding AMEs in GNB. The frequency of the surveyed aminoglycoside-modifying enzyme genes among all GNB was found as follows: aph (3')-VIe (48.7%), aadA15 (38.6%), aph (3')-Ia (31.3%), aph (3')-II (14.4%), and aph (6) (2.6%). The obtained data demonstrated that the phenotypic and genotypic aminoglycoside resistance among GNB was quite high and it is possible that the resistance genes may frequently spread among clinical isolates of GNB.202235119565
147050.9998Occurrence of extended-spectrum beta-lactamase (ESBL) in Gram-negative bacterial isolates from high vaginal swabs in a teaching hospital in Nigeria. OBJECTIVE: This study aims to determine the antibiotic susceptibility pattern and incidence of extended-spectrum beta-lactamase (ESBL) genes in isolates from vaginal discharge of symptomatic female patients. STUDY DESIGN: Cross-sectional study. PARTICIPANT: Pregnant and non-pregnant women between 18 and 50 years who presented with genital tract infection and had not received antimicrobial therapy in the two weeks prior. INTERVENTIONS: The study determines the prevalence of bacteria in the vaginal discharge of female patients of reproductive age, the antibiotic susceptibility pattern of the isolates and the incidence of ESBL genes in Gram-negative isolates from the sample. RESULTS: Bacteria were found in 74 (80.4%) and 88 (81.5%) samples from pregnant and non-pregnant women, respectively. Escherichia coli (n=48; 27.6%) occurred mostly in the samples, followed by Staphylococcus aureus (n=38; 21.8%). Among the Gram-positive, all Streptococcus. pneumoniae and Staphylococcus. epidermidis were sensitive to imipenem and meropenem (100%). S. aureus was the most resistant to cephalexin (71.4%), cefoxitin (60.5%) carbenicillin (60.5%) and ceftazidime (57.9%). Escherichia coli was highly resistant to carbenicillin (85.4%), cephalexin (64.6%) and cefotaxime (56.3%). Klebsiella pneumoniae showed the highest level of imipenem resistance (31.6%), followed by E. coli (29.2%). The prevalence of ESBL genes in Gram-negative isolates from pregnant women was 25.6% (11/43), compared to 30.3% (23/76) in non-pregnant women. Both bla (TEM) and bla (SHV) had the highest occurrence of 14.3% (17/119) of the isolates. CONCLUSION: This study found Gram-negative pathogens isolated from the vaginal tract of both pregnant and non-pregnant women to be resistant to multiple antibiotics and have ESBL genes. FUNDING: None declared.202440585516
211160.9998Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients.201931819545
112470.9998Molecular Identification of Extended-Spectrum β-lactamase and Integron Genes in Klebsiella Pneumonia. INTRODUCTION: Infections caused by Gram negative bacteria, producing extended-spectrum β-lactamase, including Klebsiella pneumoniae are increasing all over the world with high morbidity and mortality. The aim of the present study was determined antimicrobial profile susceptibility and the prevalence of antibiotic resistance genes by multiplex PCR. METHODS: In the present study, we obtained one-hundred isolates of K. pneumoniae from different clinical samples. The antibiotic susceptibility testing was done in thirteen antibiotic and, therefore, M-PCRs were conducted using the DNA amplification for detection of ESBLs (blaTEM, blaCTX-M, blaSHV) and int (I, II, III) genes. RESULTS: The results of resistance to amoxicillin/clavulanate, ciprofloxacin, amikacin, trimethoprim-sulfamethoxazole, cefotaxime, ampicillin, aztreonam, imipenem, gentamicin, ceftazidime, Cefepime, ceftriaxone and levofloxacin were obtained 37%, 37%, 93%, 84%, 52%, 87%, 59%, 8%, 24%, 67%, 52%, 43% and 26%, respectively. The frequency of the extended-spectrum β-lactamase K. pneumoniae was obtained 37%. The prevalence of resistance genes of ESBLs in the M-PCR method showed that the blaTEM, blaCTX and blaSHV were 38%, 24% and 19%, respectively, however, only 8 (8%) out of 100 isolates were found to have positive outcomes for the existence of class 1 integrons and there were no detected class 2 or class 3 integrons. CONCLUSIONS: Our results recommend the likely co-carriage of some ESBLs genes and antibiotic resistance integrons on the same plasmids harboring the MDR genes.201627935927
