Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
140901.0000Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. Carbapenem-resistant gram-negative bacteria are an increasingly significant clinical threat globally. This risk may be underestimated in Kenya as only four carbapenemase genes in three bacterial species have been described. The study aimed to understand the antibiotic resistance profiles, genes, sequence types, and distribution of carbapenem-resistant gram-negative bacteria from patients in six hospitals across five Kenyan counties by bacterial culture, antibiotic susceptibility testing, and whole-genome sequence analysis. Forty-eight, non-duplicate, carbapenem non-susceptible, clinical isolates were identified across the five counties (predominantly in Nairobi and Kisii): twenty-seven Acinetobacter baumannii, fourteen Pseudomonas aeruginosa, three Escherichia coli, two Enterobacter cloacae, and two Klebsiella pneumoniae. All isolates were non-susceptible to β-lactam drugs with variable susceptibility to tigecycline (66%), minocycline (52.9%), tetracycline (29.4%), and levofloxacin (22.9%). Thirteen P. aeruginosa isolates were resistant to all antibiotics tested. Eleven carbapenemase genes were identified: blaNDM-1, blaOXA-23, -58, -66, -69, and -91 in A. baumannii (STs 1, 2, 164 and a novel ST1475), blaNDM-1 in E. cloacae (STs 25,182), blaNDM-1, blaVIM-1and -6, blaOXA-50 in P. aeruginosa (STs 316, 357, 654, and1203), blaOXA-181, blaNDM-1 in K. pneumoniae (STs 147 and 219), and blaNDM-5 in E. coli (ST164). Five A. baumannii isolates had two carbapenemases, blaNDM-1, and either blaOXA-23 (4) or blaOXA-58 (1). AmpC genes were detected in A. baumannii (blaADC-25), E. cloacae (blaDHA-1 and blaACT-6, 16), and K. pneumoniae (blaCMY). Significant multiple-drug resistant genes were the pan-aminoglycoside resistance16srRNA methyltransferase armA, rmtB, rmtC, and rmtF genes. This study is the first to report blaOXA-420, -58, -181, VIM-6, and blaNDM-5 in Kenyan isolates. High-risk STs of A. baumannii (ST1475, ST2), E. cloacae ST182, K. pneumoniae ST147, P. aeruginosa (ST357, 654), and E. coli ST167, ST648 were identified which present considerable therapeutic danger. The study recommends urgent carbapenem use regulation and containment of high-risk carbapenem-resistant bacteria.202133617559
141910.9997Dissemination of carbapenem resistance and plasmids encoding carbapenemases in Gram-negative bacteria isolated in India. BACKGROUND: Carbapenem resistance in Gram-negative bacteria is an ongoing public health problem of global dimensions leaving very few treatment options for infected patients. OBJECTIVES: To study the dissemination of plasmid-borne carbapenemase genes in Gram-negative bacteria from a diagnostic centre in Tamil Nadu, India. METHODS: A total of 151 non-repetitive isolates belonging to 10 genera were collected between January 2015 and December 2016 from a diagnostic centre in Tamil Nadu. The isolates included Escherichia coli (n = 57), Klebsiella pneumoniae (n = 45), Pseudomonas aeruginosa (n = 10), Salmonella Typhi (n = 8), Enterobacter cloacae (n = 8), Acinetobacter baumannii (n = 7), Serratia marcescens (n = 5), Achromobacter xylosoxidans (n = 5), Proteus mirabilis (n = 5), Klebsiella oxytoca (n = 5) and Elizabethkingia meningoseptica (n = 1). RESULTS: Of the 151 isolates, 71% (n = 107) and 68% (n = 103) were found to be resistant to meropenem and imipenem, respectively. The most prevalent β-lactamase gene was bla (NDM-1) (n = 22), followed by bla (OXA-181) (n = 21), bla (GES-1) (n = 11), bla (OXA-51) (n = 9), bla (GES-9) (n = 8), bla (OXA-23) (n = 7) and bla (IMP-1) (n = 3). We also observed bla (OXA-23) in E. coli (n = 4), and three K. pneumoniae were positive for both, bla (OXA-23) and bla (OXA-51). Plasmid incompatibility (inc/rep) typing results showed that the resistance genes (n = 11) were present in the isolates carrying plasmid-types IncX, IncA/C, IncFIA-FIB and IncFIIA. The plasmid-borne resistance genes in E. coli and K. pneumoniae were transferred to susceptible E. coli AB1157. CONCLUSIONS: This study highlights the prevalence of carbapenem resistance and the acquisition of plasmid-borne carbapenemase genes in Gram-negative bacteria isolated at this centre.202134223092
