# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1441 | 0 | 1.0000 | Molecular characterisation of carbapenem-resistant Klebsiella pneumoniae clinical isolates: preliminary experience from a tertiary care teaching hospital in the Himalayas. BACKGROUND: There is a lack of whole-genome sequencing (WGS) data on multidrug-resistant (MDR) bacteria from the Uttarakhand region of India. The aim of this study was to generate WGS data of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates recovered from patients in Uttarakhand's tertiary care centre. METHODS: A cross-sectional study included 29 MDR K. pneumoniae test isolates obtained from various clinical samples submitted to the bacteriology laboratory for culture and sensitivity testing from July 2018 to August 2019. After preliminary identification and antibiotic susceptibility testing, these isolates were subjected to WGS. RESULTS: A total of 27 of 29 isolates were CRKP. ST14 was the most common sequence type (n=8 [29.6%]). Carbapenem resistance was mainly encoded by OXA-48-like genes (21/27 [77.8%]). All isolates had a varied arsenal of resistance genes to different antibiotic classes. KL2 (9/27 [33.3%]) and KL51 (8/27 [29.6%]) were dominant K loci types. O1 and O2 together accounted for 88.9% (n=27) of CRKP isolates. Genes encoding yersiniabactin (ybt) and aerobactin (iuc) were identified in 88.9% (24/27) and 29.6% (8/27) of isolates. The predominant plasmid replicons present were ColKP3 (55.5%), IncFII(K) (51.8%) and IncFIB(pQil) (44.4%). CONCLUSIONS: This study emphasises the need for continued genomic surveillance of MDR bacteria that could be instrumental in developing treatment guidelines based on integrating phenotypic and molecular methods. | 2022 | 35029688 |
| 1422 | 1 | 0.9997 | Identification of bla(OXA-51-23-58), bla(VIM), bla(NDM), and bla(IMP) carbapenemase genes in Acinetobacter baumannii isolates from hospitalized patients. OBJECTIVE: The increase of multidrug-resistant (MDR) strains of Acinetobacter baumannii (A. baumannii), especially carbapenem-resistant strains, is challenging for treating infections. This study investigated the antibiotic resistance pattern and frequency of carbapenem resistance genes (oxacillinase and metallo-beta-lactamase) in A. baumannii. RESULTS: In this study, 100 bacterial isolates were collected from clinical samples from different hospitals in Isfahan, central of Iran. Of 100 samples of bloodstream, urine, cerebrospinal fluid (CSF), wound, and trachea, 60 bacteria were identified as A. baumannii. The results showed that 100% of the selected isolates were resistant to cefotaxime, ceftazidime, ciprofloxacin, piperacillin-tazobactam, and meropenem. Based on the antibiotic resistance pattern, 25 isolates were chosen for PCR analysis targeting bla(OXA-51), bla(OXA-23), bla(OXA-58), bla(NDM), bla(IMP), and bla(VIM) genes PCR results revealed that among the selected isolates, 15 (60.0%) harbored the bla(OXA-23) gene, 23 (92.0%) contained the bla(OXA-51) gene, and 1 (4.0%) isolate carried the bla(NDM) gene. Based on MLST analysis, two colistin-resistant Acinetobacter baumannii isolates were categorized as ST2. The ST2 clone represents the predominant sequence type within the CC2 or international clone two. The results showed that the best antibiotic against isolates was colistin. bla(OXA-51) and bla(OXA-23) genes (oxacillinase genes) were dominant genes, but bla(IMP) and bla(OXA-58) were not local carbapenem resistant genes in Isfahan. | 2024 | 39736661 |
| 2110 | 2 | 0.9997 | First report of carbapenems encoding multidrug-resistant gram-negative bacteria from a pediatric hospital in Gaza Strip, Palestine. BACKGROUND: The worldwide prevalence of multi-drug resistance (MDR) in Gram-negative bacteria (GNB), particularly related to extended-spectrum beta-lactamases (ESBLs) and carbapenemases, poses significant global public health and clinical challenges. OBJECTIVES: To characterize ESBL-producing Gram-negative bacilli, within a pediatric hospital in Gaza using whole genome sequencing (WGS). METHODS: A total of 158 clinical isolates of Gram-negative bacilli were collected from Al-Nasser Pediatric Hospital. These isolates were tested for ESBL production using the double disk synergy test. The antibiotic susceptibility profile was determined using the Kirby Bauer method following the Clinical and Laboratory Standard Institute guidelines. Selected 15 phenotypically MDR