# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1436 | 0 | 1.0000 | Characterisation of carbapenem-resistant Gram-negative organisms from clinical specimens in Yola, Nigeria. OBJECTIVES: This study aimed to identify carbapenem-resistant Gram-negative bacteria from clinical specimens of patients in Yola, Nigeria. METHODS: Routine clinical specimens were screened for the presence of carbapenem-resistant Gram-negative bacteria using chromogenic agar plates. Susceptibility of all presumptive isolates to carbapenems was tested by MIC and disk diffusion methods. Real-time PCR was used to test for the presence of carbapenemase genes. RESULTS: Screening of 1741 clinical specimens yielded 119 (6.8%) presumptive carbapenem-resistant Gram-negative bacteria. Antimicrobial susceptibility testing confirmed carbapenem resistance in 105 of these isolates. New Delhi metallo-β-lactamase (bla(NDM)) gene was detected in 26 isolates and Verona integron-encoded metallo-β-lactamase (bla(VIM)) gene was detected in four. The mechanism of resistance could not be identified in approximately two thirds of the carbapenem-resistant isolates. CONCLUSION: While bla(NDM) and bla(VIM) accounted for 28.6% of the resistance seen, further molecular-based studies are needed to characterise the other mechanisms of carbapenem resistance in these isolates. | 2020 | 31472281 |
| 1431 | 1 | 0.9999 | The using of the polymerase chain reaction for the detection of resistance genes in gram-negative bacteria in routine practice in a pediatric hospital. Objective - assessment of RT-PCR for the detection of carbapenem-resistance genes in gram-negative bacteria. A total, 499 strains of gram-negative microorganisms isolated in two pediatric hospitals in 2019-2020 were studied. Species identification was performed using MALDI-ToF mass-spectrometry (Bruker Daltonics, Germany). Meropenem and imipenem minimal inhibitory concentration (MIC) was determined by E-test method (BioMerieux, France). The presence of acquired carbapenemase genes of IMP, NDM, VIM, KPC, OXA-48, OXA-23, OXA-40, OXA-58-groups was determined by RT-PCR. Klebsiella pneumoniae (34%), Escherichia coli (4%), Serratia marcescens (6%) and other members of Enterobacterales (6%), also gram-negative non-glucose-fermenting bacteria Acinetobacter baumannii (14%), Pseudomonas aeruginosa (36%) were found among selected strains. Carbapenemase production was found in 385 isolates (77%). The main mechanism determining carbapenem resistance in P. aeruginosa was the production of blaVIM (100%). A. baumanii strains harbored OXA-23 (55%) and OXA-40 (45%) carbapenemases. The major determinant of carbapenem resistance in K. pneumoniae isolates was OXA-48 carbapenemase, detected in 63% strains, 13% of the strains possessed blaNDM-group, 16% isolates had a combination of blaNDM-group and blaOXA-48-like. Carbapenemase of KPC-group was found in 8% K. pneumoniae strains. OXA-48 carbapenemase prevailed (95%) among S. marcescens strains. Most of E. coli isolates harbored metallo-beta-lactamase NDM (89%). Other members of Enterobacterales most often had OXA-48 carbapenemase (57%), 39% of the isolates carried blaNDM-group. In one strain, a combination of blaNDM-group and blaOXA-48-like was discovered. RT-PCR is a fast and reliable method for the detection of acquired carbapenemases and can be recommended for routine use in bacteriological laboratories. | 2022 | 35320635 |
| 2121 | 2 | 0.9998 | Investigation of VIM, IMP, NDM-1, KPC AND OXA-48 enzymes in Enterobacteriaceae strains. Gram-negative bacteria especially Enterobacteriaceae species have become an increasing etiologic agent of nosocomial infections. The development of resistance to carbapenems have become an increasing problem in the treatment of nosocomial infections. Especially carbapenamases are common for Enterobacteriaceae strains. This study was performed to detect the types of carbapenemases in Enterobacteriaceae strains isolated from various clinical samples. Enterobacteriaceae species were isolated from urine, blood, tracheal aspirates, wound, and other respiratory samples. Susceptibility of isolates to imipenem, meropenem and ertapenem was tested. Carbapenemase