145320.9996The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. PURPOSE: The occurrence of carbapenem- and colistin-resistance among Gram-negative bacteria is increasing worldwide. The aim of this study was to understand the distribution of carbapenem- and colistin-resistance in two areas in Tamil Nadu, India. METHODOLOGY: The clinical isolates (n=89) used in this study were collected from two diagnostic centres in Tamil Nadu, India. The bacterial isolates were screened for meropenem- and colistin-resistance. Further, resistance genes blaNDM-1, blaOXA-48-like, blaIMP, blaVIM, blaKPC, mcr-1 and mcr-2 and integrons were studied. The synergistic effect of meropenem in combination with colistin was assessed. RESULTS: A total of 89 bacterial isolates were studied which included Escherichia coli (n=43), Klebsiella pneumoniae (n=18), Pseudomonas aeruginosa (n=10), Enterobacter cloacae (n=6), Acinetobacter baumannii (n=5), Klebsiella oxytoca (n=4), Proteus mirabilis (n=2) and Salmonella paratyphi (n=1). MIC testing showed that 58/89 (65 %) and 29/89 (32 %) isolates were resistant to meropenem and colistin, respectively, whereas 27/89 (30 %) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, K. oxytoca, Pseudomonas aeruginosa, and Enterobacter cloacae isolates were blaNDM-1-positive (n=20). Some strains of Escherichia coli, K. pneumoniae and K. oxytoca were blaOXA-181-positive (n=4). Class 1, 2 and 3 integrons were found in 24, 20 and 3 isolates, respectively. Nine NDM-1-positive Escherichia coli strains could transfer carbapenem resistance via plasmids to susceptible Escherichia coli AB1157. Meropenem and colistin showed synergy in 10/20 (50 %) isolates by 24 h time-kill studies. CONCLUSION: Our results highlight the distribution of carbapenem- and colistin-resistance in Gram-negative bacteria isolated from the Tamil Nadu region in South India.201728671537
142230.9996Identification of bla(OXA-51-23-58), bla(VIM), bla(NDM), and bla(IMP) carbapenemase genes in Acinetobacter baumannii isolates from hospitalized patients. OBJECTIVE: The increase of multidrug-resistant (MDR) strains of Acinetobacter baumannii (A. baumannii), especially carbapenem-resistant strains, is challenging for treating infections. This study investigated the antibiotic resistance pattern and frequency of carbapenem resistance genes (oxacillinase and metallo-beta-lactamase) in A. baumannii. RESULTS: In this study, 100 bacterial isolates were collected from clinical samples from different hospitals in Isfahan, central of Iran. Of 100 samples of bloodstream, urine, cerebrospinal fluid (CSF), wound, and trachea, 60 bacteria were identified as A. baumannii. The results showed that 100% of the selected isolates were resistant to cefotaxime, ceftazidime, ciprofloxacin, piperacillin-tazobactam, and meropenem. Based on the antibiotic resistance pattern, 25 isolates were chosen for PCR analysis targeting bla(OXA-51), bla(OXA-23), bla(OXA-58), bla(NDM), bla(IMP), and bla(VIM) genes PCR results revealed that among the selected isolates, 15 (60.0%) harbored the bla(OXA-23) gene, 23 (92.0%) contained the bla(OXA-51) gene, and 1 (4.0%) isolate carried the bla(NDM) gene. Based on MLST analysis, two colistin-resistant Acinetobacter baumannii isolates were categorized as ST2. The ST2 clone represents the predominant sequence type within the CC2 or international clone two. The results showed that the best antibiotic against isolates was colistin. bla(OXA-51) and bla(OXA-23) genes (oxacillinase genes) were dominant genes, but bla(IMP) and bla(OXA-58) were not local carbapenem resistant genes in Isfahan.202439736661
144140.9996Molecular characterisation of carbapenem-resistant Klebsiella pneumoniae clinical isolates: preliminary experience from a tertiary care teaching hospital in the Himalayas. BACKGROUND: There is a lack of whole-genome sequencing (WGS) data on multidrug-resistant (MDR) bacteria from the Uttarakhand region of India. The aim of this study was to generate WGS data of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates recovered from patients in Uttarakhand's tertiary care centre. METHODS: A cross-sectional study included 29 MDR K. pneumoniae test isolates obtained from various clinical samples submitted to the bacteriology laboratory for culture and sensitivity testing from July 2018 to August 2019. After preliminary identification and antibiotic susceptibility testing, these isolates were