isolates were whole-genome sequenced and characterized for their genome-based species identity and antibiotic resistance gene profile. RESULTS: Of the 158 isolates, 93 (58.9%) were positive for ESBL production. The frequency of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Proteus mirabilis, and Serratia marcescens was 50%, 22.7%, 22.7%, 1.8%, 1.2%, and 1.2% respectively. The prevalence of ESBL among urine, pus, blood, and sputum was 64%, 44%, 23%, and 63.6%, respectively. Chloramphenicol, Imipenem, and Meropenem were the most effective antibiotics against ESBL producers. In sequenced isolates, an average of six anti-microbial resistance (AMR) genes were noted per isolate, where one of them carried up to 13 antibiotic resistance genes. Carbapenem resistance genes such as bla(KPC-2)(6.6%), bla(PDC-36/12) (6.6%), and bla(POM-1) (6.6%) were detected. All the sequenced E. coli isolates (n = 8) showed multiple resistance genes, mainly against β-lactamase (25.0%), aminoglycosides (37.5%), sulfonamides (37.5%), and genes conferring resistance to tetracyclines (25.0). CONCLUSION: Our results showed a high prevalence of ESBL-producing GNB isolated from a pediatric hospital in the Gaza Strip. Various antibiotic resistance genes were identified, including those encoding ESBL and carbapenems. The results highlight the significant challenge posed by MDR in GNB and emphasize the need for effective antibiotic strategies. Given the high endemicity observed in various studies from Palestine, it is important to conduct clinical and molecular epidemiology research to identify risk factors, transmission patterns, and clinical outcomes associated with GNB strains that carry ESBL and carbapenem resistance genes. | 2024 | 39379824 |
| 1119 | 3 | 0.9997 | Prevalence and molecular characterization of antibiotic resistance and associated genes in Klebsiella pneumoniae isolates: A clinical observational study in different hospitals in Chattogram, Bangladesh. OBJECTIVE: This study was performed to investigate the prevalence of multidrug resistance and molecular characterization of Klebsiella pneumoniae (KPN) from clinical isolates in the southern region of Bangladesh. Additional analysis of the prevalence of blaNDM-1, blaSHV-11, uge genes of KPN was also carried out among these clinical isolates. METHOD: The study was carried out using 1000 clinical isolates collected from two different hospitals of Chattogram. A drug susceptibility test was performed by the disk diffusion method to detect KPN's response to 16 antibiotics. The presence of antibiotic-resistant and (or) virulent genes blaNDM-1, blaSHV-11, uge were investigated using the PCR technique. Isolates having blaNDM-1, blaSHV-11, uge gene were further validated by sequencing followed by phylogenetic analysis. Phylogenetic relationships among these isolates were determined by Clustal omega and MEGA7. RESULT: A total of 79%, 77%, 74.9%, 71%, 66% and 65% isolates exhibited resistance against cefuroxime, cefixime, cefotaxime, ceftazidime, cefepime and ceftriaxone respectively. The frequency of resistance to other antibiotics varied from 26.5% to 61.8%. PCR analysis showed that 64% of strains harbored blaNDM-1 gene, and 38% strains harbored blaSHV-11 gene. Moreover, 47% of samples were carrying uge gene, and 19% of samples carried blaNDM-1, blaSHV-11, uge genes together. CONCLUSION: In this study, we've analysed the pattern of expression as well as prevalence of blaNDM-1, blaSHV-11, and uge genes in Klebsiella isolates. Upon molecular and statistical analysis, we found a high prevalence of multi-drug resistance KPN strains in the isolates. The Klebsiella isolates were confirmed to harbor multiple ESBL genes and 64% of the isolates were found to be producing NDM-1. As multidrug resistance is an alarming issue, continuous surveillance and routine clinical detection of resistant bacteria and plasmids are necessary to prevent catastrophic public health incidents. | 2021 | 34506611 |
| 2111 | 4 | 0.9997 | Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients. | 2019 | 31819545 |
