Identification of colistin resistance and its bactericidal activity against uropathogenic gram negative bacteria from Hayatabad Medical Complex Peshawar. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
146301.0000Identification of colistin resistance and its bactericidal activity against uropathogenic gram negative bacteria from Hayatabad Medical Complex Peshawar. OBJECTIVES: Identification of colistin resistance and its bactericidal activity against gram-negative bacteria isolated from urinary tract infection (UTI) patients. METHODS: This 6-month cross sectional study was conducted in Hayatabad Medical Complex Peshawar from January 2019-June2019.. A total of 2000 urine samples were collected and transported to the Health Research Institute, NIH, Research Centre, Khyber Medical College Peshawar. Samples were streaked on different media and incubated at 37C° for 24hrs. Gram negative bacteria were identified through gram staining and Analytical Profile Index (API) 10s. Gram negative bacteria were subjected under antibiotic sensitivity profile through Kirby-Bauer disc diffusion method. Colistin resistance was found through broth microdilution method. Minimum bactericidal activity was performed to find out the lowest concentration of colistin required to kill gram-negative bacteria. RESULTS: A total of 241(12.05%) uropathogenic gram negative bacteria were isolated and identified from 2000 urine samples while excluding intrinsically resistant bacteria. After broth microdilution, colistin resistance was found in 48(19.9%) Escherichia coli, 4(1.6%) Klebsiella pneumoniae and 3(1.3%) Pseudomonas aeruginosa respectively. Colistin resistant Escherichia coli were resistant to 77% Cephalosporins, 81% to Fluoroquinolones and 70% to Penicillin combinations. Colistin resistant Klebsiella pneumoniae were 100% resistant to Cephalosporins, Penicillin combinations and Fluoroquinolones while 75% were resistant to Carbapenems and Monobactams. Pseudomonas aeruginosa isolates were sensitive to all used antibiotics. CONCLUSION: E.coli was the mainly responsible uropathogen causing UTIs. Colistin resistance was found in 22.8% gram negative uropathogens. Klebsiella pneumoniae isolates exhibited highest resistance to antibiotics.202235634614
146810.9997Phenotypic and Molecular Characterization of Multidrug Resistant Klebsiella pneumoniae Isolated from Different Clinical Sources in Al-Najaf Province-Iraq. BACKGROUND AND OBJECTIVE: Burns infections and urinary tract infections are the most important prevalent diseases in Asian countries, such as Iraq. Klebsiella pneumoniae is one of the most important bacteria cause this type of infections especially in hospitals. Therefore, the aim of this study was to investigate the prevalence of multi-drug resistance K. pneumoniae and extended-spectrum beta-lactamases producing K. pneumoniae isolates from inpatients with urinary tract infection and burns infections in Al-Kufa hospital in Al-Najaf province, Iraq. MATERIALS AND METHODS: A total of 285 clinical samples were collected from in-patients infected with urinary tract infection (141 urine samples) and burns infections (144 burns swabs). Fourteen different antibiotics were used by disc diffusion method and 13 antimicrobials resistance genes were used by PCR technique. RESULTS: A total of 43 K. pneumoniae strains were isolated. The highest resistance rate was observed for amoxicillin 25 μg and amoxicillin+clavulanic acid 20+10 μg (97.67%) while the lowest resistance rate was observed for imipenem 10 μg (9.30%). The most common resistance associated-genes were blaSHV (86.04%) and at lower prevalence were IMP (9.30%). CONCLUSION: Klebsiella pneumoniae strains isolated from burns infections were more virulent than those isolated from urinary tract infections.201729023034
