One-Day Prevalence of Extended-Spectrum β-Lactamase (ESBL) and Carbapenemase-Producing Bacteria in Fecal Samples from Surgical Patients: A Concerning Trend of Antibiotic Resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
144601.0000One-Day Prevalence of Extended-Spectrum β-Lactamase (ESBL) and Carbapenemase-Producing Bacteria in Fecal Samples from Surgical Patients: A Concerning Trend of Antibiotic Resistance. PURPOSE: Extended-spectrum β-lactamase (ESBL) and carbapenemase producing bacteria are of increasing concern due to their multidrug resistance and infection potential. This study determines the one-day prevalence of faecal carriage of ESBL and carbapenemase producing Gram-negative bacilli. METHODS: Fecal samples were collected from 30 post-surgery patients (hospitalized for at least 48 hours) in each of the four hospitals involved in the study and were analyzed for antibiotic-resistant bacteria. Identification was done using Maldi Tof mass spectrometry, and antibiotic susceptibility was tested using disk diffusion and specialized tests for ESBL (double disk synergy technique) and carbapenem (NG-TEST CARBA 5) resistance detection. PCR was conducted on isolates to detect betalactam resistance genes, carbapenemase genes and quinolone resistance genes. FINDINGS: Out of the 120 patients enrolled, 38.33% (n = 46) and 49.16.33% (n = 59) were found to carry ESBL- and carbapenemase-producing bacteria, respectively, in their fecal samples. Among the isolates, 51.08% (n = 47) exhibited ESBL production, with Escherichia coli (44.56%) being the most common species. The identification of bacteria with resistance to carbapenems showed a predominance of the species Escherichia coli (44.45%) followed by the species Klebsiella pneumoniae (16.06%) and Acinetobacter baumanii (13.58%). The study of the association of variables shows a high degree of association (p < 0.05) for the factors independent walking and use of a wheelchair with ESBL production. The most frequently detected genes among ESBL producing bacteria were bla(CTXM-1) (91.49%), qnrB (70.21%) and qnrs (63.82%). bla(NDM) (54.68%) was the most detected carbapenemase genes among carbapenemase producing isolates. CONCLUSION: This study demonstrates, for the first time, a significant prevalence of ESBL and carbapenemase producing gram-negative bacteria among surgical patients in Benin, with multiple resistance genes detected. Findings should be interpreted in light of the cross-sectional design and >48-hour hospitalization criterion.202540635768
144710.9999Molecular detection of β-lactamase and integron genes in clinical strains of Klebsiella pneumoniae by multiplex polymerase chain reaction. INTRODUCTION: Infections caused by β-lactamase-producing gram-negative bacteria, such as Klebsiella pneumoniae, are increasing globally with high morbidity and mortality. The aim of the current study was to determine antimicrobial susceptibility patterns and the prevalence of antibiotic resistance genes (β-lactamase and integron genes) using multiplex PCR. METHODS: One-hundred K. pneumoniae isolates were collected from different clinical samples. Antibiotic susceptibility testing was performed with thirteen different antibiotics. Multiplex-PCR was used to detect β-lactamase (bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC) and integron genes (int I, int II, and int III). RESULTS: The highest and lowest rate of resistance was exhibited against amikacin (93%) and imipenem (8%), respectively. The frequency of β-lactamase-positive K. pneumoniae was 37%, and the prevalence of the bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC genes was 38%, 24%, 19%, 12%, 6%, 11%, 33%, 0%, 28%, and 23%, respectively. Of the 100 isolates, eight (8%) were positive for class I integrons; however, class II and III integrons were not detected in any of the strains. CONCLUSIONS: These results indicate co-carriage of a number of β-lactamase genes and antibiotic resistance integrons on the same plasmids harboring multi-drug resistance genes. It seems that these properties help to decrease treatment complications due to resistant bacterial infections by rapid detection, infection-control programs and prevention of transmission of drug resistance.201728700049