| 1450 | 5 | 0.9997 | The Spread of Insertion Sequences Element and Transposons in Carbapenem Resistant Acinetobacter baumannii in a Hospital Setting in Southwestern Iran. BACKGROUND: Acinetobacter baumannii is one of the most important hospital pathogenic bacteria that cause infectious diseases. The present study aimed to determine the frequency of carbapenem resistance genes in association with transposable elements and molecular typing of carbapenem-resistant A. baumannii bacteria collected from patients in Shiraz, Iran. MATERIALS AND METHODS: A total of 170 carbapenem-resistant A. baumannii isolates were obtained from different clinical specimens in two hospitals. The minimum inhibitory concentrations (MIC) of imipenem were determined and the prevalence of OXA Carbapenemases, Metallo-β-lactamases genes, insertion sequences (IS) elements, and transposons were evaluated by the polymerase chain reaction (PCR) method. Finally, molecular typing of the isolates was performed by the Enterobacterial Repetitive Intergenic Consensus-PCR method. RESULTS: The MICs ranged from 16 to 1,024 µg/mL for imipenem-resistant A. baumannii isolates. Out of the 170 carbapenem resistant A. baumannii isolates, bla(OXA-24-like) (94, 55.3%) followed by bla(OXA-23-like) (71, 41.7%) were predominant. In addition, A. baumannii isolates carried bla(VIM) (71, 41.7%), bla(GES) (32, 18.8%), bla(SPM) (4, 2.3%), and bla(KPC) (1, 0.6%). Moreover, ISAba1 (94.2%) and Tn2009 (39.2%) were the most frequent transposable elements. Furthermore, (71, 44.0%) and (161, 94.7%) of the ISAba1 of the isolates were associated with bla(OXA-23) and bla(OXA-51) genes, respectively. Besides (3, 1.7%), (1, 0.6%) and (5, 2.9%) of bla(OXA-23) were associated with IS18, ISAba4, and ISAba2, respectively. Considering an 80.0% cut off, clusters and four singletons were detected. CONCLUSION: According to the results, transposable elements played an important role in the development of resistance genes and resistance to carbapenems. The results also indicated carbapenem-resistant A. baumannii bacteria as a public health concern. | 2022 | 35706082 |
| 1421 | 6 | 0.9997 | Predominance of Acinetobacter spp., Harboring the bla(IMP) Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Data on colonization and hospital contamination of carbapenem-resistant Gram-negative bacteria (CR-GNB) are limited in low- and middle-income countries. We designed this study to determine the prevalence and co-existence of carbapenemase genes among CR-GNB isolated from clinical, colonization, and hospital environmental samples at a tertiary hospital in Mwanza, Tanzania. The modified Hodge test (MHT), the combined disk test (CDT), and the double-disk synergy test (DDST) were used for the phenotypic detection of carbapenemases. A multiplex PCR assay was used to detect bla(IMP) and bla(KPC), and a singleplex PCR assay was used to detect bla(OXA-48). Data were analyzed by STATA version 13.0. Overall, 68.8% (44/64) of the CR-GNB had at least one phenotype by phenotypic methods, whereby 60.9% (39/64) were both CDT and DDST positive and 31.3% (20/64) were MHT positive. A total of 23/64 (35.9%) had at least one of the genes tested with the predominance of bla(IMP) (91.3%; 21/23). In addition, 47.7% (21/44) of the CR-GNB phenotypes had at least one gene. Around 47.8% (11/23) of the CR-GNB carried multiple genes encoding for carbapenem resistance, with the maximum co-existence of bla(IMP)/bla(KPC)/bla(OXA-48) (45.5%; 5/11). The majority of carbapenem-resistant genes were detected in Acinetobacter spp. (82.6%; 19/23) and isolated from bed swabs (69.6%; 16/23). Acinetobacter spp. carrying the bla(IMP) gene predominantly contaminated the hospital environment. Therefore, we recommend routine decontamination of inanimate hospital surfaces, including patient beds. | 2022 | 35056011 |
| 1429 | 7 | 0.9997 | Detection of blaKPC and blaGES Carbapenemase Genes in Klebsiella pneumoniae Isolated from Hospitalized Patients in Kashan, Iran. INTRODUCTION: Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria are among the highly antimicrobial resistant gram negative bacteria and infections due to them are an increasingly major health problem worldwide. METHODS: In this study we have detected the blaKPC and blaGES carbapenemase genes in Klebsiella pneumoniae isolated from hospitalized patients in Kashan, Iran. In a cross-sectional study, a total of 181 K. pneumoniae isolates were recovered from clinical specimens during November 2013 to October 2014. RESULT: Antimicrobial susceptibility profiles were determined using disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI guidelines. Carbapenem-resistant K. pneumoniae isolates were identified. PCR method and sequencing were used for detection of blaKPC and blaGES carbapenemase genes. Of the 181 K. pneumoniae isolates, 35 (19.3%) were found to be resistant to imipenem and 150 (82.9%) were identified as MDR strains. Among carbapenems, the most resistant rate 39 (21.5%) was seen against ertapenem using disk diffusion method. Of K. pneumoniae isolates 21 (11.6%) and 42 (23.2%) carried blaKPC and blaGES genes, respectively and 19(10.5%) carried both genes simultaneously. CONCLUSION: The data of current study revealed that the frequency of resistance to carbapenems and production of carbapenemase enzymes especially GES type was high among clinical isolates of K pneumoniae in Kashan, Iran. | 2016 | 27527726 |