genes were studied using HyplexSuperBug ID kit. VIM (1-13), IMP (1-22), NDM-1, KPC(1-10) and OXA-48 genes were investigated. Ninety-five isolates of Enterobacteriaceae spp. were included in the study. Sixty isolates were resistant to imipenem, meropenem and ertapenem and 20 isolates were found resistant to imipenem or ertapenem while 15 were susceptible to all carbapenems. Among the isolates with carbapenem resistance, 57 were positive for one carbapenemase gene and susceptible isolates did not have carbapenemase gene. OXA-48 was found in 49 of the isolates (86%), NDM-1 in 6 (10.5%) isolates, VIM in 2 isolates. IMP and KPC gene loci were not identified. Carbapenemase genes play a crucial role in the development and spread of resistant strains. | 2015 | 26051720 |
| 2125 | 3 | 0.9998 | Emergence of Carbapenem-Resistant Gram-Negative Isolates in Hospital Settings in Djibouti. Introduction: The antimicrobial resistance (AMR) of bacteria is increasing rapidly against all classes of antibiotics, with the increasing detection of carbapenem-resistant isolates. However, while growing prevalence has been reported around the world, data on the prevalence of carbapenem resistance in developing countries are fairly limited. In this study, we investigated and determined the resistance rate to carbapenems among multidrug-resistant Gram-negative bacteria (MDR-GNB) isolated in Djibouti and characterized their resistance mechanisms. Results: Of the 256 isolates, 235 (91.8%) were identified as Gram-negative bacteria (GNB). Of these GNBs, 225 (95.7%) isolates exhibited a multidrug resistance phenotype, and 20 (8.5%) isolates were resistant to carbapenems, including 13 Escherichia coli, 4 Acinetobacter baumannii, 2 Klebsiella pneumoniae and 1 Proteus mirabilis. The most predominant GNB in this hospital setting were E. coli and K. pneumoniae species. Carbapenemase genes such as bla(OXA-48) and bla(NDM-5) were identified, respectively, in six and four E. coli isolates, whereas the carbapenemase bla(NDM-1) was identified in three E. coli, two K. pneumoniae, one P. mirabilis and one A. baumannii. Moreover, three A. baumannii isolates co-hosted bla(OXA-23) and bla(NDM-1). Materials and Methods: A total of 256 clinical strains collected between 2019 and 2020 were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). Antibiotic susceptibility testing was performed using disk diffusion and E-test methods. Real-time polymerase chain reaction (RT-PCR), standard PCR and sequencing were used to investigate genes encoding for extended-spectrum-β-lactamases, carbapenemases and colistin resistance genes. Conclusions: We report, for the first time, the presence of MDR-GNB clinical isolates and the emergence of carbapenem-resistant isolates in Djibouti. In addition to performing antimicrobial susceptibility testing, we recommend phenotypic and molecular screening to track the spread of carbapenemase genes among clinical GNB isolates. | 2023 | 37508230 |
| 1437 | 4 | 0.9998 | Novel multiplex PCRs for detection of the most prevalent carbapenemase genes in Gram-negative bacteria within Germany. Introduction. Gram-negative bacteria are a common source of infection both in hospitals and in the community, and antimicrobial resistance is frequent among them, making antibiotic therapy difficult, especially when these isolates carry carbapenem resistance determinants.Hypothesis/Gap Statement. A simple method to detect all the commonly found carbapenemases in Germany was not available.Aim. The aim of this study was to develop a multiplex PCR for the rapid and reliable identification of the most prevalent carbapenemase-encoding genes in Gram-negative bacteria in Germany.Methodology. Data from the German Gram-negative reference laboratory revealed the most prevalent carbapenemase groups in Germany were (in order of prevalence): bla (VIM), bla (OXA-48), bla (OXA-23), bla (KPC), bla (NDM), bla (OXA-40), bla (OXA-58), bla (IMP), bla (GIM), bla (GES), ISAba1-bla (OXA-51), bla (IMI), bla (FIM) and bla (DIM). We developed and tested two multiplex PCRs against 83 carbapenem-resistant Gram-negative clinical isolates. Primers were designed for each carbapenemase group within