94520.9999Extended Spectrum Beta Lactamase (ESBL), bla(TEM),bla(SHV) and bla(CTX-M), Resistance Genes in Community and Healthcare Associated Gram Negative Bacteria from Osun State, Nigeria. BACKGROUND: Extended Spectrum Beta Lactamase (ESBL) production in gram negative bacteria confers multiple antibiotic resistance, adversely affecting antimicrobial therapy in infected individuals. ESBLs result from mutations in β-lactamases encoded mainly by the bla(TEM),bla(SHV) and bla(CTX-M) genes. The prevalence of ESBL producing bacteria has been on the increase globally, especially its upsurge among isolates from community-acquired infections has been observed. AIM: To determine ESBL prevalence and identify ESBL genes among clinical isolates in Osun State, Nigeria. MATERIAL AND METHODS: A cross-sectional study was carried out from August 2016 - July 2017 in Osun State, Nigeria. Three hundred and sixty Gram-negative bacteria recovered from clinical samples obtained from both community and healthcare-associated infections were tested. They included 147 Escherichia coli (40.8%), 116 Klebsiella spp (32.2%), 44 Pseudomonas aeruginosa (12.2%) and 23 Proteus vulgaris (6.4%) isolates. Others were Acinetobacter baumannii, Serratia rubidae, Citrobacter spp, Enterobacter spp and Salmonella typhi. Disk diffusion antibiotic susceptibility testing was carried out, isolates were screened for ESBL production and confirmed using standard laboratory procedures. ESBLs resistance genes were identified by Polymerase Chain Reaction (PCR). RESULTS: All isolates demonstrated multiple antibiotic resistance. Resistance to ampicillin, amoxicillin with clavulanate and erythromycin was 100%, whereas resistance to Imipenem was very low (5.0%). The overall prevalence of ESBL producers was 41.4% with Klebsiella spp as the highest ESBL producing Enterobacteriacaea. ESBL producers were more prevalent among the hospital pathogens than community pathogens, 58% vs. 29.5% (p=0.003). ESBL genes were detected in all ESBL producers with the bla(CTX-M) gene predominating (47.0%) followed by bla(TEM) (30.9%) and bla(SHV) gene was the least, 22.1%. The bla(CTX-M) gene was also the most prevalent in the healthcare pathogens (62%) but it accounted for only 25% in those of community origin. CONCLUSION: A high prevalence of ESBL producing gram-negative organisms occurs both in healthcare and in the community in our environment with the CTX-M variant predominating. Efforts to control the spread of these pathogens should be addressed.202132729432
144530.9999Rapid Detection of Beta-Lactamases Genes among Enterobacterales in Urine Samples by Using Real-Time PCR. The objective of this study was to develop and evaluate newly improved, rapid, and reliable strategies based on real-time PCR to detect the most frequent beta-lactamase genes recorded in clinical Enterobacterales strains, particularly in Tunisia (bla(SHV12) , bla(TEM) , bla(CTX-M-15) , bla(CTX-M-9) , bla(CMY-2) , bla(OXA-48) , bla(NDM-1) , and bla(IMP) ) directly from the urine. Following the design of primers for a specific gene pool and their validation, a series of real-time PCR reactions were performed to detect these genes in 78 urine samples showing high antibiotic resistance after culture and susceptibility testing. Assays were applied to DNA extracted from cultured bacteria and collected urine. qPCR results were compared for phenotypic sensitivity. qPCR results were similar regardless of whether cultures or urine were collected, with 100% sensitivity and specificity. Out of 78 multiresistant uropathogenic, strains of Enterobacterales (44 E. coli and 34 K. pneumoniae strains) show the presence of the genes of the bla group. In all, 44% E. coli and 36 of K. pneumoniae clinical strains harbored the bla group genes with 36.4%, 52.3%, 70.5%, 68.2%, 18.2%, and 4.5% of E. coli having bla(SHV-12) , bla(TEM) , bla(CTX-M 15) , bla(CTX-M-9) , bla(CMY-2) , and bla(OXA-48) group genes, respectively, whereas 52.9%, 67.6%, 76.5%, 35.5%, 61.8, 14.7, and 1.28% of K. pneumoniae had bla(SHV-12) , bla(TEM) , bla(CTX-M 15) , bla(CTX-M-9) , bla(CMY-2) , bla(OXA-48) , and bla(NDM-1) group genes, respectively. The time required to have a result was 3 hours by real-time PCR and 2 to 3 days by the conventional method. Resistance genes of Gram-negative bacteria in urine, as well as cultured bacteria, were rapidly detected using qPCR techniques. These techniques will be used as rapid and cost-effective methods in the laboratory. Therefore, this test could be a good candidate to create real-time PCR kits for the detection of resistance genes directly from urine in clinical or epidemiological settings.202235978630