| 1440 | 8 | 0.9997 | High prevalence of carbapenem-resistant Escherichia coli ST410 from clinical isolates in Weifang, China. The objective of our work is to identify antimicrobial-resistance genes and to analyze clonality of carbapenem-resistant Escherichia coli. A total of 75 carbapenem-resistant E. coli (CREco) strains were isolated in a Chinese hospital from January 2021 to May 2023. The antibiotic susceptibility testing was conducted by BD PhoenixTM M50 System and Kirby-Bauer disk diffusion method. Whole-genome sequencing was performed on Illumina NovaSeq 6000 platform. Antimicrobial resistance genes were identified based on NCBI with ABRicate 0.8. Multilocus sequence typing (MLST) analysis for CREco was performed. Among the 75 CREco strains in this study, the most of them were isolated from urine samples (n = 20, 26.67%) at the intensive care unit (n = 14, 18.67%). Among the detected carbapenem resistance genes, blaNDM-5 was the most prevalent (n = 57, 76.00%), followed by blaNDM-4 (n = 3, 4.00%), blaNDM-9 (n = 3, 4.00%), and blaNDM-1 (n = 2, 2.67%). In addition, the colistin resistance gene mcr-1.1 (n = 11, 14.67%) and the tigecycline resistance gene tetX4 (n = 2, 2.67%) were also detected. The results of MLST revealed 25 sequence types (STs), and ST410 (n = 17) was the dominant clone. Other major STs included ST167 (n = 12), ST156 (n = 10), ST361 (n = 5), and ST101 (n = 4). Overall, CREco strains exhibited a high-level resistance rate to commonly used antimicrobial agents, and the most of them carried various NDM-coding genes, with blaNDM-5 being the predominant type. In this study, we demonstrated the diversity of carbapenem-resistant E. coli; however, the major clone was ST410. These results also show the dissemination of different clones of carbapenem-resistant E. coli. | 2025 | 40531574 |
| 1427 | 9 | 0.9997 | Prevalence and Characterization of Carbapenem-Resistant Enterobacteriaceae Isolated from Mulago National Referral Hospital, Uganda. INTRODUCTION: Carbapenemases have increasingly been reported in enterobacteriaceae worldwide. Most carbapenemases are plasmid encoded hence resistance can easily spread. Carbapenem-resistant enterobacteriaceae are reported to cause mortality in up to 50% of patients who acquire bloodstream infections. We set out to determine the burden of carbapenem resistance as well as establish genes encoding for carbapenemases in enterobacteriaceae clinical isolates obtained from Mulago National Referral Hospital, Uganda. METHODS: This was a cross-sectional study with a total of 196 clinical isolates previously collected from pus swabs, urine, blood, sputum, tracheal aspirates, cervical swabs, endomentrial aspirates, rectal swabs, Vaginal swabs, ear swabs, products of conception, wound biopsy and amniotic fluid. All isolates were subjected to phenotypic carbapenemase screening using Boronic acid-based inhibition, Modified Hodge and EDTA double combined disk test. In addition, all the isolates were subjected to PCR assay to confirm presence of carbapenemase encoding genes. RESULTS: The study found carbapenemase prevalence of 22.4% (44/196) in the isolates using phenotypic tests, with the genotypic prevalence slightly higher at 28.6% (56/196). Over all, the most prevalent gene was blaVIM (21,10.7%), followed by blaOXA-48 (19, 9.7%), blaIMP (12, 6.1%), blaKPC (10, 5.1%) and blaNDM-1 (5, 2.6%). Among 56 isolates positive for 67 carbapenemase encoding genes, Klebsiella pneumonia was the species with the highest number (52.2%). Most 32/67(47.7%) of these resistance genes were in bacteria isolated from pus swabs. CONCLUSION: There is a high prevalence of carbapenemases and carbapenem-resistance encoding genes among third generation cephalosporins resistant Enterobacteriaceae in Uganda, indicating a danger of limited treatment options in this setting in the near future. | 2015 | 26284519 |