112820.9997Molecular detection of ESBLs production and antibiotic resistance patterns in Gram negative bacilli isolated from urinary tract infections. BACKGROUND: β-lactam resistance is more prevalent in Gram negative bacterial isolates worldwide, particularly in developing countries. In order to provide data relating to antibiotic therapy and resistance control, routine monitoring of corresponding antibiotic resistance genes is necessary. AIMS: The aim of this study was the characterization of β-lactam resistance genes and its plasmid profile in bacteria isolated from urinary tract infection samples. MATERIALS AND METHODS: In this study, 298 Gram negative bacteria isolated from 6739 urine specimens were identified by biochemical standard tests. Antimicrobial susceptibility testing was performed by the disk diffusion method. Extended-spectrum β-lactamase (ESBL)-producing strains were also detected by the double-disk synergy test. The presence of blaTEM and blaSHV genes in the strains studied was ascertained by polymerase chain reaction. RESULTS: Of all Gram negative bacteria, Escherichia coli (69.1%) was the most common strain, followed by Klebsiella sp. (12.1%), Enterobacter sp. (8.4%), Proteus sp. (4.4%), Citrobacter (4%) and Pseudomonas sp. (2%). The most antibiotic resistance was shown to tetracycline (95.16%), nalidixic acid (89.78%) and gentamycin (73.20%) antibiotics. Among all the strains tested, 35 isolates (11.75%) expressed ESBL activity. The prevalence of TEM and SHV positivity among these isolates was 34.29%, followed by TEM (31.43%), TEM and SHV negativity (20.0%) and SHV (14.29%), respectively. CONCLUSIONS: Regular monitoring of antimicrobial drug resistance seems necessary to improve our guidelines in the use of the empirical antibiotic therapy.201424943757
146730.9997Detection of bla (CTX-M15) and bla (OXA-48) genes in Gram-negative isolates from neonatal sepsis in central of Iran. BACKGROUND AND OBJECTIVES: The aim of this study was to determine the prevalence of neonatal sepsis with a focus on antibiotic resistance and the frequency of the bla (CTX-M-15) and bla (OXA-48) genes in Gram-negative isolates. MATERIALS AND METHODS: A total of 108 Umbilical Cord Blood (UCB) and 153 peripheral blood samples were cultured via BACTEC from May 2017 to June 2018. The bacterial isolates were identified using phenotypic and genotypic analyses. The antibiotic susceptibility profile of the isolates was determined by disk diffusion. PCR was used to determine the frequency of β-lactamase genes. RESULTS: Among the 153 infants, 21 (13.7%) proved positive for sepsis. Escherichia coli, Staphylococcus epidermidis and Klebsiella pneumoniae were the most frequent isolates in the peripheral blood cultures. E. coli and Stenotrophomonas maltophilia were isolated from two UCB cultures. The highest resistance among the Gram-positive strains was to cefixime, ceftriaxone, cefotaxime and clindamycin. In the Gram-negative bacteria the highest rates of resistance were to ampicillin (91.7%). The frequency of bla (OXA-48) and bla (CTX-M-15) genes was 25% and 50%, respectively. CONCLUSION: The high antibiotic resistance among the isolates reveals the importance of monitoring antibiotic consumption and improving control standards in the health care system, especially in neonatal wards.201931719958
146040.9997Emergence of Multidrug Resistance and Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated from Patients in Shiraz, Iran. BACKGROUND: Metallo-beta-lactamase (MβL) enzymes production is one of the most important resistance mechanisms against carbapenems in some bacteria including Acinetobacter baumannii. AIMS: This study was aimed to determine the antimicrobial susceptibility and the prevalence of MβL among carbapenem-resistant isolates of A. baumannii. MATERIALS AND METHODS: In this cross-sectional study from October 2012 to April 2013, 98 isolates were identified as A. baumannii using Microgen™ kits and confirmed by molecular method. These isolates were tested for antimicrobial susceptibilities by disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. Carbapenem-resistant isolates were further detected phenotypically by MβL minimal inhibitory concentration (MIC)-test strips, and subsequently positive MβL isolates were confirmed by polymerase chain reaction (PCR). RESULTS: Overall, 98% (96/98) of A. baumannii isolates were detected as carbapenem-resistant by MIC test. Highest sensitivity to the tested antibiotic with 42.9% (42/98) was observed to colistin. Of 96 carbapenem-resistant isolates, 43 were phenotypically positive for MβL; out of 43 isolates, 37 were confirmed for the presence of MβL genes by PCR. CONCLUSION: The frequency of drug resistance among the clinical samples of A. baumannii isolated in our study against most of the antibiotics was very high. Moreover, all MβL producing isolates were multidrug resistance. Therefore, systematic surveillance to detect MβL producing bacteria and rational prescription and use of carbapenems could be helpful to prevent the spread of carbapenem resistance.201627398247