211140.9999Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients.201931819545
144450.9999The Prevalence of bla VIM, bla KPC, bla NDM, bla IMP, bla SHV, bla TEM, bla CTX-M, and class I and II integrons Genes in Aeromonas hydrophila Isolated from Clinical Specimens of Qom, Iran. BACKGROUND: Aeromonas hydrophila is an opportunistic gram-negative bacillus that causes diseases such as gastroenteritis, muscle infections, soft tissue, sepsis, and skin diseases in humans. Today, the prevalence of antibiotic resistance in bacteria has led to treatment failure and prolonged treatment. Therefore, the aim of this study was to evaluate the level of antibiotic resistance in isolates carrying bla VIM, bla KPC, bla NDM, bla IMP, bla SHV, bla TEM, bla CTX-M and class I and II integrons in Aeromonas hydrophila. METHODS: In this cross-sectional study, Aeromonas hydrophila were collected from different clinical specimens in Hazrat Masoumeh Hospital, Qom Province, Iran, from 2018 to 2020. The collected isolates were identified by standard biochemical tests. Then, using specific primers bla VIM, bla KPC, bla NDM, bla IMP, bla SHV, bla TEM, bla CTX-M genes, and class I and II integrons were evaluated by PCR method. Then, data were analyzed using SPSS software and chi-squared tests, and the significance level was determined as p ≤ 0.05. RESULTS: During the sample collection period, 100 Aeromonas hydrophila were collected. Based on the results of the antibiotic resistance pattern, the highest and lowest rate of antibiotic resistance to ampicillin (92%) and azithromycin (4%) were determined for both. Among the 100 isolates, 60 isolates produced broad-spectrum beta-lactamase (ESBL) and 50 isolates produced carbapenemase. Among the studied beta-lactamase genes, the highest and lowest frequencies were related to bla CTX-M (58%) and bla TEM (1%), respectively. The frequency of class I and II integron genes was 27% and 15%, respectively. CONCLUSIONS: The results of the study of antibiotic resistance, beta-lactamase, and carbapenemase genes showed high resistance in Aeromonas hydrophila, which raises concerns with regard to controlling infection in medical centers. Also, the study of antibiotic resistance in the presence of beta-lactamase genes showed that there was only a significant relationship between the presence of bla CTX-M gene and resistance to imipenem (p = 0.037).202336649515
146560.9999Detection of TEM, SHV and CTX-M in Mymensingh region in Bangladesh. The development of antibiotic resistance in bacteria following introduction of antimicrobial agents has emerged as an important medical problem everywhere in the world including Bangladesh. Extended spectrum β-lactamases (ESBLs) are rapidly evolving group of β-lactamase enzymes produced by the Gram negative bacteria. This study was undertaken to characterize ESBL producing gram negative bacilli from urine, skin wound (pus and wound infection). A total of 300 gram negative bacilli were screened for resistance to third generation Cephalosporins (3GCs) by disc diffusion test. The ESBL status was confirmed by double disc diffusion test (DDDT), minimum inhibitory concentration (MIC) by agar dilution method as recommended by Clinical Laboratory Standard Institute 2010 (CLSI) and multiplex PCR for TEM, SHV and CTX-M, CTX-M-3, CTX-M-14 genes. The present study revealed a higher occurrence of multi drugs resistant ESBLs production among gram negative isolates where Klebsiella spp. were the leading bacteria 36/45 (80%), followed by Proteus spp. 40/55 (72.7%), Esch. coli 105/156 (67.3%) and others 25/35 (71.4 %). Rate of TEM, SHV and CTX-M genes present in study population were 50.46%, 18.69% and 46.72% respectively. Among the CTX-M positive genes CTX-M-3 and CTX-M-14 were 78.0% (39/50) and 80.0% (40/50) respectively. Results indicate that routine ESBL detection should be made mandatory and irrational use of third generation cephalosporins must be discouraged to reduce multi drugs resistance bacteria, to increase patients' compliance and to make an antibiotic policy.201323982534