| 1419 | 10 | 0.9997 | Dissemination of carbapenem resistance and plasmids encoding carbapenemases in Gram-negative bacteria isolated in India. BACKGROUND: Carbapenem resistance in Gram-negative bacteria is an ongoing public health problem of global dimensions leaving very few treatment options for infected patients. OBJECTIVES: To study the dissemination of plasmid-borne carbapenemase genes in Gram-negative bacteria from a diagnostic centre in Tamil Nadu, India. METHODS: A total of 151 non-repetitive isolates belonging to 10 genera were collected between January 2015 and December 2016 from a diagnostic centre in Tamil Nadu. The isolates included Escherichia coli (n = 57), Klebsiella pneumoniae (n = 45), Pseudomonas aeruginosa (n = 10), Salmonella Typhi (n = 8), Enterobacter cloacae (n = 8), Acinetobacter baumannii (n = 7), Serratia marcescens (n = 5), Achromobacter xylosoxidans (n = 5), Proteus mirabilis (n = 5), Klebsiella oxytoca (n = 5) and Elizabethkingia meningoseptica (n = 1). RESULTS: Of the 151 isolates, 71% (n = 107) and 68% (n = 103) were found to be resistant to meropenem and imipenem, respectively. The most prevalent β-lactamase gene was bla (NDM-1) (n = 22), followed by bla (OXA-181) (n = 21), bla (GES-1) (n = 11), bla (OXA-51) (n = 9), bla (GES-9) (n = 8), bla (OXA-23) (n = 7) and bla (IMP-1) (n = 3). We also observed bla (OXA-23) in E. coli (n = 4), and three K. pneumoniae were positive for both, bla (OXA-23) and bla (OXA-51). Plasmid incompatibility (inc/rep) typing results showed that the resistance genes (n = 11) were present in the isolates carrying plasmid-types IncX, IncA/C, IncFIA-FIB and IncFIIA. The plasmid-borne resistance genes in E. coli and K. pneumoniae were transferred to susceptible E. coli AB1157. CONCLUSIONS: This study highlights the prevalence of carbapenem resistance and the acquisition of plasmid-borne carbapenemase genes in Gram-negative bacteria isolated at this centre. | 2021 | 34223092 |
| 2112 | 11 | 0.9997 | Multidrug-resistant gram-negative bacteria in ICU patients of a tertiary care hospital in Saudi Arabia: distribution of carbapenemase genes in clinical and rectal swab samples. Antimicrobial resistance among Gram-negative bacteria is a growing clinical challenge. This study aimed to assess bacterial distribution, antimicrobial susceptibility, and carbapenemase gene prevalence in clinical isolates. A total of 154 patients (mean age: 57.51 ± 18.75 years) were included. Specimens were primarily sputum (42.2%), blood (22.7%), and urine (18.8%). Bacterial isolates included K pneumoniae (43.8%), A. baumannii (24%), and P. aeruginosa (13.5%). Antimicrobial susceptibility testing (AST) was conducted to evaluate resistance patterns. MDR was detected, with alarming resistance to carbapenems, β-lactams, and fluoroquinolones. A. baumannii and P. aeruginosa exhibited near-total resistance to Imipenem (IPM), Meropenem (MRP), and Ertapenem (ETP), indicating extensive drug resistance (XDR). K. pneumoniae demonstrated exceptionally high resistance to carbapenems (IPM: 90.5%, MRP: 92.9%) and β-lactam antibacterial drugs (> 90%). Fluoroquinolone resistance exceeded 90% for Ciprofloxacin and Levofloxacin in A. baumannii, P. aeruginosa, and K. pneumoniae. Aminoglycosides, particularly Gentamicin, showed moderate resistance (A. baumannii: 87%, P. aeruginosa: 69.2%). Tigecycline remained one of the few viable treatment options against K. pneumoniae. Biofilm formation was significant, with 63.6% of isolates producing biofilm, particularly P. aeruginosa (80.9%), K. pneumoniae (67.2%), and A. baumannii (48.6%), increasing their pathogenic potential. Carbapenemase production was detected in 42.9% of isolates. The most prevalent genes were blaOXA- 48 (15.6%), blaNDM (8.4%), and blaVIM (7.1%), with co-expression in 9.7% of isolates. K. pneumoniae exhibited the highest risk for carbapenemase production (OR: 4.23, p < 0.001), whereas A. baumannii had a significantly lower risk (OR: 0.20, p = 0.005). Screening swabs showed more OXA- 48 (42.1%), while clinical isolates had more NDM and VIM. Alternative resistance mechanisms were suggested in 57.3% of clinical cases. The overwhelming prevalence of MDR and Carbapenem resistance among Gram-negative bacteria, particularly K. pneumoniae and A. baumannii, emphasizes an urgent need for strict antimicrobial stewardship, advanced infection control strategies, and novel therapeutic interventions to combat resistance spread. | 2025 | 40272517 |