conserved regions of the encoding genes obtained from publicly available databases. Multiplex-1 included the carbapenemase groups bla (VIM), bla (OXA-48), bla (OXA-23), bla (KPC), bla (NDM) and bla (OXA-40), while multiplex-2 included bla (OXA-58), bla (IMP), bla (GIM), bla (GES), ISAba1-bla (OXA-51) and bla (IMI).Results. In the initial evaluation, all but one of the carbapenemases encoded by 75 carbapenemase-positive isolates were detected using the two multiplex PCRs, while no false-positive results were obtained from the remaining eight isolates. After evaluation, we tested 546 carbapenem-resistant isolates using the multiplex PCRs, and all carbapenemases were detected.Conclusion. A rapid and reliable method was developed for detection and differentiation of 12 of the most prevalent carbapenemase groups found in Germany. This method allows for the rapid testing of clinical isolates prior to species identification and does not require prior phenotypical characterization, constituting a rapid and valuable tool in the management of infections in hospitals. | 2021 | 33448924 |
| 2124 | 5 | 0.9998 | Evaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City. BACKGROUND & OBJECTIVE: Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide including Iran. The emergence of this pathogen is worrying as carbapenem is one of the 'last-line' antibiotics for treatment of infections caused by multi drug resistant gram- negative bacteria. The main objective of this study was to determine the prevalence of carbapenem-resistant Enterobacteriaceae in a referral hospital in Tehran, Iran. METHODS: In this study, all positive isolates of Enterobacteriaceae recorded in blood, urine, and other body fluids were studied during April 2017 to April 2018 in a referral hospital in Tehran. All cases of resistance to carbapenems were first tested by modified Hodge test. All cases with positive or negative test, after gene extraction, were examined genotypically based on the primers designed for the three Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), and OXA-48 genes by conventional PCR method. RESULTS: 108 isolates (13.6%) were resistant to all cephalosporins as well as to imipenem and meropenem. In a genotypic study, including 45 isolates, 13 isolates were positive for OXA-48 gene, 11 isolates for OXA-48 and NDM genes, 11 isolates for OXA-48, NDM and KPC genes, 4 isolates for OXA-48 genes and KPC, 3 isolates for NDM, one isolate for KPC. On the other hand, two isolates were negative for all three genes examined. CONCLUSION: OXA-48 gene was one of the most common genes resistant to carbapenems in Iran. According to studies, the prevalence of antibiotic resistance in Iran is rising dramatically, which reduces the choice of antibiotics to treat severe infections in the future. | 2020 | 32215024 |
| 2119 | 6 | 0.9998 | Detection of bla(IMP) and bla(VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains. Acquired Metallo-β-Lactamases (MBLs) are emerging resistance determinants in Pseudomonas aeruginosa and other gram-negative bacteria.Using Combination Disk Diffusion test, it was found that among 83 imipenem non-susceptible P. aeruginosa strains, 48 (57.9%) were MBL producers. PCR and Sequencing methods proved that these isolates were positive for blaIMP-1 genes, whereas none were positive for bla(VIM) genes. The mortality rate due to MBL-producing Pseudomonas infection was 4 (8.3%) among the hospitalized patients. Therefore, identification of drug resistance patterns in P. aeruginosa and detection of MBLs producing isolates are of great importance in the prevention and control of infections. | 2013 | 23638331 |