211070.9999First report of carbapenems encoding multidrug-resistant gram-negative bacteria from a pediatric hospital in Gaza Strip, Palestine. BACKGROUND: The worldwide prevalence of multi-drug resistance (MDR) in Gram-negative bacteria (GNB), particularly related to extended-spectrum beta-lactamases (ESBLs) and carbapenemases, poses significant global public health and clinical challenges. OBJECTIVES: To characterize ESBL-producing Gram-negative bacilli, within a pediatric hospital in Gaza using whole genome sequencing (WGS). METHODS: A total of 158 clinical isolates of Gram-negative bacilli were collected from Al-Nasser Pediatric Hospital. These isolates were tested for ESBL production using the double disk synergy test. The antibiotic susceptibility profile was determined using the Kirby Bauer method following the Clinical and Laboratory Standard Institute guidelines. Selected 15 phenotypically MDR isolates were whole-genome sequenced and characterized for their genome-based species identity and antibiotic resistance gene profile. RESULTS: Of the 158 isolates, 93 (58.9%) were positive for ESBL production. The frequency of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Proteus mirabilis, and Serratia marcescens was 50%, 22.7%, 22.7%, 1.8%, 1.2%, and 1.2% respectively. The prevalence of ESBL among urine, pus, blood, and sputum was 64%, 44%, 23%, and 63.6%, respectively. Chloramphenicol, Imipenem, and Meropenem were the most effective antibiotics against ESBL producers. In sequenced isolates,  an average of six anti-microbial resistance (AMR) genes were noted per isolate, where one of them carried up to 13 antibiotic resistance genes. Carbapenem resistance genes such as bla(KPC-2)(6.6%), bla(PDC-36/12) (6.6%), and bla(POM-1) (6.6%) were detected. All the sequenced E. coli isolates (n = 8) showed multiple resistance genes, mainly against β-lactamase (25.0%), aminoglycosides (37.5%), sulfonamides (37.5%), and genes conferring resistance to tetracyclines (25.0). CONCLUSION: Our results showed a high prevalence of ESBL-producing GNB isolated from a pediatric hospital in the Gaza Strip. Various antibiotic resistance genes were identified, including those encoding ESBL and carbapenems. The results highlight the significant challenge posed by MDR in GNB and emphasize the need for effective antibiotic strategies. Given the high endemicity observed in various studies from Palestine, it is important to conduct clinical and molecular epidemiology research to identify risk factors, transmission patterns, and clinical outcomes associated with GNB strains that carry ESBL and carbapenem resistance genes.202439379824
112280.9999Antibiotic resistance profiles of gram-negative bacteria in southern Tunisia: Focus on ESBL, carbapenem and colistin resistance. The main objective of this cross-sectional study was to investigate the prevalence of beta-lactam (cephalosporins or carbapenems) or colistin resistant bacteria. Those were isolated from urine samples in two private polyclinics located in the Sfax region, in southern Tunisia. From September 2021 to August 2022, 116 strains resistant to β-lactams or colistin were isolated, identified by MALDI-TOF, and their antibiotic susceptibility was assessed by disk diffusion method. Resistance genes were detected by real-time PCR, standard PCR, and sequencing. The results revealed that the 116 strains consisted predominantly of Enterobacteriaceae (92.2 %) and non-fermenting bacteria (7.8 %). Among these strains, 21 (18.1 %) were resistant to carbapenems, three (2.7 %) to colistin, including two strains of Klebsiella pneumoniae (1.7 %) exhibiting resistance to both carbapenems and colistin. In Enterobacteriaceae, bla(CTX-A), bla(SHV), and bla(TEM) were found in 79.5 %, 46.7 %, and 40.2 % of strains, respectively. For these strains, the minimum inhibitory concentrations (MICs) of imipenem and ertapenem ranged from >32 to 6 μg/mL and > 32 to 2 μg/mL, respectively, with bla(OXA-48) and bla(NDM) detected in 21.7 % and 19.6 % of isolates, respectively. Seven A. baumannii isolates resistant to imipenem and meropenem (MICs >32 μg/mL and 8 μg/mL, respectively) carried bla(OXA-23) (n = 5) and bla(OXA-24) (n = 2). In addition, mutations in the mgrB gene conferring colistin resistance were identified in two isolates. Two K. pneumoniae were colistin-resistant and carried the bla(OXA-48) gene. These results highlight the urgency of developing new strategies for the identification and surveillance of pathogenic strains in humans to effectively combat this growing public health threat in Tunisia.202540553790