| 1430 | 12 | 0.9997 | Prevalence of multidrug-resistant Gram-negative bacteria from blood cultures and rapid detection of beta-lactamase-encoding genes by multiplex PCR assay. INTRODUCTION: This study aimed to determine the prevalence of multidrug-resistant Gram-negative bacteria (GNB) from blood cultures in a tertiary-care hospital and the multiplex PCR assay's ability to detect resistance genes. METHODS: A total of 388 GNB isolates obtained from hospitalized patients between November 2019 and November 2021 were included in the study. Antimicrobial susceptibility testing was done by VITEK 2 system and broth microdilution method. Beta-lactamase-encoding genes were detected by multiplex PCR assays, BioFire-Blood Culture Identification 2 (BCID2) panel (bioMérieux, France). Extended-spectrum beta-lactamases (ESBLs) were detected phenotypically with VITEK AST-GN71 card (bioMérieux, France). The isolates of GNB were classified into multidrug-resistant, extensively-drug-resistant, and pandrug-resistant categories, and their prevalence and distribution in different wards, including coronavirus diseases 2019 (COVID-19) intensive care units (ICU), were calculated. RESULTS: Results revealed that all isolates of Acinetobacter baumannii and Pseudomonas aeruginosa were multidrug-resistant as well as 91.6% of Enterobacter cloacae, 80.6% of Proteus mirabilis, and 76.1% of Klebsiella pneumoniae, respectively. In fermentative bacteria, bla(OXA-48-like) (58.1%), bla(NDM) (16.1%), bla(KPC) (9.7%) and bla(VIM) (6.5%) genes were detected. More than half of Enterobacter cloacae (58.3%) and Klebsiella pneumoniae (53.7%) produced ESBLs. Among non-fermenters, the bla(NDM) gene was carried by 55% of Pseudomonas aeruginosa and 19.5% of Acinetobacter baumannii. In the COVID-19 ICU, Acinetobacter baumannii was the most common isolate (86.1%). CONCLUSIONS: This study revealed high proportions of multidrug-resistant blood isolates and various underlying resistance genes in Gram-negative strains. The BCID2 panel seems to be helpful for the detection of the most prevalent resistance genes of fermentative bacteria. | 2022 | 38021186 |
| 1241 | 13 | 0.9996 | Spectrum of Bacterial Colonization in Patients Hospitalized for Treatment of Multidrug-Resistant Tuberculosis. This study investigated the bacterial colonization in patients admitted for treatment of drug-resistant tuberculosis in a specialized TB hospital. Identification and antimicrobial susceptibility testing of bacterial isolates (n = 62) from nasal, groin, and rectal swabs [patient cohort (n = 37)] were determined by the VITEK-MS system. Resistance gene analysis was by PCR and DNA sequencing. Molecular typing of Klebsiella pneumoniae isolates was by Multilocus Sequencing Typing (MLST). Patients (n = 13/37; 35%) were colonized by multidrug-resistant (MDR) bacteria (ESBL and MRSA) on admission. Of the 24 patients who were not colonized by MDR bacteria on admission, 46% (17/37) became colonized by MDR bacteria within 1 month of admission, mostly with ESBL-producing Enterobacteriales and resistance to aminoglycosides and fluoroquinolones. ESBL Escherichia coli (41/62; 66%) and K. pneumoniae (14/62; 23%) predominated. Genes encoding for ESBLs (bla(CTX-M-14), bla(CTX-M-15), bla(SHV-28), bla(OXA-1), and bla(OXY-2)) and plasmid-mediated quinolone resistant genes (qnrB1, qnrB4, and qnrB10) were detected. MLST revealed genetic diversity among the K. pneumoniae isolates from hospitalized patients. This study provides insight into bacterial pathogen colonization in hospitalized TB patients with the first occurrence of the qnrB4 and qnrB10 genes and co-expression of genes: qnrB4+aac(6')-lb-cr, qnrB10+aac(6')-lb-cr, qnrB4+qnrS1, and qnrB10+qnrS1 in fluoroquinolone-resistant E. coli isolates within South Africa. However, the source and colonization routes of these isolates could not be determined. | 2021 | 33074767 |