| 1459 | 7 | 0.9998 | Molecular characterization of carbapenem-resistance in Gram-negative isolates obtained from clinical samples at Jimma Medical Center, Ethiopia. BACKGROUND: In resource-constrained settings, limited antibiotic options make treating carbapenem-resistant bacterial infections difficult for healthcare providers. This study aimed to assess carbapenemase expression in Gram-negative bacteria isolated from clinical samples in Jimma, Ethiopia. METHODS: A cross-sectional study was conducted to assess carbapenemase expression in Gram-negative bacteria isolated from patients attending Jimma Medical Center. Totally, 846 Gram-negative bacteria were isolated and identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Phenotypic antibiotic resistance patterns were determined using the Kirby-Bauer disk diffusion method and Etest strips. Extended-spectrum β-lactamase phenotype was determined using MAST disks, and carbapenemases were characterized using multiplex polymerase chain reactions (PCR). RESULTS: Among the isolates, 19% (157/846) showed phenotypic resistance to carbapenem antibiotics. PCR analysis revealed that at least one carbapenemase gene was detected in 69% (107/155) of these strains. The most frequently detected acquired genes were blaNDM in 35% (37/107), blaVIM in 24% (26/107), and blaKPC42 in 13% (14/107) of the isolates. Coexistence of two or more acquired genes was observed in 31% (33/107) of the isolates. The most common coexisting acquired genes were blaNDM + blaOXA-23, detected in 24% (8/33) of these isolates. No carbapenemase-encoding genes could be detected in 31% (48/155) of carbapenem-resistant isolates, with P. aeruginosa accounting for 85% (41/48) thereof. CONCLUSION: This study revealed high and incremental rates of carbapenem-resistant bacteria in clinical samples with various carbapenemase-encoding genes. This imposes a severe challenge to effective patient care in the context of already limited treatment options against Gram-negative bacterial infections in resource-constrained settings. | 2024 | 38328425 |
| 2126 | 8 | 0.9998 | Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections. | 2014 | 24707481 |
| 912 | 9 | 0.9998 | Carbapenem and colistin-resistant bacteria in North Lebanon: Coexistence of mcr-1 and NDM-4 genes in Escherichia coli. INTRODUCTION: The increasing incidence of infections caused by multidrug-resistant bacteria is considered a global health problem. This study aimed to investigate this resistance in Gram-negative bacteria isolated from patients hospitalized in North-Lebanon. METHODOLOGY: All isolates were identified using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antibiotic susceptibility testing was achieved using disk diffusion, E-test and Broth microdilution methods. Phenotypic detection of carbapenemase was carried out using the CarbaNP test. RT-PCR, standard-PCR and sequencing were performed to detect resistance genes and oprD gene. Conjugal transfer was carried out between our isolates and Escherichia coli J53 to detect the genetic localization of resistance genes. MLST was conducted to determine the genotype of each isolate. RESULTS: Twenty-three carbapenem-resistant Enterobacterales of which eight colistin-resistant Escherichia coli, and Twenty carbapenem-resistant Pseudomonas aeruginosa were isolated. All isolates showed an imipenem MIC greater than 32 mg/mL with MICs for colistin greater than 2 mg/L for E. coli isolates. All the Enterobacterales isolates had at least one carbapenemase-encoding gene, with E. coli isolates coharboring blaNDM-4 and mcr-1 genes. Moreover, 16/20 Pseudomonas aeruginosa harbored the blaVIM-2 gene and 18/20 had mutations in the oprD gene. MLST revealed that the isolates belonged to several clones. CONCLUSIONS: We report here the first description in the world of clinical E. coli isolates coharboring blaNDM-4 and mcr-1 genes, and K. pneumoniae isolates producing NDM-6 and OXA-48 carbapenemases. Also, we describe the emergence of NDM-1-producing E. cloacae in Lebanon. Screening for these isolates is necessary to limit the spread of resistant microorganisms in hospitals. | 2021 | 34343118 |
| 2111 | 10 | 0.9998 | Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients. | 2019 | 31819545 |