subjected to WGS. RESULTS: A total of 27 of 29 isolates were CRKP. ST14 was the most common sequence type (n=8 [29.6%]). Carbapenem resistance was mainly encoded by OXA-48-like genes (21/27 [77.8%]). All isolates had a varied arsenal of resistance genes to different antibiotic classes. KL2 (9/27 [33.3%]) and KL51 (8/27 [29.6%]) were dominant K loci types. O1 and O2 together accounted for 88.9% (n=27) of CRKP isolates. Genes encoding yersiniabactin (ybt) and aerobactin (iuc) were identified in 88.9% (24/27) and 29.6% (8/27) of isolates. The predominant plasmid replicons present were ColKP3 (55.5%), IncFII(K) (51.8%) and IncFIB(pQil) (44.4%). CONCLUSIONS: This study emphasises the need for continued genomic surveillance of MDR bacteria that could be instrumental in developing treatment guidelines based on integrating phenotypic and molecular methods.202235029688
142050.9996Metallo-β-lactamase and AmpC genes in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates from abattoir and poultry origin in Nigeria. BACKGROUND: Gram-negative bacteria (GNB) including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae represent the most relevant reservoir of resistance genes such as metallo-β-lactamase (MBL) and AmpC genes that give them the undue advantage to resist antimicrobial onslaught. This study aimed to investigate the occurrence of MBL (bla(IMP-1), bla(IMP-2), bla(VIM-1), bla(VIM-2)) and AmpC (bla(FOX), bla(DHA), bla(CMY), bla(ACC)) resistance genes in aforementioned GNB collected from abattoir and poultry sources in Nigeria. RESULTS: In total, 370 isolates were collected from abattoir tables (n = 130), anal region of cows (n = 120), and the cloacae of poultry birds (n = 120). The test isolates showed high rate of resistance to cephalosporins and carbapenems. The MBLs were phenotypically detected in 22 E. coli, 22 P. aeruginosa, and 18 K. pneumoniae isolates using combined disc test (CDT). However, only 11 E. coli, 24 P. aeruginosa, and 18 Klebsiella pneumoniae isolates were phenotypically confirmed to be AmpC producers using cefoxitin-cloxacillin double disk synergy test (CC-DDST). MBL encoding genes (particularly the bla(IMP-1) genes and bla(IMP-2) genes) were detected by polymerase chain reaction (PCR) in 12 (54.6%) E. coli, 15 (83.3%) K. pneumoniae, and 16 (72.7%) P. aeruginosa isolates. AmpC genes (particularly the bla(CMY) genes and bla(FOX) genes) were found in a total of 5 (29.4%) E. coli isolates, 5 (27.8%) isolates of K. pneumoniae, and 10 (41.7%) isolates of P. aeruginosa. CONCLUSIONS: Our study showed the circulation of MBL and AmpC genes in GNB from abattoir and poultry origin in Nigeria. Adoption of regular control policies is necessary to reduce the spread of these species as soon as possible, especially in poultry and slaughterhouses.202133882823
143160.9995The using of the polymerase chain reaction for the detection of resistance genes in gram-negative bacteria in routine practice in a pediatric hospital. Objective - assessment of RT-PCR for the detection of carbapenem-resistance genes in gram-negative bacteria. A total, 499 strains of gram-negative microorganisms isolated in two pediatric hospitals in 2019-2020 were studied. Species identification was performed using MALDI-ToF mass-spectrometry (Bruker Daltonics, Germany). Meropenem and imipenem minimal inhibitory concentration (MIC) was determined by E-test method (BioMerieux, France). The presence of acquired carbapenemase genes of IMP, NDM, VIM, KPC, OXA-48, OXA-23, OXA-40, OXA-58-groups was determined by RT-PCR. Klebsiella pneumoniae (34%), Escherichia coli (4%), Serratia marcescens (6%) and other members of Enterobacterales (6%), also gram-negative non-glucose-fermenting bacteria Acinetobacter baumannii (14%), Pseudomonas aeruginosa (36%) were found among selected strains. Carbapenemase production was found in 385 isolates (77%). The main mechanism determining carbapenem resistance in P. aeruginosa was the production of blaVIM (100%). A. baumanii strains harbored OXA-23 (55%) and OXA-40 (45%) carbapenemases. The major determinant of carbapenem resistance in K. pneumoniae isolates was OXA-48 carbapenemase, detected in 63% strains, 13% of the strains possessed blaNDM-group, 16% isolates had a combination of blaNDM-group and blaOXA-48-like. Carbapenemase of KPC-group was found in 8% K. pneumoniae strains. OXA-48 carbapenemase prevailed (95%) among S. marcescens strains. Most of E. coli isolates harbored metallo-beta-lactamase NDM (89%). Other members of Enterobacterales most often had OXA-48 carbapenemase (57%), 39% of the isolates carried blaNDM-group. In one strain, a combination of blaNDM-group and blaOXA-48-like was discovered. RT-PCR is a fast and reliable method for the detection of acquired carbapenemases and can be recommended for routine use in bacteriological laboratories.202235320635