112490.9999Molecular Identification of Extended-Spectrum β-lactamase and Integron Genes in Klebsiella Pneumonia. INTRODUCTION: Infections caused by Gram negative bacteria, producing extended-spectrum β-lactamase, including Klebsiella pneumoniae are increasing all over the world with high morbidity and mortality. The aim of the present study was determined antimicrobial profile susceptibility and the prevalence of antibiotic resistance genes by multiplex PCR. METHODS: In the present study, we obtained one-hundred isolates of K. pneumoniae from different clinical samples. The antibiotic susceptibility testing was done in thirteen antibiotic and, therefore, M-PCRs were conducted using the DNA amplification for detection of ESBLs (blaTEM, blaCTX-M, blaSHV) and int (I, II, III) genes. RESULTS: The results of resistance to amoxicillin/clavulanate, ciprofloxacin, amikacin, trimethoprim-sulfamethoxazole, cefotaxime, ampicillin, aztreonam, imipenem, gentamicin, ceftazidime, Cefepime, ceftriaxone and levofloxacin were obtained 37%, 37%, 93%, 84%, 52%, 87%, 59%, 8%, 24%, 67%, 52%, 43% and 26%, respectively. The frequency of the extended-spectrum β-lactamase K. pneumoniae was obtained 37%. The prevalence of resistance genes of ESBLs in the M-PCR method showed that the blaTEM, blaCTX and blaSHV were 38%, 24% and 19%, respectively, however, only 8 (8%) out of 100 isolates were found to have positive outcomes for the existence of class 1 integrons and there were no detected class 2 or class 3 integrons. CONCLUSIONS: Our results recommend the likely co-carriage of some ESBLs genes and antibiotic resistance integrons on the same plasmids harboring the MDR genes.201627935927
985100.9999TEM & SHV genes in extended spectrum beta-lactamase producing Klebsiella species beta their antimicrobial resistance pattern. BACKGROUND & OBJECTIVES: Extended spectrum beta-lactamases (ESBLs) are often plasmid mediated derived from mutations in the classic TEM and SHV genes by one or more amino acid substitution around the active site. Detection of TEM and SHV genes by molecular methods in ESBL producing bacteria and their pattern of antimicrobial resistance can provide useful information about its epidemiology and risk factors associated with these infections. We investigated the presence of TEM and SHV genes in ESBL producing Klebsiella spp. and their antimicrobial resistance pattern in cases of neonatal septicaemia in a tertiary care hospital. METHODS: A total of 130 clinical isolates of Klebsiella spp. isolated from septicaemic neonates of a neonatal intensive care unit (NICU) from a tertiary care hospital in north India, were screened for ESBL production by combined disk diffusion method. PCR was used to detect TEM and SHV genes in ESBL positive isolates. Isoelectric points of ESBL enzymes from a few isolates (n = 6) were noted for typing of ESBL by isoelectric focusing. RESULTS: Of the 64 ESBL producing Klebsiella spp. isolates, 17 (26.5%) had both TEM and SHV genes, 31 (48.4%) had TEM alone and 13 (20.3%) had SHV gene alone. Three (4.6%) ESBL positive isolates were negative for both TEM and SHV. Isolates with both TEM and SHV genes were highly resistant to antibiotics used. Degree of resistance for 3(rd) generation cephalosporins was also high in these isolates. Six randomly selected isolates were subjected to isoelectric focussing. Results of isoelectric focussing were comparable with PCR. INTERPRETATION & CONCLUSION: Presence of TEM gene in ESBL producing Klebsiella spp. was more common than SHV gene. Frequency of antibiotic resistance was high in isolates having both TEM and SHV genes.200819246801
946110.9999Identification and Characterization of Multidrug-Resistant Extended-Spectrum Beta-Lactamase-Producing Bacteria from Healthy and Diseased Dogs and Cats Admitted to a Veterinary Hospital in Brazil. The objective of this study was to identify the main extended-spectrum beta-lactamase (ESBL)-producing bacteria and to detect the frequency of the major genes responsible to trigger this resistance in hospitalized animals. We collected 106 rectal swabs from cats (n = 25) and dogs (n = 81) to detect ESBL-producing isolates. ESBL-positive samples were submitted to the antimicrobial susceptibility test, and polymerase chain reaction was performed to detect TEM, SHV, and CTX-M genes from different groups. We observed that 44.34% of these samples (11 cats and 