| 992 | 11 | 0.9998 | Phenotypic and genotypic evaluation of beta-lactamases (ESBL and KPC) among enterobacteria isolated from community-acquired monomicrobial urinary tract infections. Beta-lactamases enzymes such as extended-spectrum beta-lactamases (ESBL) and carbapenemase type beta-lactamases (KPC) confer resistance to beta-lactam drugs among Gram-negative rods, mainly Enterobacteriaceae, as those frequently related to urinary tract infections (UTI). The aim of this study was to evaluate ESBL and KPC among enterobacteria isolated from monomicrobial UTI and to establish correlations between the presence of genetic markers and the phenotypic resistance to beta-lactam antibiotics. Out of 12 304 urine samples collected during 2009, 93 enterobacteria showing an ESBL phenotype were recovered. Imipenem was used for KPC screening and modified disk approximation assay was used for detection of ESBL phenotype. Polymerase chain reaction was used for screening of bla(SHV), bla(TEM), bla(CTX-M), and bla(KPC). Considering the isolated bacteria showing ESBL phenotype 56% of the isolates were positive for two genes. The bla(TEM) was the most frequent (87·1%). Neither KPC phenotype nor bla(KPC)-harboring bacteria were observed. Monitoring the antimicrobial resistance is extremely important to sustain empirical therapy of community-acquired urinary tract infections (Co-UTI). | 2014 | 24621159 |
| 1503 | 12 | 0.9998 | OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections. Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of bla(KPC), bla(NDM), bla(VIM), bla(OXA-48,) and bla(IMP) carbapenemase genes. The bla(OXA-48) gene was detected in 24 (77.4%) of the tested isolates while bla(VIM) gene was detected in 8 (25.8%), both bla(KPC) and bla(NDM) genes were co-present in 1 (3.2%) isolate. Plasmids carrying the bla(OXA-48) gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s). | 2021 | 34571766 |
| 2120 | 13 | 0.9998 | Antimicrobial Resistance Patterns of Gram-negative Bacteria in an Iranian Referral Pediatric Hospital: A Present Danger of New Delhi Metallo-β- lactamase. BACKGROUND: Antimicrobial resistance among gram-negative bacteria has been growing, particularly in developing countries, like Iran. The emergence and spread of carbapenem-resistance mechanisms is a major public health concern because no definite treatments have yet been established for this problem. This study aimed to evaluate antibiotic susceptibility of gram-negative bacteria, metallo-β-lactamases (MBLs) and carbapenemase-producing genes, including bla (NDM), bla (VIM), and bla (IMP) in patients referred to Children's Medical Center, Tehran, Iran. MATERIAL AND METHODS: In this cross-sectional study, a total of 944 gram-negative isolates were tested in the study, and antimicrobial susceptibility testing was performed. Moreover, MBL production of carbapenem-resistant isolates, as well as the presence of bla (NDM), bla (VIM), and bla (IMP), was investigated. RESULTS: The most common gram-negative isolated bacteria were Escherichia coli (489 samples, 52%), followed by Klebsiella pneumoniae (167 samples, 18%), Pseudomonas aeruginosa (101 samples, 11%), Enterobacter spp. (64 samples, 7%), Pseudomonas spp. (35 samples, 4%), Acinetobacter baumannii (18 samples, 2%), and Burkholderia cepacia (17 samples, 2%). Imipenemresistant was found in 75%, 61%, and 60% of Stenotrophomonas maltophilia, Enterobacter spp., and A. baumannii isolates, respectively. Moreover, the highest resistance to meropenem was observed in S. maltophilia, A. baumannii, P. aeruginosa, and B. cepacia (100%, 96%, 83%, and 61.5%, respectively). Double disk synergy test (DDST) results showed that 112 out of 255 carbapenem- resistant isolates (44%) were MBL-producing ones. The presence of the bla (NDM) gene was identified in 32 (29%) of MBL-producing isolates, 13 of which were K. pneumoniae, 7 P. aeruginosa, and 7 E. coli, 3 Enterobacter spp., and 2 Klebsiella spp., respectively. The presence of the bla (IMP) and bla (VIM) genes was detected in 2 (2%) and 1 (1%) of MBL-producing isolates. These genes were detected in only MBL-producing P. aeruginosa isolates. CONCLUSION: Our findings suggest the emergence of NDM-producing strains in our hospital, and bla NDM was the most frequently detected carbapenemase gene in MBL-producing P. aeruginosa, K. pneumoniae, and Klebsiella spp. Since such bacteria can easily spread among patients in the hospital, a strong infection control and prevention plan is highly recommended. | 2023 | 37106518 |