112980.9998Genotypic and phenotypic profiles of antibiotic-resistant bacteria isolated from hospitalised patients in Bangladesh. OBJECTIVES: Characterisation of resistance phenotype and genotype is crucial to understanding the burden and transmission of antimicrobial resistance (AMR). This study aims to determine the spectrum of AMR and associated genes encoding aminoglycoside, macrolide and β-lactam classes of antimicrobials in bacteria isolated from hospitalised patients in Bangladesh. METHODS: 430 bacterial isolates from patients with respiratory, intestinal, wound infections and typhoid fever, presenting to clinical care from 2015 to 2019, were examined. They included Escherichia coli (n = 85); Staphylococcus aureus (n = 84); Salmonella typhi (n = 82); Klebsiella pneumoniae (n = 42); Streptococcus pneumoniae (n = 36); coagulase-negative staphylococci (n = 28); Enterococcus faecalis (n = 27); Pseudomonas aeruginosa (n = 26); and Acinetobacter baumannii (n = 20). Reconfirmation of these clinical isolates and antimicrobial susceptibility tests was performed. PCR amplification using resistance gene-specific primers was done, and the amplified products were confirmed by Sanger sequencing. RESULTS: 53% of isolates were multidrug-resistant (MDR), including 97% of Escherichia coli. There was a year-wise gradual increase in MDR isolates from 2015 to 2018, and there was an almost twofold increase in the number of MDR strains isolated in 2019 (P = 0.00058). Among the 5 extended-spectrum β-lactamases investigated, CTX-M-1 was the most prevalent (63%) followed by NDM-1 (22%); Escherichia coli was the major reservoir of these genes. The ermB (55%) and aac(6')-Ib (35%) genes were the most frequently detected macrolide and aminoglycoside resistance genes, respectively. CONCLUSION: MDR pathogens are highly prevalent in hospital settings of Bangladesh.202133838068
217490.9998Frequency of Beta-Lactamase Antibiotic Resistance Genes in Escherichia Coli and Klebsiella pneumoniae. BACKGROUND: This cross-sectional study was performed on isolates of Klebsiella pneumoniae, and E.coli from clinical specimens of patients admitted to Sayyad Shirazi Hospital by census sampling method in 2019. Antibiogram testing was performed using the disk diffusion method as defined by the Clinical and Laboratory Standards Organization for performing this test. Finally, the abundance of genes was evaluated by PCR using specific primers. Frequency, percentage, mean±SD were used to describe the data. Chi-square and Fisher's exact tests were used to compare the presence and absence of the studied genes alone and in the presence of each other. RESULT: This study was performed on 130 positive samples, isolated from 32 (24.6%) males and 98 (65.4%) females with a mean age of 43.78 ± 21.72. From the total number of 130 isolates, 84 (64.6%) consisted of E.coli, and 46 (35.4%) were Klebsiella. Most of the cultures were urine and vaginal (61.5%). The highest antibiotic resistance in isolates was cephalexin and cefazolin (67.9% in E.coli & 63% in Klebsiella). Colistin was identified as the most effective antibiotic (100%) in both. AMPC extendedspectrum β-lactamase genes were present in 40 (30.8%) isolates. The highest frequency about the gene pattern of AMPC positive β-lactamase bacteria was correlated to DHA, FOX, and CIT genes, while none of the samples contained the MOX β-lactamase gene. E.coli and Klebsiella beta-lactamase-producing AMPC isolates were also significantly correlated with antibiotic resistance to the cephalosporin class (P <0.05). CONCLUSION: This study indicated a high percentage of resistance to third and fourth generation cephalosporins. Hence, careful antibiogram tests and prevention of antibiotic overuse in infections caused by AMPC-producing organisms and screening of clinical samples for the resistance mentioned above genes and providing effective strategies to help diagnose and apply appropriate treatments and change antibiotic usage strategies can partially prevent the transmission of this resistance.202134483624