146150.9996Phenotypic and Genetic Characterization of Carbapenemase and ESBLs Producing Gram-negative Bacteria (GNB) Isolated from Patients with Cystic Fibrosis (CF) in Tehran Hospitals. BACKGROUND: Cystic Fibrosis (CF) is an autosomal recessive genetic disorder in white populations caused by mutation in a gene that encodes Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Since frequent respiratory tract infections are the major problem in patients with CF, obligation to identify the causative bacteria and determining their antibiotic resistance pattern is crucial. The purpose of this project was to detect Gram-negative bacteria (GNB) isolated from sputa of CF patients and to determine their antibiotic resistance pattern. MATERIALS AND METHODS: The sputum of 52 CF patients, treated as inpatients at hospitals in Tehran, was obtained between November 2011 and June 2012. Samples cultured in selective and non-selective media and GNB recognized by biochemical tests. Antimicrobial susceptibility testing to cephalosporins, aminoglycosides and carbapenems was performed by disk diffusion method and MICs of them were measured. For phenotypic detection of carbapenemase and ESBLs production, the Modified Hodge test, double disk synergy test and the combined disk methods were performed. Subsequently, the genes encoding the extended spectrum beta-lactamases (blaPER, blaCTX-M) and carbapenemases (blaIMP-1, blaGES, blaKPC, blaNDM, blaVIM-1, blaVIM-2, blaSPM, blaSIM) in Gram negative bacteria were targeted among the resistant isolates by using PCR. PFGE was used to determine any genetic relationship among the Pseudomonas aeruginosa isolated from these patients. RESULTS: Fifty five GNB were isolated from 52 sputum samples including Pseudomonas aeruginosa, Klebsiella ozaenae, Alcaligenes xylosoxidans, Achromobacter denitrificans, Klebsiella pneumonia and Stenotrophomonas maltophilia. The rates of resistance to different antibiotic were as follows: cefixime (%80), ceftriaxone (%43), ceftazidime (%45) and meropenem (%7). The prevalence of genes encoding the ESBLs and Carbapenemases among the the phenotypically positive strains were as follows: blaCTX-M (19), blaIMP-1 (2), blaVIM-1 (2) and blaVIM-2 (3) genes respectively. No other genes were detected. PFGE analysis revealed 8 genotypes. Six isolates had mutually 3 similar patterns. CONCLUSION: This study showed the existence of important ESBLs and carbapenemases genes among the GNB isolated from patients with CF. Continuous surveillance of ESBLs and Carbapenemases, also identification of their types, in bacteria isolated from these patients have an important clinical impact, since, it can often provide valuable information for effective infection control measures and for the choice of appropriate antimicrobial therapy.201424596716
212060.9996Antimicrobial Resistance Patterns of Gram-negative Bacteria in an Iranian Referral Pediatric Hospital: A Present Danger of New Delhi Metallo-β- lactamase. BACKGROUND: Antimicrobial resistance among gram-negative bacteria has been growing, particularly in developing countries, like Iran. The emergence and spread of carbapenem-resistance mechanisms is a major public health concern because no definite treatments have yet been established for this problem. This study aimed to evaluate antibiotic susceptibility of gram-negative bacteria, metallo-β-lactamases (MBLs) and carbapenemase-producing genes, including bla (NDM), bla (VIM), and bla (IMP) in patients referred to Children's Medical Center, Tehran, Iran. MATERIAL AND METHODS: In this cross-sectional study, a total of 944 gram-negative isolates were tested in the study, and antimicrobial susceptibility testing was performed. Moreover, MBL production of carbapenem-resistant isolates, as well as the presence of bla (NDM), bla (VIM), and bla (IMP), was investigated. RESULTS: The most common gram-negative isolated bacteria were Escherichia coli (489 samples, 52%), followed by Klebsiella pneumoniae (167 samples, 18%), Pseudomonas aeruginosa (101 samples, 11%), Enterobacter spp. (64 samples, 7%), Pseudomonas spp. (35 samples, 4%), Acinetobacter baumannii (18 samples, 2%), and Burkholderia cepacia (17 samples, 2%). Imipenemresistant was found in 75%, 61%, and 60% of Stenotrophomonas maltophilia, Enterobacter spp., and A. baumannii isolates, respectively. Moreover, the highest resistance to meropenem was observed in