# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1398 | 0 | 1.0000 | Association of Phylogenomic Relatedness among Neisseria gonorrhoeae Strains with Antimicrobial Resistance, Austria, 2016-2020. We investigated genomic determinants of antimicrobial resistance in 1,318 Neisseria gonorrhoeae strains isolated in Austria during 2016-2020. Sequence type (ST) 9363 and ST11422 isolates had high rates of azithromycin resistance, and ST7363 isolates correlated with cephalosporin resistance. These results underline the benefit of genomic surveillance for antimicrobial resistance monitoring. | 2022 | 35876744 |
| 855 | 1 | 0.9993 | Invasive Group A Streptococcus Hypervirulent M1(UK) Clone, Canada, 2018-2023. To determine invasive group A Streptococcus trends in Canada, we characterized emm1 isolates collected during 2018-2023. The percentage of hypervirulent M1(UK) lineage isolates increased significantly, from 22.1% in 2018 to 60.2% in 2023. Genomic analysis identified geographically and temporally associated clusters and genes associated with virulent bacteriophage acquisition. | 2024 | 39428565 |
| 1620 | 2 | 0.9992 | A survey of antimicrobial-resistant Escherichia coli prevalence in wild mammals in Japan using antimicrobial-containing media. The emergence and spread of antimicrobial-resistant bacteria and resistance genes pose serious human and animal health concerns. Therefore, to control antimicrobial-resistant bacteria in the environment, the status of antimicrobial resistance of Escherichia coli in a variety of wild mammals and their prevalence were examined using antimicrobial-containing media. In total, 750 isolates were obtained from 274/366 (74.9%) wild mammals, and antimicrobial-resistant E. coli was detected in 37/750 isolates (4.9%) from 7 animal species (26/366 [7.1%] individuals). Using antimicrobial-containing media, 14 cefotaxime (CTX)- and 35 nalidixic acid-resistant isolates were obtained from 5 (1.4%) and 17 (4.6%) individuals, respectively. CTX-resistant isolates carried bla(CTX-M-27), bla(CTX-M-55), bla(CTX-M-1), and bla(CMY-2), with multiple resistance genes. Fluoroquinolone-resistant isolates had multiple mutations in the quinolone-resistance determining regions of gyrA and parC or qnrB19. Most resistant isolates exhibited resistance to multiple antimicrobials. The prevalence of antimicrobial-resistant bacteria observed in wild mammals was low; however, it is essential to elucidate the causative factors related to the low prevalence and transmission route of antimicrobial-resistant bacteria/resistance genes released from human activities to wild animals and prevent an increase in their frequency. | 2022 | 36310042 |
| 2673 | 3 | 0.9992 | Geographical and ecological analysis of resistance, coresistance, and coupled resistance to antimicrobials in respiratory pathogenic bacteria in Spain. A multicenter susceptibility surveillance (the S.A.U.C.E. project) including 2,721 Streptococcus pneumoniae, 3,174 Streptococcus pyogenes, and 2,645 Haemophilus influenzae consecutive isolates was carried out in 25 hospitals all over Spain from November 2001 to October 2002 to evaluate the current epidemiology of resistance of the main bacteria involved in community-acquired respiratory tract infections. Susceptibility testing was performed in a single centralized laboratory by a broth microdilution method. The prevalence of resistant S. pneumoniae strains was 0.4% for cefotaxime, 4.4% for amoxicillin and amoxicillin-clavulanic acid, 25.6% for cefuroxime-axetil, 34.5% for erythromycin, clarithromycin, and azithromycin, and 36.0% for cefaclor. Phenotypes of resistance to erythromycin were MLS(B) (macrolide-lincosamide-streptogramin B) in 89.9% (gene ermB) and M (macrolide) in 9.7% of cases (gene mefA). No strain harbored both genes simultaneously. Serotypes 19, 6, 23, 14, and 3 were the most prevalent, accounting for 54.6% of the total isolates. Resistance to macrolides seems to be the most alarming point, since among penicillin-susceptible isolates it reached 15.1% compared to 55.8% among penicillin-resistant strains. Geographically, a number of regions had rates of erythromycin resistance above 40% (even higher in children). Resistance to erythromycin was also high in S. pyogenes isolates: mean regional 33.2%, beta-lactamase-producing H. influenzae were 20%, whereas 4.4% had a beta-lactamase-negative, ampicillin-resistant phenotype. We highlight the importance of different geographical frequencies of coresistance (associations of resistance to different drugs within the same species) and coupled resistance (association of resistance between different species) probably resulting from different local coselective events. | 2005 | 15855520 |
