# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1389 | 0 | 1.0000 | Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr-10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required. | 2021 | 34956131 |
| 843 | 1 | 0.9996 | Whole Genome Sequencing Reveals Presence of High-Risk Global Clones of Klebsiella pneumoniae Harboring Multiple Antibiotic Resistance Genes in Multiple Plasmids in Mwanza, Tanzania. BACKGROUND: Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen, causing both community- and healthcare-associated infections. The resistance is due to the continuous accumulation of multiple antibiotic-resistance-genes (ARGs) through spontaneous genomic mutations and the acquisition of conjugative plasmids. This study presents antibiotics resistance genes, plasmids replicons, and virulence genes of K. pneumoniae isolates from clinical specimens in a tertiary hospital, Mwanza, Tanzania. METHODS: Whole genome sequencing (WGS) of 34 K. pneumoniae was performed, using an Illumina NextSeq 500, followed by in silco analysis. RESULTS: A total of 34 extended-spectrum beta-lactamase-producing K. pneumoniae, isolated from blood samples from neonatal units were whole-genome sequenced. Of these, 28 (82.4%) had an identified sequence type (ST), with ST14 (39.3%, n = 11) being frequently identified. Moreover, 18 (52.9%) of the bacteria harbored at least one plasmid, from which a total of 25 plasmid replicons were identified with a predominance of IncFIB(K) 48.0% (n = 12). Out of 34 sequenced K. pneumoniae, 32 (94.1%) were harboring acquired antibiotic/biocides-resistance-genes (ARGs) with a predominance of bla(CTX-M-15) (90.6%), followed by oqxB (87.5%), oqxA (84.4%), bla(TEM-1B) (84.4%) and sul2 (84.4%). Interestingly, we observed the ColRNAI plasmid-replicon (n = 1) and qacE gene (n = 4) for the first time in this setting. CONCLUSION: Global high-risk clones of K. pneumoniae isolates carry multiple ARGs in multiple plasmid-replicons. Findings from this study warrant genomic-based surveillance to monitor high-risk global clones, epidemic plasmids and ARGs in low- and middle-income countries. | 2022 | 36557648 |
| 1104 | 2 | 0.9995 | Predominance of Multidrug-Resistant Gram-Negative Bacteria Isolated from Supermarket Retail Seafood in Japan. Reports have documented antimicrobial usage in aquaculture, and the aquatic ecosystem can be considered a genetic storage site for antibiotic-resistant bacteria. This study assessed the prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria recovered from retail seafood in Hiroshima, Japan. A total of 412 bacteria were isolated and screened for the presence of β-lactamases, acquired carbapenemases, and mobile colistin-resistance (mcr) genes. Forty-five (10.9%) isolates were dominated by Morganella (28%), Proteus (22%), Aeromonas (14%), Citrobacter (8%), and Escherichia (8%) and carried AMR genes. The identified AMR genes included those encoded in integrons (19), aac(6՛)-Ib (11), bla(TEM-1) (7), bla(CTX-M-like) (12), bla(CTX-M-65) (2), bla(SHV-12) (1), bla(SHV-27) (1), bla(OXA-10) (1), bla(OXA-2) (1), and mcr (2). The most common clinical resistances were against ampicillin, colistin, sulfamethoxazole/trimethoprim, tetracycline, and ciprofloxacin. Multidrug resistance (MDR) occurred in 27 (60%) AMR isolates, and multiple antibiotic resistance indices ranged from 0.2 to 0.8. A conjugation experiment showed that 10 of the 11 selected MDR strains harbored conjugable plasmids, although PCR-based replicon typing described seven strains as untypable. IncF replicon was identified in MDR extended-spectrum β-lactamase-producing Escherichia coli of the pathogenic B2 phylogroup. Our findings suggest that retail seafood harbors MDR bacteria of human interest that require strict resistance surveillance in the seafood production continuum. | 2023 | 38138079 |