1127100.9998Extended spectrum beta-lactamase and aminoglycoside modifying enzyme genes in multi drug resistant Gram-negative bacteria: A snapshot from a tertiary care centre. BACKGROUND: This study aims to enhance the existing knowledge of the prevalence of genes responsible for beta-lactam resistance and aminoglycoside resistance in gram negative organisms by molecular detection of extended spectrum beta-lactamase and aminoglycoside modifying enzymes in multidrug-resistant gram-negative bacteria. METHODS: Out of 864 gram-negative isolates, 710 were phenotypically identified as multidrug-resistant by antibiotic susceptibility testing. From the above isolates, 102 representative isolates as per sample size calculated were selected for further molecular studies. The presence of blaTEM, blaCTX-M blaSHV, and five AmpC genes was detected by real-time polymerase chain reaction (PCR). Conventional PCR was performed to detect seven aminoglycoside modifying enzyme genes namely aac(6')-Ib, aac(6')-Ic, aac(3)-Ia, aac(3)-Ib, aac(3)-IIa, ant(2'')-Ia, and ant(4'')-IIa. RESULTS: Most common multidrug-resistant isolate was Klebsiella pneumoniae (35%) followed by Escherichia coli (30%). Among the 102 selected isolates all harboured blaTEM gene, 71 (69.6%) harboured blaCTX-M gene and 48 (47%) blaSHV gene. Among the selected isolates 60% showed the presence of AmpC genes. Most common aminoglycosie modifying enzyme gene was AAC 6' Ib (51%) followed by ANT 2" Ia (36%). CONCLUSION: This study suggests a wider use of molecular methods using specific PCR amplification of resistance genes. It would be beneficial to perform the molecular identification of antimicrobial resistance genes to effectively monitor and manage antibiotic resistance, administer appropriate antimicrobial medication, practice antimicrobial stewardship and improve hospital infection control procedures.202439734850
1446110.9998One-Day Prevalence of Extended-Spectrum β-Lactamase (ESBL) and Carbapenemase-Producing Bacteria in Fecal Samples from Surgical Patients: A Concerning Trend of Antibiotic Resistance. PURPOSE: Extended-spectrum β-lactamase (ESBL) and carbapenemase producing bacteria are of increasing concern due to their multidrug resistance and infection potential. This study determines the one-day prevalence of faecal carriage of ESBL and carbapenemase producing Gram-negative bacilli. METHODS: Fecal samples were collected from 30 post-surgery patients (hospitalized for at least 48 hours) in each of the four hospitals involved in the study and were analyzed for antibiotic-resistant bacteria. Identification was done using Maldi Tof mass spectrometry, and antibiotic susceptibility was tested using disk diffusion and specialized tests for ESBL (double disk synergy technique) and carbapenem (NG-TEST CARBA 5) resistance detection. PCR was conducted on isolates to detect betalactam resistance genes, carbapenemase genes and quinolone resistance genes. FINDINGS: Out of the 120 patients enrolled, 38.33% (n = 46) and 49.16.33% (n = 59) were found to carry ESBL- and carbapenemase-producing bacteria, respectively, in their fecal samples. Among the isolates, 51.08% (n = 47) exhibited ESBL production, with Escherichia coli (44.56%) being the most common species. The identification of bacteria with resistance to carbapenems showed a predominance of the species Escherichia coli (44.45%) followed by the species Klebsiella pneumoniae (16.06%) and Acinetobacter baumanii (13.58%). The study of the association of variables shows a high degree of association (p < 0.05) for the factors independent walking and use of a wheelchair with ESBL production. The most frequently detected genes among ESBL producing bacteria were bla(CTXM-1) (91.49%), qnrB (70.21%) and qnrs (63.82%). bla(NDM) (54.68%) was the most detected carbapenemase genes among carbapenemase producing isolates. CONCLUSION: This study demonstrates, for the first time, a significant prevalence of ESBL and carbapenemase producing gram-negative bacteria among surgical patients in Benin, with multiple resistance genes detected. Findings should be interpreted in light of the cross-sectional design and >48-hour hospitalization criterion.202540635768