S. maltophilia, A. baumannii, P. aeruginosa, and B. cepacia (100%, 96%, 83%, and 61.5%, respectively). Double disk synergy test (DDST) results showed that 112 out of 255 carbapenem- resistant isolates (44%) were MBL-producing ones. The presence of the bla (NDM) gene was identified in 32 (29%) of MBL-producing isolates, 13 of which were K. pneumoniae, 7 P. aeruginosa, and 7 E. coli, 3 Enterobacter spp., and 2 Klebsiella spp., respectively. The presence of the bla (IMP) and bla (VIM) genes was detected in 2 (2%) and 1 (1%) of MBL-producing isolates. These genes were detected in only MBL-producing P. aeruginosa isolates. CONCLUSION: Our findings suggest the emergence of NDM-producing strains in our hospital, and bla NDM was the most frequently detected carbapenemase gene in MBL-producing P. aeruginosa, K. pneumoniae, and Klebsiella spp. Since such bacteria can easily spread among patients in the hospital, a strong infection control and prevention plan is highly recommended.202337106518
217670.9996Evaluation of phenotypic and genotypic patterns of aminoglycoside resistance in the Gram-negative bacteria isolates collected from pediatric and general hospitals. The purpose of the current study was to evaluate the phenotypic and genotypic patterns of aminoglycoside resistance among the Gram-negative bacteria (GNB) isolates collected from pediatric and general hospitals in Iran. A total of 836 clinical isolates of GNB were collected from pediatric and general hospitals from January 2018 to the end of December 2019. The identification of bacterial isolates was performed by conventional biochemical tests. Susceptibility to aminoglycosides was evaluated by the disk diffusion method (DDM). The frequency of genes encoding aminoglycoside-modifying enzymes (AMEs) was screened by the PCR method via specific primers. Among all pediatric and general hospitals, the predominant GNB isolates were Acinetobacter spp. (n = 327) and Escherichia coli (n = 144). However, E. coli (n = 20/144; 13.9%) had the highest frequency in clinical samples collected from pediatrics. The DDM results showed that 64.3% of all GNB were resistant to all of the tested aminoglycoside agents. Acinetobacter spp. and Klebsiella pneumoniae with 93.6%, Pseudomonas aeruginosa with 93.4%, and Enterobacter spp. with 86.5% exhibited very high levels of resistance to gentamicin. Amikacin was the most effective antibiotic against E. coli isolates. In total, the results showed that the aac (6')-Ib gene with 59% had the highest frequency among genes encoding AMEs in GNB. The frequency of the surveyed aminoglycoside-modifying enzyme genes among all GNB was found as follows: aph (3')-VIe (48.7%), aadA15 (38.6%), aph (3')-Ia (31.3%), aph (3')-II (14.4%), and aph (6) (2.6%). The obtained data demonstrated that the phenotypic and genotypic aminoglycoside resistance among GNB was quite high and it is possible that the resistance genes may frequently spread among clinical isolates of GNB.202235119565
146480.9996Detection of TEM and CTX-M genes from ciprofloxacin resistant Proteus mirabilis and Escherichia coli isolated on urinary tract infections (UTIs). The multidrug resistant Gram negative bacteria (MDRGNB) is an emerging burden and now represents a daily challenge for the management of antimicrobial therapy in healthcare settings. The present study was aimed to detect the prevalence of TEM and CTX-M type genes from GNB on urinary tract infection (UTIs). The ciprofloxacin resistant uropathogens were detected by HEXA UTI 5 disc diffusion method. The phenotypic detection of uropathogens producing extended spectrum beta lactamases (ESBLs) was confirmed by double disc combination test (DDCT) and phenotype confirmation test (PCT). The prevalence of TEM and CTX-M genes of uropathogens was identified by multiplex PCR analysis. The in vitro antimicrobial susceptibility of E. coli producing ESBL (26), 21 isolates of P. mirabilis, 17 P. aeruginosa, 14 K. pneumoniae and 6 Enterobacter sp. were detected. Based on the extension of the cephalosporin zone edge towards augmentin disc in the DDST method proved 84% of the isolates were ESBL positive. Similar results were obtained in phenotypic confirmatory test (PCT) by the increases of ≥5 mm zone of inhibition in the combination disc when compared with ceftazidime disc alone. The prevalence of TEM and CTX-M genes were determined from multidrug resistance uropathogens (MDU) respectively as 83%, 75%, 71%, 63%, 60%, 55%, 54%, 50%. The most prevalent (TEM + CTX-M) genes were also detected in ciprofloxacin resistant strains P. mirabilis BDUMS1 (KY617768) and E. coli BDUMS3 (KY617770). Due to the increase of ESBL genes in uropathogens, sustained supervision for using favorable antibiotics and decreasing the infection is essential.201829778819