36 dogs) were positive for ESBL-producing bacteria. Thirteen animals (27.66%-seven cats and six dogs) were hospitalized for elective castration (healthy animals). Only a single animal was positive for ESBL-producing bacteria at hospital admission (the animal also showed an ESBL-positive isolate after leaving the hospital), whereas 11 were positive only at the hospital discharge. Of the 73 ESBL-producing isolates, 13 were isolated from cats (8 sick and 7 healthy) and 60 from dogs (53 sick and 7 healthy). Escherichia coli was the major ESBL-producing bacterium isolated (53.42%), followed by Pseudomonas aeruginosa (15.07%), Salmonella sp., and Proteus mirabilis (5.48% each one). Antimicrobial resistance profile of ESBL-producing isolates showed that 67 isolates (91.78%) were resistant to 3 or more antibiotic classes, while 13 of them (17.81%-2 healthy cats and 11 sick dogs) were resistant to all tested antimicrobial classes. The bla(TEM) gene exhibited the highest frequency in ESBL-producing isolates, followed by the bla(CTX-M) group 8/25, bla(CTX-M) group 1 and bla(CTX-M) group 9 genes. These results are useful to assess the predominance of ESBL-producing isolates recovered from dogs and in cats in Brazil. Consequently, we draw attention to these animals, as they can act as reservoirs for these microorganisms, which are the major pathogens of nosocomial infections worldwide.202133185513
987120.9999Characterization of Multidrug Resistant Extended-Spectrum Beta-Lactamase-Producing Escherichia coli among Uropathogens of Pediatrics in North of Iran. Escherichia coli remains as one of the most important bacteria causing infections in pediatrics and producing extended-spectrum beta-lactamases (ESBLs) making them resistant to beta-lactam antibiotics. In this study we aimed to genotype ESBL-producing E. coli isolates from pediatric patients for ESBL genes and determine their association with antimicrobial resistance. One hundred of the E. coli isolates were initially considered ESBL producing based on their MIC results. These isolates were then tested by polymerase chain reaction (PCR) for the presence or absence of CTX, TEM, SHV, GES, and VEB beta-lactamase genes. About 30.5% of isolated E. coli was ESBL-producing strain. The TEM gene was the most prevalent (49%) followed by SHV (44%), CTX (28%), VEB (8%), and GES (0%) genes. The ESBL-producing E. coli isolates were susceptible to carbapenems (66%) and amikacin (58%) and showed high resistance to cefixime (99%), colistin (82%), and ciprofloxacin (76%). In conclusion, carbapenems were the most effective antibiotics against ESBl-producing E. coli in urinary tract infection in North of Iran. The most prevalent gene is the TEM-type, but the other resistant genes and their antimicrobial resistance are on the rise.201526064896
1051130.9999Multi-drug Resistance, β-Lactamases Production, and Coexistence of bla (NDM-1) and mcr-1 in Escherichia coli Clinical Isolates From a Referral Hospital in Kathmandu, Nepal. The ability of pathogenic Escherichia coli to produce carbapenemase enzymes is a characteristic that allows them to resist various antibiotics, including last-resort antibiotics like colistin and carbapenem. Our objectives were to identify rapidly developing antibiotic resistance (AR), assess β-lactamases production, and detect mcr-1 and bla (NDM-1) genes in the isolates. A prospective cross-sectional study was carried out in a referral hospital located in Kathmandu from November 2019 to December 2020 using standard laboratory and molecular protocols. Among 77 total E. coli isolates, 64 (83.1%) of them were categorized as MDR. Phenotypically 13 (20.3%) colistin-resistant, 30 (46.9%) ESBL and 8 (12.5%) AmpC producers, and 5 (7.8%) ESBL/AmpC co-producers were distributed among MDR-E. coli. Minimum inhibitory concentrations (MIC) against the majority of MDR isolates were exhibited at 1 g/L. Of these 77 E. coli isolates, 24 (31.2%) were carbapenem-resistant. Among these carbapenem-resistant bacteria, 11 (45.9%) isolates were reported to be colistin-resistant, while 15 (62.5%) and 2 (8.3%) were MBL and KPC producers, respectively. Out of 15 MBL producers, 6 (40%) harbored bla (NDM-1), and 8 (61.5%) out of 13 colistin-resistant pathogens possessed mcr-1. The resistance by colistin- and carbapenem were statistically associated (P < .001). However, only 2 (18.2%) of the co-resistant bacteria were found to have both genes. Our study revealed the highly prevalent MDR and the carbapenem-resistant E. coli and emphasized that the pathogens possess a wide range of capabilities to synthesize β-lactamases. These findings could assist to expand the understanding of AR in terms of enzyme production.202336741474