1460120.9998Emergence of Multidrug Resistance and Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated from Patients in Shiraz, Iran. BACKGROUND: Metallo-beta-lactamase (MβL) enzymes production is one of the most important resistance mechanisms against carbapenems in some bacteria including Acinetobacter baumannii. AIMS: This study was aimed to determine the antimicrobial susceptibility and the prevalence of MβL among carbapenem-resistant isolates of A. baumannii. MATERIALS AND METHODS: In this cross-sectional study from October 2012 to April 2013, 98 isolates were identified as A. baumannii using Microgen™ kits and confirmed by molecular method. These isolates were tested for antimicrobial susceptibilities by disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. Carbapenem-resistant isolates were further detected phenotypically by MβL minimal inhibitory concentration (MIC)-test strips, and subsequently positive MβL isolates were confirmed by polymerase chain reaction (PCR). RESULTS: Overall, 98% (96/98) of A. baumannii isolates were detected as carbapenem-resistant by MIC test. Highest sensitivity to the tested antibiotic with 42.9% (42/98) was observed to colistin. Of 96 carbapenem-resistant isolates, 43 were phenotypically positive for MβL; out of 43 isolates, 37 were confirmed for the presence of MβL genes by PCR. CONCLUSION: The frequency of drug resistance among the clinical samples of A. baumannii isolated in our study against most of the antibiotics was very high. Moreover, all MβL producing isolates were multidrug resistance. Therefore, systematic surveillance to detect MβL producing bacteria and rational prescription and use of carbapenems could be helpful to prevent the spread of carbapenem resistance.201627398247
1445130.9998Rapid Detection of Beta-Lactamases Genes among Enterobacterales in Urine Samples by Using Real-Time PCR. The objective of this study was to develop and evaluate newly improved, rapid, and reliable strategies based on real-time PCR to detect the most frequent beta-lactamase genes recorded in clinical Enterobacterales strains, particularly in Tunisia (bla(SHV12) , bla(TEM) , bla(CTX-M-15) , bla(CTX-M-9) , bla(CMY-2) , bla(OXA-48) , bla(NDM-1) , and bla(IMP) ) directly from the urine. Following the design of primers for a specific gene pool and their validation, a series of real-time PCR reactions were performed to detect these genes in 78 urine samples showing high antibiotic resistance after culture and susceptibility testing. Assays were applied to DNA extracted from cultured bacteria and collected urine. qPCR results were compared for phenotypic sensitivity. qPCR results were similar regardless of whether cultures or urine were collected, with 100% sensitivity and specificity. Out of 78 multiresistant uropathogenic, strains of Enterobacterales (44 E. coli and 34 K. pneumoniae strains) show the presence of the genes of the bla group. In all, 44% E. coli and 36 of K. pneumoniae clinical strains harbored the bla group genes with 36.4%, 52.3%, 70.5%, 68.2%, 18.2%, and 4.5% of E. coli having bla(SHV-12) , bla(TEM) , bla(CTX-M 15) , bla(CTX-M-9) , bla(CMY-2) , and bla(OXA-48) group genes, respectively, whereas 52.9%, 67.6%, 76.5%, 35.5%, 61.8, 14.7, and 1.28% of K. pneumoniae had bla(SHV-12) , bla(TEM) , bla(CTX-M 15) , bla(CTX-M-9) , bla(CMY-2) , bla(OXA-48) , and bla(NDM-1) group genes, respectively. The time required to have a result was 3 hours by real-time PCR and 2 to 3 days by the conventional method. Resistance genes of Gram-negative bacteria in urine, as well as cultured bacteria, were rapidly detected using qPCR techniques. These techniques will be used as rapid and cost-effective methods in the laboratory. Therefore, this test could be a good candidate to create real-time PCR kits for the detection of resistance genes directly from urine in clinical or epidemiological settings.202235978630
923140.9998Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention.202540066541