| 1650 | 4 | 0.9992 | Multidrug-Resistant Salmonella enterica 4,[5],12:i:- Sequence Type 34, New South Wales, Australia, 2016-2017. Multidrug- and colistin-resistant Salmonella enterica serotype 4,[5],12:i:- sequence type 34 is present in Europe and Asia. Using genomic surveillance, we determined that this sequence type is also endemic to Australia. Our findings highlight the public health benefits of genome sequencing-guided surveillance for monitoring the spread of multidrug-resistant mobile genes and isolates. | 2018 | 29553318 |
| 1634 | 5 | 0.9992 | Sick pets as potential reservoirs of antibiotic-resistant bacteria in Singapore. An analysis of 186 diagnostic reports collected from a veterinary clinic in Singapore between 2014 to 2016 showed that sick companion animals can carry bacteria that are of significance to human health. Among the 186 specimens submitted, 82 showed polymicrobial growth (45%, 82/186) and in total, 359 bacteria were isolated. Of the 359 bacteria reported, 45% (162/359) were multi-drug resistant and 18% (66/359) were extended-spectrum-beta-lactamase species. Resistance to broad-spectrum antibiotics were also observed among individual species. Namely, methicillin-resistance among Staphylococcus pseudintermedius (63%, 32/51) and Staphylococcus aureus (50%, 4/8); fluoroquinolone-resistance among Escherichia coli (40%, 17/42) and carbapenem-resistance among Klebsiella pneumoniae (7%, 2/30) were noted. Our analysis suggests that sick pets may contribute to the pool of clinically relevant antibiotic-resistant bacteria and play a role in the spread of antibiotic resistance in Singapore. A more extensive study to better understand the extent of distribution and the factors affecting transmission of antibiotic-resistant bacteria to and from pets is necessary. | 2018 | 30186596 |
| 2008 | 6 | 0.9992 | Genomic Epidemiology of Vibrio cholerae O139, Zhejiang Province, China, 1994-2018. Cholera caused by Vibrio cholerae O139 was first reported in Bangladesh and India in 1992. To determine the genomic epidemiology and origins of O139 in China, we sequenced 104 O139 isolates collected from Zhejiang Province, China, during 1994-2018 and compared them with 57 O139 genomes from other countries in Asia. Most Zhejiang isolates fell into 3 clusters (C1-C3), which probably originated in India (C1) and Thailand (C2 and C3) during the early 1990s. Different clusters harbored different antimicrobial resistance genes and IncA/C plasmids. The integrative and conjugative elements carried by Zhejiang isolates were of a new type, differing from ICEVchInd4 and SXT(MO10) by single-nucleotide polymorphisms and presence of genes. Quinolone resistance-conferring mutations S85L in parC and S83I in gyrA occurred in 71.2% of the Zhejiang isolates. The ctxB copy number differed among the 3 clusters. Our findings provided new insights for prevention and control of O139 cholera . | 2022 | 36285907 |
| 1659 | 7 | 0.9992 | Escherichia coli isolates from extraintestinal organs of livestock animals harbour diverse virulence genes and belong to multiple genetic lineages. Escherichia coli, the most common cause of bacteraemia in humans in the UK, can also cause serious diseases in animals. However the population structure, virulence and antimicrobial resistance genes of those from extraintestinal organs of livestock animals are poorly characterised. The aims of this study were to investigate the diversity of these isolates from livestock animals and to understand if there was any correlation between the virulence and antimicrobial resistance genes and the genetic backbone of the bacteria and if these isolates were similar to those isolated from humans. Here 39 E. coli isolates from liver (n=31), spleen (n=5) and blood (n=3) of cattle (n=34), sheep (n=3), chicken (n=1) and pig (n=1) were assigned to 19 serogroups with O8 being the most common (n=7), followed by O101, O20 (both n=3) and O153 (n=2). They belong to 29 multi-locus sequence types, 20 clonal complexes with ST23 (n=7), ST10 (n=6), ST117 and ST155 (both n=3) being most common and were distributed among phylogenetic group A (n=16), B1 (n=12), B2 (n=2) and D (n=9). The pattern of a subset of putative virulence genes was different in almost all isolates. No correlation between serogroups, animal hosts, MLST types, virulence and antimicrobial resistance genes was identified. The distributions of clonal complexes and virulence genes were similar to other extraintestinal or commensal E. coli from humans and other animals, suggesting a zoonotic potential. The diverse and various combinations of virulence genes implied that the infections were caused by different mechanisms and infection control will be challenging. | 2012 | 22766078 |