145390.9996The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. PURPOSE: The occurrence of carbapenem- and colistin-resistance among Gram-negative bacteria is increasing worldwide. The aim of this study was to understand the distribution of carbapenem- and colistin-resistance in two areas in Tamil Nadu, India. METHODOLOGY: The clinical isolates (n=89) used in this study were collected from two diagnostic centres in Tamil Nadu, India. The bacterial isolates were screened for meropenem- and colistin-resistance. Further, resistance genes blaNDM-1, blaOXA-48-like, blaIMP, blaVIM, blaKPC, mcr-1 and mcr-2 and integrons were studied. The synergistic effect of meropenem in combination with colistin was assessed. RESULTS: A total of 89 bacterial isolates were studied which included Escherichia coli (n=43), Klebsiella pneumoniae (n=18), Pseudomonas aeruginosa (n=10), Enterobacter cloacae (n=6), Acinetobacter baumannii (n=5), Klebsiella oxytoca (n=4), Proteus mirabilis (n=2) and Salmonella paratyphi (n=1). MIC testing showed that 58/89 (65 %) and 29/89 (32 %) isolates were resistant to meropenem and colistin, respectively, whereas 27/89 (30 %) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, K. oxytoca, Pseudomonas aeruginosa, and Enterobacter cloacae isolates were blaNDM-1-positive (n=20). Some strains of Escherichia coli, K. pneumoniae and K. oxytoca were blaOXA-181-positive (n=4). Class 1, 2 and 3 integrons were found in 24, 20 and 3 isolates, respectively. Nine NDM-1-positive Escherichia coli strains could transfer carbapenem resistance via plasmids to susceptible Escherichia coli AB1157. Meropenem and colistin showed synergy in 10/20 (50 %) isolates by 24 h time-kill studies. CONCLUSION: Our results highlight the distribution of carbapenem- and colistin-resistance in Gram-negative bacteria isolated from the Tamil Nadu region in South India.201728671537
1429100.9996Detection of blaKPC and blaGES Carbapenemase Genes in Klebsiella pneumoniae Isolated from Hospitalized Patients in Kashan, Iran. INTRODUCTION: Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria are among the highly antimicrobial resistant gram negative bacteria and infections due to them are an increasingly major health problem worldwide. METHODS: In this study we have detected the blaKPC and blaGES carbapenemase genes in Klebsiella pneumoniae isolated from hospitalized patients in Kashan, Iran. In a cross-sectional study, a total of 181 K. pneumoniae isolates were recovered from clinical specimens during November 2013 to October 2014. RESULT: Antimicrobial susceptibility profiles were determined using disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI guidelines. Carbapenem-resistant K. pneumoniae isolates were identified. PCR method and sequencing were used for detection of blaKPC and blaGES carbapenemase genes. Of the 181 K. pneumoniae isolates, 35 (19.3%) were found to be resistant to imipenem and 150 (82.9%) were identified as MDR strains. Among carbapenems, the most resistant rate 39 (21.5%) was seen against ertapenem using disk diffusion method. Of K. pneumoniae isolates 21 (11.6%) and 42 (23.2%) carried blaKPC and blaGES genes, respectively and 19(10.5%) carried both genes simultaneously. CONCLUSION: The data of current study revealed that the frequency of resistance to carbapenems and production of carbapenemase enzymes especially GES type was high among clinical isolates of K pneumoniae in Kashan, Iran.201627527726