986140.9999The Frequency of qnr Genes in Extended-Spectrum β-lactamases and non-ESBLs Klebsiella pneumoniae Species Isolated from Patients in Mashhad, Iran. BACKGROUND AND OBJECTIVES: Since the fluoroquinolones are the broad-spectrum antibiotics, they affect both Gram-negative and Gram-positive bacteria. These antibiotics are widely prescribed by physicians. As a result, some bacteria, especially Enterobacteriaceae, have shown a resistance to this family of antibiotics. The current study aimed at detecting the frequency of qnrA, qnrB, and qnrS genes, novel plasmid-mediated quinolone-resistance genes, among extended-spectrum β-lactamases (ESBL)-positive and ESBL-negative Klebsiella pneumoniae isolates. MATERIALS AND METHODS: One hundred and thirty isolates of K. pneumoniae were collected from Imam Reza Hospital and its associated clinics from May 2011 to July 2012. The isolates were tested for ESBLs by the conventional methods. Polymerase chain reaction (PCR) was performed to amplify qnr A, B, and S. RESULTS: Thirty-eight (29.3%) isolates were ciprofloxacin-resistant. Among 130 K. pneumoniae infectious isolates, 56 (43%) were capable of producing ESBL; 10.8% (n=14), 15.4% (n=20), and 20.8% (n=27) of ESBL-producing K. pneumonia were positive for qnrA, qnrS, and qnrB, respectively, and 13.8% (n=18) of the isolates harbored 2 or 3 qnr genes. CONCLUSION: The results of the current study showed that quinolone-resistance genes were more frequent in ESBL-producing K. pneumoniae (37.5%) isolates, compared with the ESBL-negative isolates (20.89%). The prevalence of qnr genes was high in K. pneumoniae isolates, with higher frequency in ESBL-positive strains. Most of the isolates were positive for all 3 groups of qnr genes and the qnrB was the most common one.201729563934
1050150.9999Antibiotic resistance and β-lactam resistant genes among bacterial isolates from clinical, river water and poultry samples from Kathmandu, Nepal. OBJECTIVE: To assess the antibiotic resistance and beta-lactam resistance genes among bacterial isolates from clinical, river water and poultry samples. METHODS: Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were isolated from clinical, poultry and river water samples collected during 2020-22. They were subjected to antimicrobial susceptibility tests following the CLSI guidelines. The bacteria were screened for β-lactam resistance genes bla (TEM), mcr-1, mecA and bla(NDM-1) . RESULTS: Among 2835 clinical samples, E. coli was the most frequently isolated bacterium (10.3%, 292), followed by S. aureus (6.0%, 169) and P. aeruginosa (4.0%, 143). Of the E. coli isolates, 64.4% exhibited multidrug resistance (MDR) and 43.8% were extended-spectrum β-lactamase (ESBL) producers, with 44.5% and 16.4% harbouring the blaTEM and mcr-1 genes, respectively. Among S. aureus isolates, 80.9% of methicillin-resistant strains (MRSA) carried the mecA gene, while 30.1% of metallo-β-lactamase (MBL)-producing P. aeruginosa were positive for the blaNDM-1 gene. In poultry samples, 30.4% of E. coli isolates harboured the blaTEM gene among 128 ESBL producers, and the prevalence of colistin-resistant isolates carrying mcr-1 was higher than in clinical samples. In contrast, the occurrence of ESBL-producing E. coli and MRSA, along with their associated resistance genes, was lower in water samples. CONCLUSIONS: This study demonstrated widespread multidrug resistance (MDR) and ESBL production among clinical, poultry and river water bacterial isolates in the Kathmandu valley. Colistin-resistant E. coli carrying the mcr-1 gene, methicillin-resistant S. aureus (MRSA) with mecA and metallo-β-lactamase (MBL)-producing P. aeruginosa harboring blaNDM-1 were detected across sources. These findings emphasize an urgent One Health approach to curb the growing threat of antimicrobial resistance in the region.202541113068