| 1137 | 8 | 0.9992 | Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014. To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. | 2016 | 27191035 |
| 1747 | 9 | 0.9992 | Multidrug-Resistant Salmonella Serotype Anatum in Travelers and Seafood from Asia, United States. A multidrug-resistant Salmonella enterica serotype Anatum strain reported in Taiwan was isolated in the United States from patients and from seafood imported from Asia. Isolates harbored 11 resistance determinants, including quinolone and inducible cephalosporin resistance genes. Most patients had traveled to Asia. These findings underscore the need for global One Health resistance surveillance. | 2020 | 32310060 |
| 2961 | 10 | 0.9991 | Molecular Characterization and Antimicrobial Susceptibility of C. jejuni Isolates from Italian Wild Bird Populations. Poultry is considered a major reservoir of human campylobacteriosis. It also been reported that not only poultry, but also wild birds, are capable of carrying C. jejuni, thus demonstrating to be a risk of spreading the bacteria in the environment. To gain insight into the population structure and investigate the antimicrobial resistance genotypes and phenotypes, we analyzed a collection of 135 C. jejuni from 15 species of wild birds in Italy. MLST revealed the presence of 41 sequence types (STs) and 13 clonal complexes (CCs). ST-179 complex and the generalist ST-45 complex were the most prevalent. Core genome MLST revealed that C. jejuni from ST-45 complex clustered according to the bird species, unlike the ST-179 complex which featured 3 different species in the same cluster. Overall we found a moderate prevalence of resistance to tetracycline (12.5%), ciprofloxacin and nalidixic acid (10%). The novel ST isolated from one pigeon showed resistance to all the antibiotics tested. The ST-179 complex (33.3%) was identified with significantly higher nalidixic acid resistance relative to other tested STs. Nine AMR genes (tet(O), cmeA, cmeB, cmeC, cmeR, aad, blaOXA-61, blaOXA-184 and erm(B)) and 23S rRNA and gyrA-associated point mutations were also described, indicating a concordance level between genotypic and phenotypic resistance of 23.3%, 23.4% and of 37.5% for streptomycin, tetracycline and quinolones/fluoroquinolones, respectively. We recommend that particular attention should be given to wild birds as key sentinel animals for the ecosystem contamination surveillance. | 2020 | 32326051 |
| 1206 | 11 | 0.9991 | A National Antimicrobial Resistance Monitoring System Survey of Antimicrobial-Resistant Foodborne Bacteria Isolated from Retail Veal in the United States. ABSTRACT: Little is known about the prevalence of antimicrobial-resistant (AMR) bacteria in veal meat in the United States. We estimated the prevalence of bacterial contamination and AMR in various veal meats collected during the 2018 U.S. National Antimicrobial Resistance Monitoring System (NARMS) survey of retail outlets in nine states and compared the prevalence with the frequency of AMR bacteria from other cattle sources sampled for NARMS. In addition, we identified genes associated with resistance to medically important antimicrobials and gleaned other genetic details about the resistant organisms. The prevalence of Campylobacter, Salmonella, Escherichia coli, and Enterococcus in veal meats collected from grocery stores in nine states was 0% (0 of 358), 0.6% (2 of 358), 21.1% (49 of 232), and 53.5% (121 of 226), respectively, with ground veal posing the highest risk for contamination. Both Salmonella isolates were resistant to at least one antimicrobial agent as were 65.3% (32 of 49) of E. coli and 73.6% (89 of 121) of Enterococcus isolates. Individual drug and multiple drug resistance levels were significantly higher (P < 0.05) in E. coli and Enterococcus from retail veal than in dairy cattle ceca and retail ground beef samples from 2018 NARMS data. Whole genome sequencing was conducted on select E. coli and Salmonella from veal. Cephalosporin resistance (blaCMY and blaCTX-M), macrolide resistance (mph), and plasmid-mediated quinolone resistance (qnr) genes and gyrA mutations were found. We also identified heavy metal resistance genes ter, ars, mer, fieF, and gol and disinfectant resistance genes qac and emrE. An stx1a-containing E. coli was also found. Sequence types were highly varied among the nine E. coli isolates that were sequenced. Several plasmid types were identified in E. coli and Salmonella, with the majority (9 of 11) of isolates containing IncF. This study illustrates that veal meat is a carrier of AMR bacteria. | 2021 | 34015113 |