2121110.9996Investigation of VIM, IMP, NDM-1, KPC AND OXA-48 enzymes in Enterobacteriaceae strains. Gram-negative bacteria especially Enterobacteriaceae species have become an increasing etiologic agent of nosocomial infections. The development of resistance to carbapenems have become an increasing problem in the treatment of nosocomial infections. Especially carbapenamases are common for Enterobacteriaceae strains. This study was performed to detect the types of carbapenemases in Enterobacteriaceae strains isolated from various clinical samples. Enterobacteriaceae species were isolated from urine, blood, tracheal aspirates, wound, and other respiratory samples. Susceptibility of isolates to imipenem, meropenem and ertapenem was tested. Carbapenemase genes were studied using HyplexSuperBug ID kit. VIM (1-13), IMP (1-22), NDM-1, KPC(1-10) and OXA-48 genes were investigated. Ninety-five isolates of Enterobacteriaceae spp. were included in the study. Sixty isolates were resistant to imipenem, meropenem and ertapenem and 20 isolates were found resistant to imipenem or ertapenem while 15 were susceptible to all carbapenems. Among the isolates with carbapenem resistance, 57 were positive for one carbapenemase gene and susceptible isolates did not have carbapenemase gene. OXA-48 was found in 49 of the isolates (86%), NDM-1 in 6 (10.5%) isolates, VIM in 2 isolates. IMP and KPC gene loci were not identified. Carbapenemase genes play a crucial role in the development and spread of resistant strains.201526051720
2119120.9996Detection of bla(IMP) and bla(VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains. Acquired Metallo-β-Lactamases (MBLs) are emerging resistance determinants in Pseudomonas aeruginosa and other gram-negative bacteria.Using Combination Disk Diffusion test, it was found that among 83 imipenem non-susceptible P. aeruginosa strains, 48 (57.9%) were MBL producers. PCR and Sequencing methods proved that these isolates were positive for blaIMP-1 genes, whereas none were positive for bla(VIM) genes. The mortality rate due to MBL-producing Pseudomonas infection was 4 (8.3%) among the hospitalized patients. Therefore, identification of drug resistance patterns in P. aeruginosa and detection of MBLs producing isolates are of great importance in the prevention and control of infections.201323638331
1465130.9996Detection of TEM, SHV and CTX-M in Mymensingh region in Bangladesh. The development of antibiotic resistance in bacteria following introduction of antimicrobial agents has emerged as an important medical problem everywhere in the world including Bangladesh. Extended spectrum β-lactamases (ESBLs) are rapidly evolving group of β-lactamase enzymes produced by the Gram negative bacteria. This study was undertaken to characterize ESBL producing gram negative bacilli from urine, skin wound (pus and wound infection). A total of 300 gram negative bacilli were screened for resistance to third generation Cephalosporins (3GCs) by disc diffusion test. The ESBL status was confirmed by double disc diffusion test (DDDT), minimum inhibitory concentration (MIC) by agar dilution method as recommended by Clinical Laboratory Standard Institute 2010 (CLSI) and multiplex PCR for TEM, SHV and CTX-M, CTX-M-3, CTX-M-14 genes. The present study revealed a higher occurrence of multi drugs resistant ESBLs production among gram negative isolates where Klebsiella spp. were the leading bacteria 36/45 (80%), followed by Proteus spp. 40/55 (72.7%), Esch. coli 105/156 (67.3%) and others 25/35 (71.4 %). Rate of TEM, SHV and CTX-M genes present in study population were 50.46%, 18.69% and 46.72% respectively. Among the CTX-M positive genes CTX-M-3 and CTX-M-14 were 78.0% (39/50) and 80.0% (40/50) respectively. Results indicate that routine ESBL detection should be made mandatory and irrational use of third generation cephalosporins must be discouraged to reduce multi drugs resistance bacteria, to increase patients' compliance and to make an antibiotic policy.201323982534
1431140.9996The using of the polymerase chain reaction for the detection of resistance genes in gram-negative bacteria in routine practice in a pediatric hospital. Objective - assessment of RT-PCR for the detection of carbapenem-resistance genes in gram-negative bacteria. A total, 499 strains of gram-negative microorganisms isolated in two pediatric hospitals in 2019-2020 were studied. Species identification was performed using MALDI-ToF mass-spectrometry (Bruker Daltonics, Germany). Meropenem and imipenem minimal inhibitory concentration (MIC) was determined by E-test method (BioMerieux, France). The presence of acquired carbapenemase genes of IMP, NDM, VIM, KPC, OXA-48, OXA-23, OXA-40, OXA-58-groups was determined by RT-PCR. Klebsiella pneumoniae (34%), Escherichia coli (4%), Serratia marcescens (6%) and other members of Enterobacterales (6%), also gram-negative non-glucose-fermenting bacteria Acinetobacter baumannii (14%), Pseudomonas aeruginosa (36%) were found among selected strains. Carbapenemase production was found