| 1085 | 3 | 0.9995 | The occurrence and molecular detection of mcr-1 and mcr-5 genes in Enterobacteriaceae isolated from poultry and poultry meats in Malaysia. The advent of antimicrobials-resistant (AMR), including colistin-resistant bacteria, poses a significant challenge to animal and human health, food safety, socio-economic growth, and the global environment. This study aimed to ascertain the colistin resistance prevalence and molecular mechanisms of colistin resistance in Enterobacteriaceae. The colistin resistance was determined using broth microdilution assay, PCR; and Sanger sequencing of mcr genes responsible for colistin resistance in Enterobacteriaceae (n = 627), including Escherichia coli (436), Salmonella spp. (n = 140), and Klebsiella pneumoniae (n = 51), obtained from chicken and chicken meats. Out of 627 Enterobacteriaceae, 8.6% of isolates exhibited colistin resistance phenotypically. Among these colistin resistant isolates, 9.3% (n = 37) were isolated from chicken meat, 7.2% (n = 11) from the cloacal swab of chicken and 7.9% (n = 6) from the litter samples. Overall, 12.96% of colistin-resistant isolates were positive with mcr genes, in which mcr-1 and mcr-5 genes were determined in 11.11% and 1.85% of colistin-resistant isolates, respectively. The E. coli isolates obtained from chicken meats, cloacal swabs and litter samples were found positive for mcr-1, and Salmonella spp. originated from the chicken meat sample was observed with mcr-5, whereas no mcr genes were observed in K. pneumoniae strains isolated from any of the collected samples. The other colistin resistance genes, including mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, mcr-9, and mcr-10 were not detected in the studied samples. The mcr-1 and mcr-5 genes were sequenced and found to be 100% identical to the mcr-1 and mcr-5 gene sequences available in the NCBI database. This is the first report of colistin resistance mcr-5 gene in Malaysia which could portend the emergence of mcr-5 harboring bacterial strains for infection. Further studies are needed to characterize the mr-5 harbouring bacteria for the determination of plasmid associated with mcr-5 gene. | 2023 | 37601372 |
| 1089 | 4 | 0.9995 | Diversity of plasmids harboring bla(CMY-2) in multidrug-resistant Escherichia coli isolated from poultry in Brazil. Multidrug-resistance (MDR) has been increasingly reported in Gram-negative bacteria from the intestinal microbiota, environment and food-producing animals. Resistance plasmids able to harbor different transposable elements are capable to mobilize antimicrobial resistance genes and transfer to other bacterial hosts. Plasmids carrying bla(CMY) are frequently associated with MDR. The present study assessed the presence of plasmid-encoded ampC genes (bla(cmy), bla(mox), bla(fox), bla(lat), bla(act), bla(mir), bla(dha), bla(mor)) in commensal E. coli isolated from apparently healthy broiler chickens. Furthermore, we characterized the plasmids and identified those harboring the resistance genes. We isolated 144/200 (72%) of E. coli isolates with resistance to cefotaxime and the resistance gene identified was bla(CMY-2). The pulsed-field gel electrophoresis (PFGE) analysis showed high diversity of the genetic profiles. The phylogenetic groups A, B1, B2, and D were identified among E. coli isolates and group D was the most prevalent. The PCR-based replicon typing (PBRT) analysis identified four distinct plasmid incompatibility groups (Inc) in MDR isolates. Moreover, plasmids harboring bla(CMY-2), ranged in size from 50kb to 150kb and 51/144 (35%) belonged to IncK, 21/144 (14.5%) to IncB/O, 8/144 (5.5%) to IncA/C, 1/144 (0.5%) to IncI, while 63/144 (44.5%) were not typeable by PBRT. Overall, a high prevalence of bla(CMY-2) genes was found in a diverse population of commensal MDR E. coli from poultry in Brazil, harbored into different plasmids. | 2017 | 28602519 |
| 1191 | 5 | 0.9995 | IncFII plasmid carrying antimicrobial resistance genes in Shigella flexneri: Vehicle for dissemination. OBJECTIVES: Plasmids harbouring antimicrobial resistance determinants in clinical strains are a significant public-health concern worldwide. The present study investigated such plasmids in clinical isolates of Shigella flexneri. METHODS: A total of 162 Shigella isolates were obtained from stool specimens in the year 2015. Among the 70 multidrug-resistant (MDR) Shigella spp., 27 S. flexneri isolates were randomly selected for further characterisation. Antimicrobial resistance genes (ARGs) and plasmid incompatibility (Inc) types were analysed. RESULTS: IncFII plasmids were found in 63% (17/27) of the studied S. flexneri isolates. ARGs such as dhfr1a (81%), sulII (74%), bla(OXA) (74%), bla(TEM) (33%), bla(AmpC) (30%), qnrS (15%) and qnrB (4%) were identified by PCR, whereas bla(CTX-M) was not detected. Next-generation sequencing of a representative S. flexneri IncFII-type plasmid (pSF470) revealed the presence of bla(TEM1-B), bla(DHA-1), qnrB10, mphA, sulI, sulII, strA, strB and tetR ARGs along with the intI1 integrase gene. In addition, pMLST analysis showed that the replicon belonged to F2:A-:B- type. CONCLUSIONS: This study helps to know the prevalent plasmid types in MDR Shigella isolates and will improve our understanding of resistance dissemination among enteric bacteria. ARGs in plasmids further highlight the importance of such studies in enteric bacteria. | 2019 | 30342929 |
| 1073 | 6 | 0.9995 | Occurrence of Extended Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram-Negative Bacteria in Fresh Vegetables, an Increasing Human Health Concern in Algeria. The aim of this study was to screen for extended spectrum cephalosporin-, carbapenem- and colistin-resistant Gram-negative bacteria in fresh vegetables in Batna, Algeria. A total of 400 samples of fresh vegetables were collected from different retail stores. Samples were immediately subjected to selective isolation, then the representative colonies were identified using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). Phenotypic and genotypic analyses were carried out in terms of species identification and relative antibiotic resistance. Transferability of the carbapenemase and mcr-bearing plasmids was verified by conjugation. The clonal relationships of carbapenemase and mcr-positive Escherichia coli isolates were studied by multi-locus sequence typing (MLST). Sixty-seven isolates were characterised and were mostly isolated from green leafy vegetables, where the dominant species identified included Citrobacter freundii, Klebsiella pneumoniae, Enterobacter cloacae, Stenotrophomona maltophilia, E. coli and Citrobacter braakii. PCR and sequencing results showed that E. coli was the bacterial species presenting the highest antibiotic resistance level in parallel to bla(TEM) (n = 16) and bla(CTX-M-15) (n = 11), which were the most detected genes. Moreover, five isolates carried carbapenemase genes, including the bla(OXA-48) and/or bla(VIM-4) genes. The mcr-1 gene was detected in two E. coli isolates. MLST analysis revealed three different E. coli sequence types: ST101 (n = 1), ST216 (n = 1) and ST2298 (n = 1). Conjugation assays confirmed the transferability of the bla(OXA-48) and mcr-1 genes. In this study we report, for the first time, the detection of the bla(OXA-48) gene in E. coli and C. braakii isolates and the bla(VIM-4) gene in vegetables. To the best of our knowledge, this is the first report on the detection of mcr-1 genes from vegetables in Algeria. | 2022 | 35892378 |
| 1074 | 7 | 0.9994 | Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from Pharmaceutical Wastewaters in South-Western Nigeria. Emergence and spread of Klebsiella pneumoniae isolates producing extended-spectrum β-lactamases (ESBLs) present a major threat to public health. In this study, we characterized β-lactam-resistant K. pneumoniae isolates from six wastewater samples obtained from two pharmaceutical industries located in Lagos and Ogun States, Nigeria. Bacteria were isolated by using MacConkey agar; species identification and antibacterial susceptibility testing were performed by Vitek 2. Etest was used for ESBL phenotype confirmation. The presence of β-lactamase genes was investigated by PCR and sequencing. Bacterial strain typing was done by XbaI-macrorestriction and subsequent pulsed-field gel electrophoresis (PFGE) as well as multilocus sequence typing (MLST). Thirty-five bacterial species were isolated from the six samples; among them, we identified seven K. pneumoniae isolates with resistance to β-lactams and co-resistance to fluoroquinolones, aminoglycosides, and folate pathway inhibitors. The ESBL phenotype was confirmed in six K. pneumoniae isolates that harbored ESBL genes bla(CTX-M-15) (n = 