| 1607 | 12 | 0.9991 | mcr-1 colistin resistance gene sharing between Escherichia coli from cohabiting dogs and humans, Lisbon, Portugal, 2018 to 2020. BackgroundThe emergence of colistin resistance is a One Health antimicrobial resistance challenge worldwide. The close contact between companion animals and humans creates opportunities for transmission and dissemination of colistin-resistant bacteria.AimTo detect potential animal reservoirs of colistin-resistant Escherichia coli and investigate the possible sharing of these bacteria between dogs, cats and their cohabiting humans in the community in Lisbon, Portugal.MethodsA prospective longitudinal study was performed from 2018 to 2020. Faecal samples from dogs and cats either healthy or diagnosed with a skin and soft tissue or urinary tract infection, and their cohabiting humans were screened for the presence of colistin-resistant E. coli. All isolates were tested by broth microdilution against colistin and 12 other antimicrobials. Colistin-resistant isolates were screened for 30 resistance genes, including plasmid-mediated colistin resistance genes (mcr-1 to mcr-9), and typed by multilocus sequence typing. Genetic relatedness between animal and human isolates was analysed by whole genome sequencing.ResultsColistin-resistant E. coli strains harbouring the mcr-1 gene were recovered from faecal samples of companion animals (8/102; 7.8%) and humans (4/125; 3.2%). No difference between control and infection group was detected. Indistinguishable multidrug-resistant E. coli ST744 strains harbouring the mcr-1 gene were found in humans and their dogs in two households.ConclusionsThe identification of identical E. coli strains containing the plasmid-mediated mcr-1 gene in companion animals and humans in daily close contact is of concern. These results demonstrate the importance of the animal-human unit as possible disseminators of clinically important resistance genes in the community setting. | 2022 | 36330821 |
| 1196 | 13 | 0.9991 | Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica. Surveillance of antimicrobial resistance (AMR) in non-typhoidal Salmonella enterica (NTS), is essential for monitoring transmission of resistance from the food chain to humans, and for establishing effective treatment protocols. We evaluated the prediction of phenotypic resistance in NTS from genotypic profiles derived from whole genome sequencing (WGS). Genes and chromosomal mutations responsible for phenotypic resistance were sought in WGS data from 3,491 NTS isolates received by Public Health England's Gastrointestinal Bacteria Reference Unit between April 2014 and March 2015. Inferred genotypic AMR profiles were compared with phenotypic susceptibilities determined for fifteen antimicrobials using EUCAST guidelines. Discrepancies between phenotypic and genotypic profiles for one or more antimicrobials were detected for 76 isolates (2.18%) although only 88/52,365 (0.17%) isolate/antimicrobial combinations were discordant. Of the discrepant results, the largest number were associated with streptomycin (67.05%, n = 59). Pan-susceptibility was observed in 2,190 isolates (62.73%). Overall, resistance to tetracyclines was most common (26.27% of isolates, n = 917) followed by sulphonamides (23.72%, n = 828) and ampicillin (21.43%, n = 748). Multidrug resistance (MDR), i.e., resistance to three or more antimicrobial classes, was detected in 848 isolates (24.29%) with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines being the most common MDR profile (n = 231; 27.24%). For isolates with this profile, all but one were S. Typhimurium and 94.81% (n = 219) had the resistance determinants bla(TEM-1,)strA-strB, sul2 and tet(A). Extended-spectrum β-lactamase genes were identified in 41 isolates (1.17%) and multiple mutations in chromosomal genes associated with ciprofloxacin resistance in 82 isolates (2.35%). This study showed that WGS is suitable as a rapid means of determining AMR patterns of NTS for public health surveillance. | 2018 | 29636749 |