in 385 isolates (77%). The main mechanism determining carbapenem resistance in P. aeruginosa was the production of blaVIM (100%). A. baumanii strains harbored OXA-23 (55%) and OXA-40 (45%) carbapenemases. The major determinant of carbapenem resistance in K. pneumoniae isolates was OXA-48 carbapenemase, detected in 63% strains, 13% of the strains possessed blaNDM-group, 16% isolates had a combination of blaNDM-group and blaOXA-48-like. Carbapenemase of KPC-group was found in 8% K. pneumoniae strains. OXA-48 carbapenemase prevailed (95%) among S. marcescens strains. Most of E. coli isolates harbored metallo-beta-lactamase NDM (89%). Other members of Enterobacterales most often had OXA-48 carbapenemase (57%), 39% of the isolates carried blaNDM-group. In one strain, a combination of blaNDM-group and blaOXA-48-like was discovered. RT-PCR is a fast and reliable method for the detection of acquired carbapenemases and can be recommended for routine use in bacteriological laboratories.202235320635
2118150.9996Gram-negative bacteria as causative agents of ventilator-associated pneumonia and their respective resistance mechanisms. Ventilator-associated pneumonia (VAP) is a serious and common complication in patients admitted to intensive care unit (ICU) and contributes to mortality. Multidrug Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae are frequently associated with VAP in ICU. A prospective study was set up in three ICUs of the University Hospital Center Zagreb and one ICU in General Hospital Pula from September 2017 to March 2018. Antibiotic susceptibility was determined by broth microdilution method. Production of extended-spectrum β-lactamases (ESBLs) was determined by double-disk synergy test and carbapenemases by Hodge and carbapenem inactivation method (CIM). The genes encoding ESBLs, carbapenemases of class A, B and D and qnr genes were determined by PCR. In total 97 Gram-negative bacteria isolates were analyzed. P. aeruginosa demonstrated high resistance rates for imipenem and meropenem with 74% and 68% of resistant strains, respectively. Moderate resistance rates were observed for ceftazidime andpiperacillin/tazobactam, ciprofloxacin and gentamicin (44%). All except three A. baumannii isolates, were resistant to carbapenems and to all other antibiotics apart from colistin and amikacin. Eight A. baumannii isolates were positive for bla(OXA-23) and 12 for bla(OXA-24) genes. Four K. pneumoniae and two E. cloacae strains were ESBL positive and harboured group 1 of CTX-M β-lactamases. Three P. mirabilis strains were positive for plasmid-mediated ampC β-lactamase of CMY family. Two carbapenem-resistant K. pneumoniae harboured OXA-48 and one carbapenem-resistant E. cloacae VIM-1. A high proportion of multidrug-resistant P. aeruginosa, K. pneumoniae and extensively resistant A. baumannii was reported. Acquired resistance mechanisms, mainly production of carbapenemases and ESBLs were dominant in A. baumannii and K. pneumoniae, respectively. Resistance of P. aeruginosa isolates was more likely due to upregulation of efflux pumps or porin loss. A marked diversity of β-lactamases was identified in Enterobacteriaceae.202032729399
1462160.9996Phenotypic synergy testing of ceftazidime-avibactam with aztreonam in a university hospital having high number of metallobetalactamase producing bacteria. BACKGROUND: Ceftazidime-avibactam combination with aztreonam and role of rapid synergy reporting has not been widely evaluated. Also the synergy correlation with various betalactamases has not been widely studied. METHODS: We studied phenotypic synergy testings and molecular detection of betalactamases in our university hospital where we have large number of mellatobetalactmase producing bacteria. We tested two phenotypic synergy methods for ceftazidime-avibactam with aztreonam (Disc-E strip method, E strip-Agar method) for rapid reporting to clinicians (153 isolates). The treatment (colistin, ceftazidime-avibactam, ceftazidime-avibactam with aztreonam) was guided as indicated in the synergy testings. The resistance genes in bacteria were identified by polymerase chain reaction (PCR) and correlated with synergy results. RESULTS: The highest synergy was seen in Klebsiella pneumoniae by Disc-E strip and E strip-Agar method (86% and 84% respectively). About 70% of Pseudomonas aeruginosa and 29% of Escherichia coli showed synergy. Molecular methods revealed multiple resistance gene combinations and bla(NDM) (96%) was predominant gene in isolates showing synergy. Among isolates that were sensitive to ceftazidime-avibactam, the predominant genes were bla(OXA-48) and bla(IMP.) Rapid laboratory reporting led to proper utilization of antibiotic combinations. CONCLUSIONS: Ceftazidime-avibactam and aztreonam rapid synergy testing will be highly beneficial in treatment of infections by metallobetalactamase producing resistant bacteria, especially K. pneumoniae and P. aeruginosa.202032628575