1471150.9998Antimicrobial Resistance Pattern and Genetic Characteristics of ESBL and Carbapenemase-producing Escherichia coli at a Tertiary Care Hospital in Bangladesh. Uropathogenic Escherichia coli is frequently resistant to different antibiotic leading to a critical condition of the patients. The purpose of the present study was to see antibiotic resistance pattern and genetic characteristics of ESBL and Carbapenemase-producing Escherichia coli. This cross sectional study was conducted in the Department of Microbiology at Mymensingh Medical College, Mymensingh, Bangladesh from October 2014 to December 2015. Patients presented with clinically diagnosed urinary tract infection at any age with both sexes who attended in the OPD of Mymensingh Medical College Hospital and the Doctors Diagnostic Centre in Mymensingh, Bangladesh was selected as study population. Non duplicate clinical isolates from urine were collected in full aseptic precaution for culture of bacteria. Escherichia coli were confirmed by PCR Stargetingadk. Antimicrobial susceptibility was measured by broth microdilution test. Minimum inhibitory concentrations against 18 antimicrobial agents were measured. Beta-lactamase genes were detected by multiplex PCR. For all the isolates showing resistance to imipenem and/or meropenem, presence of carbapenemase genes was confirmed by multiplex/uniplex PCR using primers. A total of 233 non-duplicate clinical isolates of Escherichia coli were collected from patients of which dominant phylogenetic group was B2 which was 78(33.5%) isolates of which 71 isolates were B2a and 7 isolates were B2b. Furthermore, Group A was in 29.6% isolates and Group D was in 26.6% isolates. E. coli showed significantly higher resistance rates to piperacillin, cephalosporins, and some other antimicrobials. Meropenem-resistance was detected in 8.2% of E. coli. The detection rate of blaTEM was 41.6% in E. coli. Carbapenemase genes were detected in 9(3.9%) isolates of E. coli and identified as genes encoding NDM-1, -5, and 7 and OXA-181. All the blaNDM-positive E. coli isolates carried also blaCTX-M-15, except for a group B1 isolate. E. coli is significantly higher resistance rates to piperacillin, cephalosporins, and some other antimicrobials and possesses different ESBL and carbapenemase genes.202031915333
1444160.9998The Prevalence of bla VIM, bla KPC, bla NDM, bla IMP, bla SHV, bla TEM, bla CTX-M, and class I and II integrons Genes in Aeromonas hydrophila Isolated from Clinical Specimens of Qom, Iran. BACKGROUND: Aeromonas hydrophila is an opportunistic gram-negative bacillus that causes diseases such as gastroenteritis, muscle infections, soft tissue, sepsis, and skin diseases in humans. Today, the prevalence of antibiotic resistance in bacteria has led to treatment failure and prolonged treatment. Therefore, the aim of this study was to evaluate the level of antibiotic resistance in isolates carrying bla VIM, bla KPC, bla NDM, bla IMP, bla SHV, bla TEM, bla CTX-M and class I and II integrons in Aeromonas hydrophila. METHODS: In this cross-sectional study, Aeromonas hydrophila were collected from different clinical specimens in Hazrat Masoumeh Hospital, Qom Province, Iran, from 2018 to 2020. The collected isolates were identified by standard biochemical tests. Then, using specific primers bla VIM, bla KPC, bla NDM, bla IMP, bla SHV, bla TEM, bla CTX-M genes, and class I and II integrons were evaluated by PCR method. Then, data were analyzed using SPSS software and chi-squared tests, and the significance level was determined as p ≤ 0.05. RESULTS: During the sample collection period, 100 Aeromonas hydrophila were collected. Based on the results of the antibiotic resistance pattern, the highest and lowest rate of antibiotic resistance to ampicillin (92%) and azithromycin (4%) were determined for both. Among the 100 isolates, 60 isolates produced broad-spectrum beta-lactamase (ESBL) and 50 isolates produced carbapenemase. Among the studied beta-lactamase genes, the highest and lowest frequencies were related to bla CTX-M (58%) and bla TEM (1%), respectively. The frequency of class I and II integron genes was 27% and 15%, respectively. CONCLUSIONS: The results of the study of antibiotic resistance, beta-lactamase, and carbapenemase genes showed high resistance in Aeromonas hydrophila, which raises concerns with regard to controlling infection in medical centers. Also, the study of antibiotic resistance in the presence of beta-lactamase genes showed that there was only a significant relationship between the presence of bla CTX-M gene and resistance to imipenem (p = 0.037).202336649515