142170.9995Predominance of Acinetobacter spp., Harboring the bla(IMP) Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Data on colonization and hospital contamination of carbapenem-resistant Gram-negative bacteria (CR-GNB) are limited in low- and middle-income countries. We designed this study to determine the prevalence and co-existence of carbapenemase genes among CR-GNB isolated from clinical, colonization, and hospital environmental samples at a tertiary hospital in Mwanza, Tanzania. The modified Hodge test (MHT), the combined disk test (CDT), and the double-disk synergy test (DDST) were used for the phenotypic detection of carbapenemases. A multiplex PCR assay was used to detect bla(IMP) and bla(KPC), and a singleplex PCR assay was used to detect bla(OXA-48). Data were analyzed by STATA version 13.0. Overall, 68.8% (44/64) of the CR-GNB had at least one phenotype by phenotypic methods, whereby 60.9% (39/64) were both CDT and DDST positive and 31.3% (20/64) were MHT positive. A total of 23/64 (35.9%) had at least one of the genes tested with the predominance of bla(IMP) (91.3%; 21/23). In addition, 47.7% (21/44) of the CR-GNB phenotypes had at least one gene. Around 47.8% (11/23) of the CR-GNB carried multiple genes encoding for carbapenem resistance, with the maximum co-existence of bla(IMP)/bla(KPC)/bla(OXA-48) (45.5%; 5/11). The majority of carbapenem-resistant genes were detected in Acinetobacter spp. (82.6%; 19/23) and isolated from bed swabs (69.6%; 16/23). Acinetobacter spp. carrying the bla(IMP) gene predominantly contaminated the hospital environment. Therefore, we recommend routine decontamination of inanimate hospital surfaces, including patient beds.202235056011
145280.9995Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu. Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were < 0.06 to >128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical isolates of E. hormaechei and P. rettgeri in India.201626198414
141890.9995Nosocomial infections and antimicrobial susceptibility patterns among patients admitted to intensive care unit of Imam Khomeini hospital in Ilam, Iran. INTRODUCTION: Nosocomial infections (NIs) are a major challenge worldwide. Identification of antibiotic resistance pattern extended spectrum beta-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE) were the objectives of this study. METHODS: In this cross-sectional study, the antimicrobial susceptibility pattern of bacterial isolates collected from patients with NIs in ICU was determined. Overall, 42 Escherichia coli and Klebsiella pneumoniae isolates from different infection sites were used to determine phenotypic tests of ESBLs, Metallo-β-lactamases (MBLs) and CRE. Detection of ESBLs, MBLs and CRE genes were performed by the polymerase chain reaction (PCR) method. RESULTS: From 71 patients with NIs, 103 different bacterial strains were isolated. The most frequently isolated bacteria were E. coli (n = 29; 28.16%), Acinetobacter baumannii (n = 15; 14.56%), and K. pneumoniae (n = 13; 12.26%). Also, the rate of multidrug-resistant (MDR) isolates was 58.25% (60/103). Based on phenotypic confirmation tests, 32 (76.19%) isolates of E. coli and K. pneumoniae produced ESBLs, and 6 (14.28%) isolates were identified as CRE producers. PCR showed the high prevalence of the bla(CTX-M) (n = 29; 90.62%) in ESBL genes. In addition, bla(NDM) was detected in 4 (66.66%), bla(OXA-23) in 3 (50%), and bla(OXA-48) gene in 1 (16.66%) isolates. The bla(VIM), bla(KPC), and bla(IMP) genes were not detected in any of the isolates. CONCLUSION: The Gram-negative bacteria E. coli, A. baumannii, and K. pneumoniae with high resistance levels were the most common bacteria causing NIs in the ICU. This study for the first time identified bla(OXA-11), bla(OXA-23), and bla(NDM-1) genes in E. coli and K. pneumoniae in Ilam city of Iran.202337155016