| 1430 | 14 | 0.9998 | Prevalence of multidrug-resistant Gram-negative bacteria from blood cultures and rapid detection of beta-lactamase-encoding genes by multiplex PCR assay. INTRODUCTION: This study aimed to determine the prevalence of multidrug-resistant Gram-negative bacteria (GNB) from blood cultures in a tertiary-care hospital and the multiplex PCR assay's ability to detect resistance genes. METHODS: A total of 388 GNB isolates obtained from hospitalized patients between November 2019 and November 2021 were included in the study. Antimicrobial susceptibility testing was done by VITEK 2 system and broth microdilution method. Beta-lactamase-encoding genes were detected by multiplex PCR assays, BioFire-Blood Culture Identification 2 (BCID2) panel (bioMérieux, France). Extended-spectrum beta-lactamases (ESBLs) were detected phenotypically with VITEK AST-GN71 card (bioMérieux, France). The isolates of GNB were classified into multidrug-resistant, extensively-drug-resistant, and pandrug-resistant categories, and their prevalence and distribution in different wards, including coronavirus diseases 2019 (COVID-19) intensive care units (ICU), were calculated. RESULTS: Results revealed that all isolates of Acinetobacter baumannii and Pseudomonas aeruginosa were multidrug-resistant as well as 91.6% of Enterobacter cloacae, 80.6% of Proteus mirabilis, and 76.1% of Klebsiella pneumoniae, respectively. In fermentative bacteria, bla(OXA-48-like) (58.1%), bla(NDM) (16.1%), bla(KPC) (9.7%) and bla(VIM) (6.5%) genes were detected. More than half of Enterobacter cloacae (58.3%) and Klebsiella pneumoniae (53.7%) produced ESBLs. Among non-fermenters, the bla(NDM) gene was carried by 55% of Pseudomonas aeruginosa and 19.5% of Acinetobacter baumannii. In the COVID-19 ICU, Acinetobacter baumannii was the most common isolate (86.1%). CONCLUSIONS: This study revealed high proportions of multidrug-resistant blood isolates and various underlying resistance genes in Gram-negative strains. The BCID2 panel seems to be helpful for the detection of the most prevalent resistance genes of fermentative bacteria. | 2022 | 38021186 |
| 997 | 15 | 0.9998 | Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted. | 2016 | 27221683 |
| 1502 | 16 | 0.9998 | Tunisian Multicenter Study on the Prevalence of Colistin Resistance in Clinical Isolates of Gram Negative Bacilli: Emergence of Escherichia coli Harbouring the mcr-1 Gene. BACKGROUND: Actually, no data on the prevalence of plasmid colistin resistance in Tunisia are available among clinical bacteria. OBJECTIVES: This study aimed to investigate the current epidemiology of colistin resistance and the spread of the mcr gene in clinical Gram-negative bacteria (GNB) isolated from six Tunisian university hospitals. METHODS: A total of 836 GNB strains were inoculated on COL-R agar plates with selective screening agar for the isolation of GNB resistant to colistin. For the selected isolates, mcr genes, beta-lactamases associated-resistance genes and molecular characterisation were screened by PCRs and sequencing. RESULTS: Colistin-resistance was detected in 5.02% (42/836) of the isolates and colistin-resistant isolates harboured an ESBL (bla(CTX-M-15)) and/or a carbapenemase (bla(OXA-48), bla(VIM)) encoding gene in 45.2% of the cases. The mcr-1 gene was detected in four E. coli isolates (0.59%) causing urinary tract infections and all these isolates also contained the bla(TEM-1) gene. The bla(CTX-M-15) gene was detected in three isolates that also carried the IncY and IncFIB replicons. The genetic environment surrounding the mcr-carrying plasmid indicated the presence of pap-2 gene upstream mcr-1 resistance marker with unusual missing of ISApl1 insertion sequence. THE CONCLUSIONS: This study reports the first description of the mcr-1 gene among clinical E. coli isolates in Tunisia and provides an incentive to conduct routine colistin susceptibility testing in GNB clinical isolates. | 2022 | 36290048 |