5), bla(SHV-2) (n = 1), and bla(SHV-12) (n = 1). PFGE and MLST analysis revealed five clones belonging to four sequence types (ST11, ST15, ST37, ST101), and clone K. pneumoniae-ST101 was present in the wastewater samples from two different pharmaceutical industries. Additionally performed conjugation assays confirmed the location of β-lactamase genes on conjugative plasmids. This is the first confirmation of K. pneumoniae isolates producing CTX-M-15-ESBL from pharmaceutical wastewaters in Nigeria. The co-resistance observed might be a reflection of the different drugs produced by these industries. Continuous surveillance of the environmental reservoirs of multidrug-resistant bacteria is necessary to prevent their further spread. | 2017 | 28375698 |
| 1072 | 8 | 0.9994 | Characterization of carbapenem-resistant gram-negative bacterial isolates from Nigeria by whole genome sequencing. This study characterized the mechanisms of carbapenem resistance in gram-negative bacteria isolated from patients in Yola, Nigeria. Whole genome sequencing (WGS) was performed on 66 isolates previously identified phenotypically as carbapenem-non-susceptible. The patterns of beta-lactamase resistance genes identified were primarily species-specific. However, bla(NDM-7) and bla(CMY-4) were detected in all Escherichia coli and most Providencia rettgeri isolates; bla(NDM-7) was also detected in 1 Enterobacter cloacae. The E. coli and E. cloacae isolates also shared bla(OXA-1,) while bla(OXA-10) was found in all P. rettgeri, one Pseudomonas aeruginosa and 1 E. coli. Except for Stenotrophomonas maltophilia isolates, which only contained bla(L1), most species carried multiple beta-lactamase genes, including those encoding extended-spectrum beta-lactamases, AmpC and OXA in addition to a carbapenemase gene. Carbapenemase genes were either class B or class D beta-lactamases. No carbapenemase gene was detected by WGS in 13.6% of isolates. | 2021 | 34111650 |
| 1241 | 9 | 0.9994 | Spectrum of Bacterial Colonization in Patients Hospitalized for Treatment of Multidrug-Resistant Tuberculosis. This study investigated the bacterial colonization in patients admitted for treatment of drug-resistant tuberculosis in a specialized TB hospital. Identification and antimicrobial susceptibility testing of bacterial isolates (n = 62) from nasal, groin, and rectal swabs [patient cohort (n = 37)] were determined by the VITEK-MS system. Resistance gene analysis was by PCR and DNA sequencing. Molecular typing of Klebsiella pneumoniae isolates was by Multilocus Sequencing Typing (MLST). Patients (n = 13/37; 35%) were colonized by multidrug-resistant (MDR) bacteria (ESBL and MRSA) on admission. Of the 24 patients who were not colonized by MDR bacteria on admission, 46% (17/37) became colonized by MDR bacteria within 1 month of admission, mostly with ESBL-producing Enterobacteriales and resistance to aminoglycosides and fluoroquinolones. ESBL Escherichia coli (41/62; 66%) and K. pneumoniae (14/62; 23%) predominated. Genes encoding for ESBLs (bla(CTX-M-14), bla(CTX-M-15), bla(SHV-28), bla(OXA-1), and bla(OXY-2)) and plasmid-mediated quinolone resistant genes (qnrB1, qnrB4, and qnrB10) were detected. MLST revealed genetic diversity among the K. pneumoniae isolates from hospitalized patients. This study provides insight into bacterial pathogen colonization in hospitalized TB patients with the first occurrence of the qnrB4 and qnrB10 genes and co-expression of genes: qnrB4+aac(6')-lb-cr, qnrB10+aac(6')-lb-cr, qnrB4+qnrS1, and qnrB10+qnrS1 in fluoroquinolone-resistant E. coli isolates within South Africa. However, the source and colonization routes of these isolates could not be determined. | 2021 | 33074767 |