1417100.9995Prevalence and Phenotypic and Molecular Characterization of Carbapenemase-Producing Gram-Negative Bacteria in Gabon. Data collection and monitoring of carbapenemase-producing (CP) Gram-negative bacteria (GNB) are often limited. This study determined CP-GNB prevalence in Gabon and the genetic origins of the resistance genes. From January 2016 to March 2018, 869 clinically significant GNB isolates from inpatients and outpatients, and 19 fecal samples (inpatients) were analyzed in the main hospitals of Gabon. Fecal samples were screened using ChromID® CARBA SMART selective chromogenic medium biplates. Species were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Antibiotic susceptibility was tested using the disk diffusion method on Müller-Hinton agar, and resistance genes were assessed by multiplex polymerase chain reaction and sequencing. Overall, 1.61% of clinical isolates (14 of 869) and 5.26% of fecal samples (1 of 19) were CP-GNB. The CP-GNB rate was higher among inpatients (2.98%) than outpatients (0.33%), in intensive care units (28.57%, 4 of 14), and in urine samples (35.71%, 5 of 14). The most common CP-GNB were Klebsiella pneumoniae (53.33%) and Acinetobacter baumannii (26.67%). blaOXA-48 was the predominant carbapenemase-encoding gene (40%), followed by blaNDM-5 (33.33%). The A. baumannii multilocus sequence types ST2 and ST78, Enterobacter cloacae ST78, Escherichia coli ST2, and K. pneumonia ST48 and ST147 were found. These data indicate that CP bacteria are present in clinical and carriage samples. Preventive measures are needed to avoid the spread of resistance genes.202336535247
1451110.9995Molecular Epidemiology of Extensively Drug-Resistant mcr Encoded Colistin-Resistant Bacterial Strains Co-Expressing Multifarious β-Lactamases. Plasmid-mediated colistin resistance (Col-R) conferred by mcr genes endangers the last therapeutic option for multifarious β-lactamase-producing bacteria. The current study aimed to explore the mcr gene molecular epidemiology in extensively drug-resistant (XDR) bacteria. Col-R gram-negative bacterial strains were screened using a minimum inhibitory concentration (MIC) breakpoint ≥4 µg/mL. Resistant isolates were examined for mcr variants, extended-spectrum β-lactamase, AmpC, and carbapenemase genes using polymerase chain reaction (PCR). The MIC breakpoints for mcr-positive strains were determined using broth microdilution and E-test strips. Overall, 19/718 (2.6%) gram-negative rods (GNRs) harboring mcr were identified, particularly in pus (p = 0.01) and tracheal secretions (p = 0.03). Molecular epidemiology data confirmed 18/19 (95%) mcr-1 and 1/19 (5%) mcr-2 genes. Integron detection revealed 15/17 (88%) Int-1 and 2/17 (12%) Int-2. Common co-expressing drug-resistant β-lactamase genes included 8/16 (50%) bla(CTM-1), 3/16 (19%) bla(CTM-15), 3/3 (100%) bla(CMY-2), 2/8 (25%) bla(NDM-1), and 2/8 (25%) bla(NDM-5). The MIC(50) and MIC(90) values (µg/mL) were as follows: Escherichia coli, 12 and 24; Klebsiella pneumoniae, 12 and 32; Acinetobacter baumannii, 8 and 12; and Pseudomonas aeruginosa, 32 and 64, respectively. Treatment of XDR strains has become challenging owing to the co-expression of mcr-1, mcr-2, multifarious β-lactamase genes, and integrons.202133923991
1433120.9995Carbapenem resistance in gram-negative pathogens in an Iranian hospital: high prevalence of OXA-type carbapenemase genes. BACKGROUND: The widespread dissemination of carbapenem- resistant gram-negative bacteria poses a significant threat to global public health. PURPOSE: This study aimed to investigate the prevalence of carbapenem resistance in gram-negative bacteria isolated from patients at the Children's Medical Center Hospital, Tehran, Iran, to understand the molecular mechanisms underlying this resistance. METHODS: During the period spanning from June 2019 to June 2020, 777 gram-negative bacterial strains were isolated. Antibiotic susceptibility testing was performed according to Clinical and Laboratory Standards Institute. Polymerase chain reaction was used to detect carbapenem resistance genes including bla OXA23, bla OXA24, bla OXA48, bla OXA51, bla OXA58, bla OXA143, bla KPC, bla IMP, bla VIM, and bla NDM. RESULTS: Among the total bacterial isolates, 141 (18.1%) exhibited carbapenem resistance. Escherichia coli was the most prevalent (57.4%), followed by Klebsiella pneumoniae (11.3%), and Acinetobacter baumannii (10.6%). Other notable contributors included Enterobacter spp. (5.7%), Salmonella spp. (3.5%), and Stenotrophomonas maltophilia (2.8%). Citrobacter spp., Proteus mirabilis, and Pseudomonas aeruginosa contributed to the distributions of 2, 1, and 3 isolates, respectively. Notably, bla OXA48 showed the highest prevalence (33%), followed by bla OXA143 and bla OXA5 8 (27% and 24%, respectively). In addition, bla OXA24 was present in 11% of the total isolates, bla OXA23 in 10%, and bla NDM in 10%, whereas bla KPC, bla VIM, and bla IMP were not detected. CONCLUSION: Our study highlights the prevalence of carbapenemase- producing gram-negative isolates among pediatric patients. Notable resistance patterns, especially in K. pneumoniae and E. coli, underline the urgent need for proactive interventions, including appropriate antibiotic prescription practices and strengthening of antibiotic stewardship programs.202539483044
1408130.9995Six Extensively Drug-Resistant Bacteria in an Injured Soldier, Ukraine. Blood and surveillance cultures from an injured service member from Ukraine grew Acinetobacter baumannii, Klebsiella pneumoniae, Enterococcus faecium, and 3 distinct Pseudomonas aeruginosa strains. Isolates were nonsusceptible to most antibiotics and carried an array of antibiotic resistant genes, including carbapenemases (bla(IMP-1), bla(NDM-1), bla(OXA-23), bla(OXA-48), bla(OXA-72)) and 16S methyltransferases (armA and rmtB4).202337406356
1429140.9994Detection of blaKPC and blaGES Carbapenemase Genes in Klebsiella pneumoniae Isolated from Hospitalized Patients in Kashan, Iran. INTRODUCTION: Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria are among the highly antimicrobial resistant gram negative bacteria and infections due to them are an increasingly major health problem worldwide. METHODS: In this study we have detected the blaKPC and blaGES carbapenemase genes in Klebsiella pneumoniae isolated from hospitalized patients in Kashan, Iran. In a cross-sectional study, a total of 181 K. pneumoniae isolates were recovered from clinical specimens during November 2013 to October 2014. RESULT: Antimicrobial susceptibility profiles were determined using disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI guidelines. Carbapenem-resistant K. pneumoniae isolates were identified. PCR method and sequencing were used for detection of blaKPC and blaGES carbapenemase genes. Of the 181 K. pneumoniae isolates, 35 (19.3%) were found to be resistant to imipenem and 150 (82.9%) were identified as MDR strains. Among carbapenems, the most resistant rate 39 (21.5%) was seen against ertapenem using disk diffusion method. Of K. pneumoniae isolates 21 (11.6%) and 42 (23.2%) carried blaKPC and blaGES genes, respectively and 19(10.5%) carried both genes simultaneously. CONCLUSION: The data of current study revealed that the frequency of resistance to carbapenems and production of carbapenemase enzymes especially GES type was high among clinical isolates of K pneumoniae in Kashan, Iran.201627527726
1456150.9994Resistance and Co-Resistance of Metallo-Beta-Lactamase Genes in Diarrheal and Urinary-Tract Pathogens in Bangladesh. Carbapenems are the antibiotics of choice for treating multidrug-resistant bacterial infections. Metallo-β-lactamases (MBLs) are carbapenemases capable of hydrolyzing nearly all therapeutically available beta-lactam antibiotics. Consequently, this research assessed the distribution of two MBL genes and three β-lactamases and their associated phenotypic resistance in diarrheal and urinary-tract infections (UTIs) to guide future policies. Samples were collected through a cross-sectional study, and β-lactamase genes were detected via PCR. A total of 228 diarrheal bacteria were isolated from 240 samples. The most predominant pathogens were Escherichia coli (32%) and Klebsiella spp. (7%). Phenotypic resistance to amoxicillin-clavulanic acid, aztreonam, cefuroxime, cefixime, cefepime, imipenem, meropenem, gentamicin, netilmicin, and amikacin was 50.4%, 65.6%, 66.8%, 80.5%, 54.4%, 41.6%, 25.7%, 41.2%, 37.2%, and 42.9%, respectively. A total of 142 UTI pathogens were identified from 150 urine samples. Klebsiella spp. (39%) and Escherichia coli (24%) were the major pathogens isolated. Phenotypic resistance to