997170.9998Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted.201627221683
1125180.9998Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal. AIM: The aim of this work was to detect antibiotic resistance in Gram-negative bacteria isolated from subclinical mastitis in cattle in West Bengal. MATERIALS AND METHODS: The milk samples were collected from the cattle suffering with subclinical mastitis in West Bengal. The milk samples were inoculated into the nutrient broth and incubated at 37°C. On the next day, the growth was transferred into nutrient agar and MacConkey agar. All the pure cultures obtained from nutrient agar slant were subjected to Gram-staining and standard biochemical tests. All the bacterial isolates were tested in vitro for their sensitivity to different antibiotics commonly used in veterinary practices. All Gram-negative isolates including positive control were subjected to polymerase chain reaction (PCR) for detection of bla(CTX-M), bla(TEM), bla(SHV), bla(VIM), tetA, tetB, tetC, and tetM genes considered for extended-spectrum β-lactamase (ESBL), metallo-β-lactamase, and tetracycline resistance. RESULTS: In total, 50 Gram-negative organisms (Escherichia coli, Proteus, Pseudomonas, Klebsiella, and Enterobacter) were isolated from milk samples of subclinical mastitis infected cattle. Among these Gram-negative isolates, 48% (24/50) were found either ESBL producing or tetracycline resistant. Out of total 50 Gram-negative isolates, bla(CTX-M) was detected in 18 (36%) isolates, and 6 (12%) harbored bla(TEM) genes in PCR. None of the isolates carried bla(SHV) genes. Further, in this study, 5 (10%) isolates harbored tet(A) gene, and 8 (16%) isolates carried tet(B) gene. No tet(C) gene was detected from the isolates. CONCLUSION: This study showed emerging trend of antibiotic-resistant Gram-negative bacteria associated with subclinical mastitis in cattle in West Bengal, India.201728620255
2173190.9998Antimicrobial susceptibility and integrons detection among extended-spectrum β-lactamase producing Enterobacteriaceae isolates in patients with urinary tract infection. BACKGROUND: Integrons are bacterial mobile genetic components responsible for mediating the antibiotic resistance process by carrying and spreading antimicrobial resistance genes among bacteria through horizontal gene transfer. OBJECTIVES: This cross-sectional hospital-based study aimed to find the prevalence of antibiotic resistance patterns and to detect integrons classes (I, II, and III) among bacterial isolates in patients with urinary tract infections (UTI) in Sulaimani, Iraq. PATIENTS AND METHODS: Mid-stream urine samples (no. = 400) were collected from patients with UTI at three different Hospitals from Sulaimani, Iraq, between September 2021 to January 2022. Urine samples were cultured on various agar media, and grown bacteria were isolated. Antibiotic susceptibility test (AST) and an extended-spectrum β-lactamase (ESBL) screen were done for isolated bacteria. Then, integrons classes were screened using conventional PCR with gene sequencing and uploaded to the National Center for Biotechnology Information (NCBI). RESULTS: The frequency rate of Enterobacteriaceae was 67.03% among positive urine cultures. E. coli (no. = 86) and Klebsiella pneumoniae (no. = 32) isolates were identified. The most sensitive antibiotics were the carbapenem group (85.3%) and nitrofurantoin (NFN) (64.2%), while the most resistant antibiotics were nalidixic acid (NA) and 3(rd) generation cephalosporin. The occurrence rate of ESBL was 56.6% with a predominance of class I integron (54.2%), then class II (15.8%) and no positive record for class III integron were observed. CONCLUSION: Most bacterial isolates from patients with UTI produced class I and II integrons genes with favourable ESBL properties.202337283901