997170.9996Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted.201627221683
2124180.9996Evaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City. BACKGROUND & OBJECTIVE: Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide including Iran. The emergence of this pathogen is worrying as carbapenem is one of the 'last-line' antibiotics for treatment of infections caused by multi drug resistant gram- negative bacteria. The main objective of this study was to determine the prevalence of carbapenem-resistant Enterobacteriaceae in a referral hospital in Tehran, Iran. METHODS: In this study, all positive isolates of Enterobacteriaceae recorded in blood, urine, and other body fluids were studied during April 2017 to April 2018 in a referral hospital in Tehran. All cases of resistance to carbapenems were first tested by modified Hodge test. All cases with positive or negative test, after gene extraction, were examined genotypically based on the primers designed for the three Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), and OXA-48 genes by conventional PCR method. RESULTS: 108 isolates (13.6%) were resistant to all cephalosporins as well as to imipenem and meropenem. In a genotypic study, including 45 isolates, 13 isolates were positive for OXA-48 gene, 11 isolates for OXA-48 and NDM genes, 11 isolates for OXA-48, NDM and KPC genes, 4 isolates for OXA-48 genes and KPC, 3 isolates for NDM, one isolate for KPC. On the other hand, two isolates were negative for all three genes examined. CONCLUSION: OXA-48 gene was one of the most common genes resistant to carbapenems in Iran. According to studies, the prevalence of antibiotic resistance in Iran is rising dramatically, which reduces the choice of antibiotics to treat severe infections in the future.202032215024
1430190.9996Prevalence of multidrug-resistant Gram-negative bacteria from blood cultures and rapid detection of beta-lactamase-encoding genes by multiplex PCR assay. INTRODUCTION: This study aimed to determine the prevalence of multidrug-resistant Gram-negative bacteria (GNB) from blood cultures in a tertiary-care hospital and the multiplex PCR assay's ability to detect resistance genes. METHODS: A total of 388 GNB isolates obtained from hospitalized patients between November 2019 and November 2021 were included in the study. Antimicrobial susceptibility testing was done by VITEK 2 system and broth microdilution method. Beta-lactamase-encoding genes were detected by multiplex PCR assays, BioFire-Blood Culture Identification 2 (BCID2) panel (bioMérieux, France). Extended-spectrum beta-lactamases (ESBLs) were detected phenotypically with VITEK AST-GN71 card (bioMérieux, France). The isolates of GNB were classified into multidrug-resistant, extensively-drug-resistant, and pandrug-resistant categories, and their prevalence and distribution in different wards, including coronavirus diseases 2019 (COVID-19) intensive care units (ICU), were calculated. RESULTS: Results revealed that all isolates of Acinetobacter baumannii and Pseudomonas aeruginosa were multidrug-resistant as well as 91.6% of Enterobacter cloacae, 80.6% of Proteus mirabilis, and 76.1% of Klebsiella pneumoniae, respectively. In fermentative bacteria, bla(OXA-48-like) (58.1%), bla(NDM) (16.1%), bla(KPC) (9.7%) and bla(VIM) (6.5%) genes were detected. More than half of Enterobacter cloacae (58.3%) and Klebsiella pneumoniae (53.7%) produced ESBLs. Among non-fermenters, the bla(NDM) gene was carried by 55% of Pseudomonas aeruginosa and 19.5% of Acinetobacter baumannii. In the COVID-19 ICU, Acinetobacter baumannii was the most common isolate (86.1%). CONCLUSIONS: This study revealed high proportions of multidrug-resistant blood isolates and various underlying resistance genes in Gram-negative strains. The BCID2 panel seems to be helpful for the detection of the most prevalent resistance genes of fermentative bacteria.202238021186