amoxicillin-clavulanic acid, aztreonam, cefuroxime, cefixime, cefepime, imipenem, meropenem, gentamicin, netilmicin, and amikacin was 93.7%, 75.0%, 91.5%, 93.7%, 88.0%, 72.5%, 13.6%, 44.4%, 71.1%, and 43%, respectively. Twenty-four diarrheal isolates carried blaNDM-1 or blaVIM genes. The overall MBL gene prevalence was 10.5%. Thirty-six UTI pathogens carried either blaNDM-1 or blaVIM genes (25.4%). Seven isolates carried both blaNDM-1 and blaVIM genes. MBL genes were strongly associated with phenotypic carbapenem and other β-lactam antibiotic resistance. blaOXA imparted significantly higher phenotypic resistance to β-lactam antibiotics. Active surveillance and stewardship programs are urgently needed to reduce carbapenem resistance in Bangladesh.202439203431
2110160.9994First report of carbapenems encoding multidrug-resistant gram-negative bacteria from a pediatric hospital in Gaza Strip, Palestine. BACKGROUND: The worldwide prevalence of multi-drug resistance (MDR) in Gram-negative bacteria (GNB), particularly related to extended-spectrum beta-lactamases (ESBLs) and carbapenemases, poses significant global public health and clinical challenges. OBJECTIVES: To characterize ESBL-producing Gram-negative bacilli, within a pediatric hospital in Gaza using whole genome sequencing (WGS). METHODS: A total of 158 clinical isolates of Gram-negative bacilli were collected from Al-Nasser Pediatric Hospital. These isolates were tested for ESBL production using the double disk synergy test. The antibiotic susceptibility profile was determined using the Kirby Bauer method following the Clinical and Laboratory Standard Institute guidelines. Selected 15 phenotypically MDR isolates were whole-genome sequenced and characterized for their genome-based species identity and antibiotic resistance gene profile. RESULTS: Of the 158 isolates, 93 (58.9%) were positive for ESBL production. The frequency of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Proteus mirabilis, and Serratia marcescens was 50%, 22.7%, 22.7%, 1.8%, 1.2%, and 1.2% respectively. The prevalence of ESBL among urine, pus, blood, and sputum was 64%, 44%, 23%, and 63.6%, respectively. Chloramphenicol, Imipenem, and Meropenem were the most effective antibiotics against ESBL producers. In sequenced isolates,  an average of six anti-microbial resistance (AMR) genes were noted per isolate, where one of them carried up to 13 antibiotic resistance genes. Carbapenem resistance genes such as bla(KPC-2)(6.6%), bla(PDC-36/12) (6.6%), and bla(POM-1) (6.6%) were detected. All the sequenced E. coli isolates (n = 8) showed multiple resistance genes, mainly against β-lactamase (25.0%), aminoglycosides (37.5%), sulfonamides (37.5%), and genes conferring resistance to tetracyclines (25.0). CONCLUSION: Our results showed a high prevalence of ESBL-producing GNB isolated from a pediatric hospital in the Gaza Strip. Various antibiotic resistance genes were identified, including those encoding ESBL and carbapenems. The results highlight the significant challenge posed by MDR in GNB and emphasize the need for effective antibiotic strategies. Given the high endemicity observed in various studies from Palestine, it is important to conduct clinical and molecular epidemiology research to identify risk factors, transmission patterns, and clinical outcomes associated with GNB strains that carry ESBL and carbapenem resistance genes.202439379824
1117170.9994CTX-M-type ESBL-mediated resistance to third-generation cephalosporins and conjugative transfer of resistance in Gram-negative bacteria isolated from hospitals in Tamil Nadu, India. Clinical pathogens, especially Gram-negative bacteria developing resistance to third-generation cephalosporins, are making clinical outcomes more complicated and serious. This study was undertaken to evaluate the distribution of CTX-M-type extended-spectrum β-lactamases (ESBLs) in Tamil Nadu, India. For this study, clinical samples were collected from five different hospitals located in Tamil Nadu and the ESBL-producing Gram-negative isolates were characterized. MIC was performed using cefotaxime and ceftazidime. The bla (ESBL)-producing genes were screened using multiplex PCR for the genes, CTX-M group-1, -2, -8, -9, -26. The conjugation studies were performed using Escherichia coli AB1157 as a recipient for the isolates harbouring