| 1239 | 14 | 0.9996 | Fluoroquinolone resistance among fecal extended spectrum βeta lactamases positive Enterobacterales isolates from children in Dar es Salaam, Tanzania. BACKGROUND: Fluoroquinolones have been, and continue to be, routinely used for treatment of many bacterial infections. In recent years, most parts of the world have reported an increasing trend of fluoroquinolone resistant (FQR) Gram-negative bacteria. METHODS: A cross-sectional study was conducted between March 2017 and July 2018 among children admitted due to fever to referral hospitals in Dar es Salaam, Tanzania. Rectal swabs were used to screen for carriage of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE). ESBL-PE isolates were tested for quinolone resistance by disk diffusion method. Randomly selected fluroquinolone resistant isolates were characterized by using whole genome sequencing. RESULTS: A total of 142 ESBL-PE archived isolates were tested for fluoroquinolone resistance. Overall phenotypic resistance to ciprofloxacin, levofloxacin and moxifloxacin was found in 68% (97/142). The highest resistance rate was seen among Citrobacter spp. (100%, 5/5), followed by Klebsiella. pneumoniae (76.1%; 35/46), Escherichia coli (65.6%; 42/64) and Enterobacter spp. (31.9%; 15/47). Whole genome sequencing (WGS) was performed on 42 fluoroquinolone resistant-ESBL producing isolates and revealed that 38/42; or 90.5%, of the isolates carried one or more plasmid mediated quinolone resistance (PMQR) genes. The most frequent PMQR genes were aac(6')-lb-cr (74%; 31/42), followed by qnrB1 (40%; 17/42), oqx, qnrB6 and qnS1. Chromosomal mutations in gyrA, parC and parE were detected among 19/42 isolates, and all were in E. coli. Most of the E. coli isolates (17/20) had high MIC values of > 32 µg/ml for fluoroquinolones. In these strains, multiple chromosomal mutations were detected, and all except three strains had additional PMQR genes. Sequence types, ST131 and ST617 predominated among E. coli isolates, while ST607 was more common out of 12 sequence types detected among the K. pneumoniae. Fluoroquinolone resistance genes were mostly associated with the IncF plasmids. CONCLUSION: The ESBL-PE isolates showed high rates of phenotypic resistance towards fluoroquinolones likely mediated by both chromosomal mutations and PMQR genes. Chromosomal mutations with or without the presence of PMQR were associated with high MIC values in these bacteria strains. We also found a diversity of PMQR genes, sequence types, virulence genes, and plasmid located antimicrobial resistance (AMR) genes towards other antimicrobial agents. | 2023 | 36882712 |
| 1428 | 15 | 0.9996 | Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI. | 2018 | 29936619 |
| 1457 | 16 | 0.9996 | Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. BACKGROUND: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (bla(TEM) and bla(CTX-M)) in the clinical samples from patients. METHODS: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby-Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes bla(TEM) and bla(CTX-M). RESULTS: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the bla(CTX-M) gene and 41.6% (5/12) tested positive for the bla(TEM) gene. CONCLUSION: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance. | 2021 | 33562276 |
| 1456 | 17 | 0.9996 | Resistance and Co-Resistance of Metallo-Beta-Lactamase Genes in Diarrheal and Urinary-Tract Pathogens in Bangladesh. Carbapenems are the antibiotics of choice for treating multidrug-resistant bacterial infections. Metallo-β-lactamases (MBLs) are carbapenemases capable of hydrolyzing nearly all therapeutically available beta-lactam antibiotics. Consequently, this research assessed the distribution of two MBL genes and three β-lactamases and their associated phenotypic resistance in diarrheal and urinary-tract infections (UTIs) to guide future policies. Samples were collected through a cross-sectional study, and β-lactamase genes were detected via PCR. A total of 228 diarrheal bacteria were isolated from 240 samples. The most predominant pathogens were Escherichia coli (32%) and Klebsiella spp. (7%). Phenotypic resistance to amoxicillin-clavulanic acid, aztreonam, cefuroxime, cefixime, cefepime, imipenem, meropenem, gentamicin, netilmicin, and amikacin was 50.4%, 65.6%, 66.8%, 80.5%, 54.4%, 41.6%, 25.7%, 41.2%, 37.2%, and 42.9%, respectively. A total of 142 UTI pathogens were identified from 150 urine samples. Klebsiella spp. (39%) and Escherichia coli (24%) were the major pathogens isolated. Phenotypic resistance to amoxicillin-clavulanic acid, aztreonam, cefuroxime, cefixime, cefepime, imipenem, meropenem, gentamicin, netilmicin, and amikacin was 93.7%, 75.0%, 91.5%, 93.7%, 88.0%, 72.5%, 13.6%, 44.4%, 71.1%, and 43%, respectively. Twenty-four diarrheal isolates carried blaNDM-1 or blaVIM genes. The overall MBL gene prevalence was 10.5%. Thirty-six UTI pathogens carried either blaNDM-1 or blaVIM genes (25.4%). Seven isolates carried both blaNDM-1 and blaVIM genes. MBL genes were strongly associated with phenotypic carbapenem and other β-lactam antibiotic resistance. blaOXA imparted significantly higher phenotypic resistance to β-lactam antibiotics. Active surveillance and stewardship programs are urgently needed to reduce carbapenem resistance in Bangladesh. | 2024 | 39203431 |