| 2676 | 14 | 0.9991 | Characterization of commensal Escherichia coli isolates from slaughtered sheep in Mexico. INTRODUCTION: Commensal Escherichia coli is defined as bacteria without known virulence factors that could be playing a specific role in some diseases; however, they could be responsible to disseminate antimicrobial resistance genes to other microorganisms. This study aimed to characterize the commensal E. coli isolates obtained from slaughtered sheep in the central region of Mexico. METHODOLOGY: Isolates were classified as commensal E. coli when distinctive genes related to diarrheagenic pathotypes (stx1, stx2, eae, bfp, LT, stp, ipaH, and aggR) were discarded by PCR. Identification of serotype, phylogenetic group, and antimicrobial resistance was also performed. RESULTS: A total of 41 isolates were characterized. The phylogenetic groups found were B1 in 37 isolates (90.2%), A in 2 (4.8%), and 1 isolate (2.4%) for C and D groups. Serotypes associated with diarrhea in humans (O104:H2 and O154:NM) and hemolytic uremic syndrome (O8:NM) were detected. Thirty-three isolates (80%) were resistant to ceftazidime, 23 (56%), to tetracycline 8 (19.5%) to ampicillin, and 1 to amikacin. Six isolates (14.6%) were multidrug-resistant. CONCLUSIONS: This study provides new information about commensal E. coli in slaughtered sheep, high percentages of resistance to antibiotics, and different profiles of antimicrobial resistance were found, their dissemination constitute a risk factor towards the consuming population. | 2021 | 34898507 |
| 1657 | 15 | 0.9991 | Occurrence and genomic characterization of ESBL-producing Escherichia coli ST29 strains from swine with abundant virulence genes. Food-production animals were considered to be a major reservoir of antimicrobial-resistant bacteria and clinically relevant pathogens. The potential of commensal Escherichia coli from pigs as a source of opportunistic pathogens associated with extraintestinal infections in humans needs to be assessed. In this study, 13 E. coli isolates from an intensive pig farm in China were analyzed using whole genome sequencing followed by in-depth in silico analysis. Genomic analysis showed comprehensive antimicrobial resistance profiles, with each isolate carrying between 4 and 22 antimicrobial resistance genes. Although these E. coli isolates were assigned to low-virulence phylogroup A and B1, 31 different virulence genes were detected at least once in the 13 sequenced isolates. Extraintestinal pathogenic E. coli-associated virulence genes, including iss, iha, tsh and iroN, were found in commensal E. coli isolates in this study. Of note, a large number of virulence genes (n = 22) were identified in ESBL-producing E. coli sequence type (ST) 29 isolates. Our study revealed the presence of comprehensive antimicrobial resistance and virulence gene profiles in commensal E. coli isolates of pigs. The emerged ESBL-producing E. coli ST 29 isolates harboring a high abundance of VAGs highlighted that this new clonal linage may pose a threat to public health. | 2020 | 32918980 |
| 1135 | 16 | 0.9991 | OXA-48-Producing Uropathogenic Escherichia coli Sequence Type 127, the Netherlands, 2015-2022. During 2015-2022, a genetic cluster of OXA-48-producing uropathogenic Escherichia coli sequence type 127 spread throughout the Netherlands. The 20 isolates we investigated originated mainly from urine, belonged to Clermont phylotype B2, and carried 18 genes encoding putative uropathogenicity factors. The isolates were susceptible to first-choice antimicrobial drugs for urinary tract infections. | 2023 | 37987600 |
| 2979 | 17 | 0.9991 | Quinolone-resistant Escherichia coli in Poultry Farming. Increasing bacterial resistance to quinolone antibiotics is apparent in both humans and animals. For humans, a potential source of resistant bacteria may be animals or their products entering the human food chain, for example poultry. Between July 2013 and September 2014, samples were collected and analyzed in the Moravian regions of the Czech Republic to isolate the bacterium Escherichia coli. As a result, 212 E. coli isolates were obtained comprising 126 environmental isolates from poultry houses and 86 isolates from cloacal swabs from market-weight turkeys. Subsequently, the E. coli isolates were tested for susceptibility to selected antibiotics. Resistance of the poultry isolates to quinolones ranged from 53% to 73%. Additionally, the presence of plasmid-mediated resistance genes was studied. The genes were confirmed in 58% of the tested strains. The data on resistance of isolates from poultry were compared with results of resistance tests in human isolates obtained in the same regions. The high levels of resistance determined by both phenotyping and genotyping methods and reported in the present study confirm the fact that the use of fluoroquinolones in poultry should be closely monitored. | 2017 | 28662329 |