plasmid-borne resistance following broth-mating experiment. In total, 1500 samples were collected and 599 Gram-negative bacteria were isolated that included E. coli (n=233), Klebsiella pneumoniae (n=182), Pseudomonas aeruginosa (n=79), Citrobacter spp. (n=30), Proteus mirabilis (n=28), Salmonella spp. (n=21), Acinetobacter baumannii (n=12), Serratia spp. (n=6), Shigella spp. (n=4), Morganella morganii (n=3) and Providencia spp. (n=1). MIC results showed that 358 isolates were resistant to cefotaxime and ceftazidime. Further, ESBL gene-amplification results showed that 19 isolates had CTX-M group-1 gene including E. coli (n=16), K. pneumoniae (n=2) and P. aeruginosa (n=1) whereas one M. morganii isolate had CTX-M group-9, which was plasmid-borne. Through conjugation studies, 12/20 isolates were found to be involved in the transformation of its plasmid-borne resistance gene. Our study highlighted the importance of horizontal gene transfer in the dissemination of plasmid-borne bla (CTX-M-type) resistance genes among the clinical isolates.202134151148
1072180.9994Characterization of carbapenem-resistant gram-negative bacterial isolates from Nigeria by whole genome sequencing. This study characterized the mechanisms of carbapenem resistance in gram-negative bacteria isolated from patients in Yola, Nigeria. Whole genome sequencing (WGS) was performed on 66 isolates previously identified phenotypically as carbapenem-non-susceptible. The patterns of beta-lactamase resistance genes identified were primarily species-specific. However, bla(NDM-7) and bla(CMY-4) were detected in all Escherichia coli and most Providencia rettgeri isolates; bla(NDM-7) was also detected in 1 Enterobacter cloacae. The E. coli and E. cloacae isolates also shared bla(OXA-1,) while bla(OXA-10) was found in all P. rettgeri, one Pseudomonas aeruginosa and 1 E. coli. Except for Stenotrophomonas maltophilia isolates, which only contained bla(L1), most species carried multiple beta-lactamase genes, including those encoding extended-spectrum beta-lactamases, AmpC and OXA in addition to a carbapenemase gene. Carbapenemase genes were either class B or class D beta-lactamases. No carbapenemase gene was detected by WGS in 13.6% of isolates.202134111650
1430190.9994Prevalence of multidrug-resistant Gram-negative bacteria from blood cultures and rapid detection of beta-lactamase-encoding genes by multiplex PCR assay. INTRODUCTION: This study aimed to determine the prevalence of multidrug-resistant Gram-negative bacteria (GNB) from blood cultures in a tertiary-care hospital and the multiplex PCR assay's ability to detect resistance genes. METHODS: A total of 388 GNB isolates obtained from hospitalized patients between November 2019 and November 2021 were included in the study. Antimicrobial susceptibility testing was done by VITEK 2 system and broth microdilution method. Beta-lactamase-encoding genes were detected by multiplex PCR assays, BioFire-Blood Culture Identification 2 (BCID2) panel (bioMérieux, France). Extended-spectrum beta-lactamases (ESBLs) were detected phenotypically with VITEK AST-GN71 card (bioMérieux, France). The isolates of GNB were classified into multidrug-resistant, extensively-drug-resistant, and pandrug-resistant categories, and their prevalence and distribution in different wards, including coronavirus diseases 2019 (COVID-19) intensive care units (ICU), were calculated. RESULTS: Results revealed that all isolates of Acinetobacter baumannii and Pseudomonas aeruginosa were multidrug-resistant as well as 91.6% of Enterobacter cloacae, 80.6% of Proteus mirabilis, and 76.1% of Klebsiella pneumoniae, respectively. In fermentative bacteria, bla(OXA-48-like) (58.1%), bla(NDM) (16.1%), bla(KPC) (9.7%) and bla(VIM) (6.5%) genes were detected. More than half of Enterobacter cloacae (58.3%) and Klebsiella pneumoniae (53.7%) produced ESBLs. Among non-fermenters, the bla(NDM) gene was carried by 55% of Pseudomonas aeruginosa and 19.5% of Acinetobacter baumannii. In the COVID-19 ICU, Acinetobacter baumannii was the most common isolate (86.1%). CONCLUSIONS: This study revealed high proportions of multidrug-resistant blood isolates and various underlying resistance genes in Gram-negative strains. The BCID2 panel seems to be helpful for the detection of the most prevalent resistance genes of fermentative bacteria.202238021186