| 1447 | 17 | 0.9998 | Molecular detection of β-lactamase and integron genes in clinical strains of Klebsiella pneumoniae by multiplex polymerase chain reaction. INTRODUCTION: Infections caused by β-lactamase-producing gram-negative bacteria, such as Klebsiella pneumoniae, are increasing globally with high morbidity and mortality. The aim of the current study was to determine antimicrobial susceptibility patterns and the prevalence of antibiotic resistance genes (β-lactamase and integron genes) using multiplex PCR. METHODS: One-hundred K. pneumoniae isolates were collected from different clinical samples. Antibiotic susceptibility testing was performed with thirteen different antibiotics. Multiplex-PCR was used to detect β-lactamase (bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC) and integron genes (int I, int II, and int III). RESULTS: The highest and lowest rate of resistance was exhibited against amikacin (93%) and imipenem (8%), respectively. The frequency of β-lactamase-positive K. pneumoniae was 37%, and the prevalence of the bla TEM, bla CTX-M, bla SHV , bla VEB, bla PER, bla GES, bla VIM, bla IMP, bla OXA, and bla KPC genes was 38%, 24%, 19%, 12%, 6%, 11%, 33%, 0%, 28%, and 23%, respectively. Of the 100 isolates, eight (8%) were positive for class I integrons; however, class II and III integrons were not detected in any of the strains. CONCLUSIONS: These results indicate co-carriage of a number of β-lactamase genes and antibiotic resistance integrons on the same plasmids harboring multi-drug resistance genes. It seems that these properties help to decrease treatment complications due to resistant bacterial infections by rapid detection, infection-control programs and prevention of transmission of drug resistance. | 2017 | 28700049 |
| 1438 | 18 | 0.9998 | Prevalence and molecular characterization of carbapenemase-producing gram-negative bacteria from a university hospital in China. BACKGROUND: The increasing emergence of carbapenem resistance in gram-negative bacteria associated with carbapenemase prompted the initiation of this study. METHODS: A total of 3139 gram-negative bacteria were recovered from a 3380-bed university hospital in Wenzhou during 2008 and 2012. Antimicrobial susceptibility was determined using the VITEK2 Compact System and agar dilution method. The phenotype and genotype of carbapenemase were demonstrated using the modified Hodge test, PCR and sequencing. A conjugation experiment was performed to reveal the transferability of resistant genes. The location of the carbapenemase gene was studied by plasmid analysis and southern blot hybridization. Clonal relatedness of the isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS: Overall, 751 of 3139 isolates (71/2055 Enterobacteriaceae, 510/620 Acinetobacter baumannii and 170/464 Pseudomonas aeruginosa) exhibited resistance to carbapenem. Carbapenemase-encoding genes were detected in 70.4% (50/71) of carbapenem-resistant Enterobacteriaceae, including blaKPC (80%) and blaIMP (20%). All A. baumannii subjected to genotype analysis were positive for blaOXA-51-like and co-harboured blaOXA-23-like (80.4%) and blaIMP (7.8%). ISAba1 was found upstream of blaOXA-23-like and blaOXA-51-like. Eight and seven strains of 170 P. aeruginosa carried blaIMP and blaVIM, respectively. PFGE analysis identified at least one dominant genotype in certain species. Four KPC-2-producing Klebsiella pneumoniae belonged to the same sequence type ST11. The plasmids carrying blaKPC were successfully transferred into recipient strains. CONCLUSION: This study highlights the challenge of increasing prevalence of carbapenem resistance associated with carbapenemase genes and dissemination of epidemic clones in Wenzhou, China. | 2016 | 26463362 |
| 2127 | 19 | 0.9998 | Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. The aim of this study was to identify the resistance genes and genetic relationship of carbapenemase-resistant Klebsiella pneumoniae (CRKP) identified in a tertiary university hospital in Turkey. During the study, CRKP was isolated from 137 patients. Resistance genes were studied in 94 isolates. Among these isolates, most of the CRKP produced only oxacillinase (OXA)-48 (91.5%); however, 4.3% of the isolates produced only New Delhi metallo-beta-lactamase 1 (NDM-1), 1% produced both OXA-48 and NDM-1, and 3.2% produced imipenem. This study adds Turkey to the growing list of countries with NDM-1-producing bacteria and shows that NDM-1 may easily spread worldwide. | 2013 | 23623803 |