| 1453 | 18 | 0.9996 | The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. PURPOSE: The occurrence of carbapenem- and colistin-resistance among Gram-negative bacteria is increasing worldwide. The aim of this study was to understand the distribution of carbapenem- and colistin-resistance in two areas in Tamil Nadu, India. METHODOLOGY: The clinical isolates (n=89) used in this study were collected from two diagnostic centres in Tamil Nadu, India. The bacterial isolates were screened for meropenem- and colistin-resistance. Further, resistance genes blaNDM-1, blaOXA-48-like, blaIMP, blaVIM, blaKPC, mcr-1 and mcr-2 and integrons were studied. The synergistic effect of meropenem in combination with colistin was assessed. RESULTS: A total of 89 bacterial isolates were studied which included Escherichia coli (n=43), Klebsiella pneumoniae (n=18), Pseudomonas aeruginosa (n=10), Enterobacter cloacae (n=6), Acinetobacter baumannii (n=5), Klebsiella oxytoca (n=4), Proteus mirabilis (n=2) and Salmonella paratyphi (n=1). MIC testing showed that 58/89 (65 %) and 29/89 (32 %) isolates were resistant to meropenem and colistin, respectively, whereas 27/89 (30 %) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, K. oxytoca, Pseudomonas aeruginosa, and Enterobacter cloacae isolates were blaNDM-1-positive (n=20). Some strains of Escherichia coli, K. pneumoniae and K. oxytoca were blaOXA-181-positive (n=4). Class 1, 2 and 3 integrons were found in 24, 20 and 3 isolates, respectively. Nine NDM-1-positive Escherichia coli strains could transfer carbapenem resistance via plasmids to susceptible Escherichia coli AB1157. Meropenem and colistin showed synergy in 10/20 (50 %) isolates by 24 h time-kill studies. CONCLUSION: Our results highlight the distribution of carbapenem- and colistin-resistance in Gram-negative bacteria isolated from the Tamil Nadu region in South India. | 2017 | 28671537 |
| 1431 | 19 | 0.9996 | The using of the polymerase chain reaction for the detection of resistance genes in gram-negative bacteria in routine practice in a pediatric hospital. Objective - assessment of RT-PCR for the detection of carbapenem-resistance genes in gram-negative bacteria. A total, 499 strains of gram-negative microorganisms isolated in two pediatric hospitals in 2019-2020 were studied. Species identification was performed using MALDI-ToF mass-spectrometry (Bruker Daltonics, Germany). Meropenem and imipenem minimal inhibitory concentration (MIC) was determined by E-test method (BioMerieux, France). The presence of acquired carbapenemase genes of IMP, NDM, VIM, KPC, OXA-48, OXA-23, OXA-40, OXA-58-groups was determined by RT-PCR. Klebsiella pneumoniae (34%), Escherichia coli (4%), Serratia marcescens (6%) and other members of Enterobacterales (6%), also gram-negative non-glucose-fermenting bacteria Acinetobacter baumannii (14%), Pseudomonas aeruginosa (36%) were found among selected strains. Carbapenemase production was found in 385 isolates (77%). The main mechanism determining carbapenem resistance in P. aeruginosa was the production of blaVIM (100%). A. baumanii strains harbored OXA-23 (55%) and OXA-40 (45%) carbapenemases. The major determinant of carbapenem resistance in K. pneumoniae isolates was OXA-48 carbapenemase, detected in 63% strains, 13% of the strains possessed blaNDM-group, 16% isolates had a combination of blaNDM-group and blaOXA-48-like. Carbapenemase of KPC-group was found in 8% K. pneumoniae strains. OXA-48 carbapenemase prevailed (95%) among S. marcescens strains. Most of E. coli isolates harbored metallo-beta-lactamase NDM (89%). Other members of Enterobacterales most often had OXA-48 carbapenemase (57%), 39% of the isolates carried blaNDM-group. In one strain, a combination of blaNDM-group and blaOXA-48-like was discovered. RT-PCR is a fast and reliable method for the detection of acquired carbapenemases and can be recommended for routine use in bacteriological laboratories. | 2022 | 35320635 |