1071160.9999Characterization of Beta-Lactamase and Fluoroquinolone Resistance Determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa Isolates from a Tertiary Hospital in Yola, Nigeria. Infections due to antimicrobial resistant gram-negative bacteria cause significant morbidity and mortality in sub-Saharan Africa. To elucidate the molecular epidemiology of antimicrobial resistance in gram-negative bacteria, we characterized beta-lactam and fluoroquinolone resistance determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates collected from November 2017 to February 2018 (Period 1) and October 2021 to January 2022 (Period 2) in a tertiary medical center in north-eastern Nigeria. Whole genome sequencing (WGS) was used to identify sequence types and resistance determinants in 52 non-duplicate, phenotypically resistant isolates. Antimicrobial susceptibility was determined using broth microdilution and modified Kirby-Bauer disk diffusion methods. Twenty sequence types (STs) were identified among isolates from both periods using WGS, with increased strain diversity observed in Period 2. Common ESBL genes identified included bla(CTX-M), bla(SHV,) and bla(TEM) in both E. coli and K. pneumoniae. Notably, 50% of the E. coli in Period 2 harbored either bla(CTX-M-15) or bla(CTX-M-1 4) and phenotypically produced ESBLs. The bla(NDM-7) and bla(VIM-5) metallo-beta-lactamase genes were dominant in E. coli and P. aeruginosa in Period 1, but in Period 2, only K. pneumoniae contained bla(NDM-7), while bla(NDM-1) was predominant in P. aeruginosa. The overall rate of fluoroquinolone resistance was 77% in Period 1 but decreased to 47.8% in Period 2. Various plasmid-mediated quinolone resistance (PMQR) genes were identified in both periods, including aac(6')-Ib-cr, oqxA/oqxB, qnrA1, qnrB1, qnrB6, qnrB18, qnrVC1, as well as mutations in the chromosomal gyrA, parC and parE genes. One E. coli isolate in Period 2, which was phenotypically multidrug resistant, had ESBL bla(CTX-M-15,) the serine carbapenemase, bla(OXA-181) and mutations in the gyrA gene. The co-existence of beta-lactam and fluoroquinolone resistance markers observed in this study is consistent with widespread use of these antimicrobial agents in Nigeria. The presence of multidrug resistant isolates is concerning and highlights the importance of continued surveillance to support antimicrobial stewardship programs and curb the spread of antimicrobial resistance.202337999619
997170.9999Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted.201627221683
2121180.9999Investigation of VIM, IMP, NDM-1, KPC AND OXA-48 enzymes in Enterobacteriaceae strains. Gram-negative bacteria especially Enterobacteriaceae species have become an increasing etiologic agent of nosocomial infections. The development of resistance to carbapenems have become an increasing problem in the treatment of nosocomial infections. Especially carbapenamases are common for Enterobacteriaceae strains. This study was performed to detect the types of carbapenemases in Enterobacteriaceae strains isolated from various clinical samples. Enterobacteriaceae species were isolated from urine, blood, tracheal aspirates, wound, and other respiratory samples. Susceptibility of isolates to imipenem, meropenem and ertapenem was tested. Carbapenemase genes were studied using HyplexSuperBug ID kit. VIM (1-13), IMP (1-22), NDM-1, KPC(1-10) and OXA-48 genes were investigated. Ninety-five isolates of Enterobacteriaceae spp. were included in the study. Sixty isolates were resistant to imipenem, meropenem and ertapenem and 20 isolates were found resistant to imipenem or ertapenem while 15 were susceptible to all carbapenems. Among the isolates with carbapenem resistance, 57 were positive for one carbapenemase gene and susceptible isolates did not have carbapenemase gene. OXA-48 was found in 49 of the isolates (86%), NDM-1 in 6 (10.5%) isolates, VIM in 2 isolates. IMP and KPC gene loci were not identified. Carbapenemase genes play a crucial role in the development and spread of resistant strains.201526051720
1457190.9999Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. BACKGROUND: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (bla(TEM) and bla(CTX-M)) in the clinical samples from patients. METHODS: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby-Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes bla(TEM) and bla(CTX-M). RESULTS: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the bla(CTX-M) gene and 41.6% (5/12) tested positive for the bla(TEM) gene. CONCLUSION: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance.202133562276