| 982 | 18 | 0.9991 | Seven-year surveillance of the prevalence of antimicrobial-resistant Escherichia coli isolates, with a focus on ST131 clones, among healthy people in Osaka, Japan. OBJECTIVES: Escherichia coli (E. coli) is an indicator of antimicrobial resistance, and some strains of E. coli cause infectious diseases. E. coli sequence type 131 (ST131) - a global antimicrobial-resistant pandemic E. coli clone - is frequently detected in clinical specimens. Antimicrobial-resistant bacteria are monitored via national surveillance in clinical settings; however, monitoring information in non-clinical settings is limited. This study elucidated antimicrobial resistance trends of E. coli and dissemination of ST131 among healthy people in non-clinical settings. METHODS: This study collected 517 E. coli isolates from healthy people in Osaka, Japan, between 2013 and 2019. It analysed antimicrobial susceptibility of the isolates and detected the bla and mcr genes in ampicillin-resistant and colistin-resistant isolates, respectively, and the ST131 clone. RESULTS: Antimicrobial resistance rates of the bacteria isolated from healthy people in non-clinical settings were lower than for those in clinical settings. The resistance of the isolates to cefotaxime (4.4%) and ciprofloxacin (13.5%) gradually increased during the study period. In 23 cefotaxime-resistant isolates, the most frequent bla genes belonged to the bla(CTX-M-9) group, followed by bla(CTX-M-1) goup, bla(TEM) and bla(CMY-2). One mcr-1-harbouring colistin-resistant isolate was detected in 2016. The incidence of the E. coli O25b-ST131 clone was approximately 5% until 2015 and 10% after 2016. CONCLUSION: Both ciprofloxacin resistance and O25b-ST131 clone frequency increased during the study period. Antimicrobial-resistant bacteria gradually spread in healthy people in non-clinical settings; one reason behind this spread was dissemination of global antimicrobial-resistant pandemic clones. | 2021 | 33556490 |
| 1207 | 19 | 0.9991 | Fluoroquinolone resistance in non-typhoidal Salmonella enterica isolated from slaughtered pigs in Thailand. Introduction. The emergence and spread of non-typhoidal Salmonella enterica (NTS) serovars resistant to fluoroquinolones and third- and higher-generation cephalosporins is a matter of great concern. Antimicrobial-resistant NTS is increasingly being discovered in humans, animals, food animals, food products, and agricultural environments. Pigs are considered a major reservoir of antimicrobial-resistant Salmonella spp.Hypothesis/Gap Statement. Fluoroquinolone-resistant Salmonella spp. warrant further surveillance and characterization for a better understanding of the bacteria isolated from animals.Aim. NTS isolated from pork from slaughterhouses across Thailand were characterized in terms of their serovars; resistance to fluoroquinolones, third-generation cephalosporins, and carbapenems; and antimicrobial resistance genes.Methodology. A total of 387 NTS isolates, collected from slaughtered pigs in ten provinces across Thailand between 2014 and 2015, were characterized based on their serovars, antimicrobial resistance genes, and susceptibility to fluoroquinolones, third-generation cephalosporins, and carbapenems.Results. Among all NTS isolates, S. enterica serovar Rissen was predominant. Antimicrobial resistance was exhibited in 93/387 isolates (24 %). Although 24 (6.2 %) isolates were susceptible to all the tested antimicrobials, they were found to possess β-lactamase genes, such as bla (TEM), bla (SHV), or bla (CTX-M). Mobilized colistin-resistant genes (mcr) and resistance to colistin were not observed in any tested isolate. Carbapenem resistance was detected in ten isolates (10.7 %); however, bla (KPC), bla (NDM), bla (OXA-48-like), and bla (IMP) were not present. Among the 93 antimicrobial-resistant isolates, 87.1 % showed fluoroquinolone resistance with the quinolone resistance gene (qnrS) combined with topoisomerase genes parC (T57S) or gyrA (S83E/Y and D124E/G) substitutions, or topoisomerase gene substitutions alone.Conclusion. We found high fluoroquinolone resistance rates among the NTS isolates from pigs from slaughterhouses. The fluoroquinolone resistance mechanism in NTS was associated with the combination of qnrS and substitutions in gyrA, parC, or both. To prevent the transmission of antimicrobial-resistant NTS between animals and humans, continuous monitoring, surveillance, and regulation of Salmonella in the pork supply chain are pivotal. | 2021 | 34319224 |