| 1071 | 10 | 0.9994 | Characterization of Beta-Lactamase and Fluoroquinolone Resistance Determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa Isolates from a Tertiary Hospital in Yola, Nigeria. Infections due to antimicrobial resistant gram-negative bacteria cause significant morbidity and mortality in sub-Saharan Africa. To elucidate the molecular epidemiology of antimicrobial resistance in gram-negative bacteria, we characterized beta-lactam and fluoroquinolone resistance determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates collected from November 2017 to February 2018 (Period 1) and October 2021 to January 2022 (Period 2) in a tertiary medical center in north-eastern Nigeria. Whole genome sequencing (WGS) was used to identify sequence types and resistance determinants in 52 non-duplicate, phenotypically resistant isolates. Antimicrobial susceptibility was determined using broth microdilution and modified Kirby-Bauer disk diffusion methods. Twenty sequence types (STs) were identified among isolates from both periods using WGS, with increased strain diversity observed in Period 2. Common ESBL genes identified included bla(CTX-M), bla(SHV,) and bla(TEM) in both E. coli and K. pneumoniae. Notably, 50% of the E. coli in Period 2 harbored either bla(CTX-M-15) or bla(CTX-M-1 4) and phenotypically produced ESBLs. The bla(NDM-7) and bla(VIM-5) metallo-beta-lactamase genes were dominant in E. coli and P. aeruginosa in Period 1, but in Period 2, only K. pneumoniae contained bla(NDM-7), while bla(NDM-1) was predominant in P. aeruginosa. The overall rate of fluoroquinolone resistance was 77% in Period 1 but decreased to 47.8% in Period 2. Various plasmid-mediated quinolone resistance (PMQR) genes were identified in both periods, including aac(6')-Ib-cr, oqxA/oqxB, qnrA1, qnrB1, qnrB6, qnrB18, qnrVC1, as well as mutations in the chromosomal gyrA, parC and parE genes. One E. coli isolate in Period 2, which was phenotypically multidrug resistant, had ESBL bla(CTX-M-15,) the serine carbapenemase, bla(OXA-181) and mutations in the gyrA gene. The co-existence of beta-lactam and fluoroquinolone resistance markers observed in this study is consistent with widespread use of these antimicrobial agents in Nigeria. The presence of multidrug resistant isolates is concerning and highlights the importance of continued surveillance to support antimicrobial stewardship programs and curb the spread of antimicrobial resistance. | 2023 | 37999619 |
| 959 | 11 | 0.9994 | Analyzing Antibiotic Resistance in Bacteria from Wastewater in Pakistan Using Whole-Genome Sequencing. Background: Wastewater is a major source of Antibiotic-Resistant Bacteria (ARB) and a hotspot for the exchange of Antibiotic-Resistant Genes (ARGs). The occurrence of Carbapenem-Resistant Bacteria (CRB) in wastewater samples is a major public health concern. Objectives: This study aimed to analyze Antibiotic resistance in bacteria from wastewater sources in Pakistan. Methods: We analyzed 32 bacterial isolates, including 18 Escherichia coli, 4 Klebsiella pneumoniae, and 10 other bacterial isolates using phenotypic antibiotic susceptibility assay and whole-genome sequencing. This study identified the ARGs, plasmid replicons, and integron genes cassettes in the sequenced isolates. One representative isolate was further sequenced using Illumina and Oxford nanopore sequencing technologies. Results: Our findings revealed high resistance to clinically important antibiotics: 91% of isolates were resistant to cefotaxime, 75% to ciprofloxacin, and 62.5% to imipenem, while 31% showed non-susceptibility to gentamicin. All E. coli isolates were resistant to cephalosporins, with 72% also resistant to carbapenems. Sequence analysis showed a diverse resistome, including carbapenamases (blaNDM-5, blaOXA-181), ESBLs (blaCTX-M-15, blaTEM), and AmpC-type β-lactamases (blaCMY). Key point mutations noticed in the isolates were pmrB_Y358N (colistin) and ftsI_N337NYRIN, ftsI_I336IKYRI (carbapenem). The E. coli isolates had 11 different STs, with ST410 predominating (28%). Notably, the E. coli phylogroup A isolate 45EC1, (ST10886) is reported for the first time from wastewater, carrying blaNDM-5, blaCMY-16, and pmrB_Y358N with class 1 integron gene cassette of dfrA12-aadA2-qacEΔ1 on a plasmid-borne contig. Other carbapenamase, blaNDM-1 and blaOXA-72, were detected in K. pneumoniae 22EB1 and Acinetobacter baumannii 51AC1, respectively. The integrons with the gene cassettes encoding antibiotic resistance, and the transport and bacterial mobilization protein, were identified in the sequenced isolates. Ten plasmid replicons were identified, with IncFIB prevalent in 53% of isolates. Combined Illumina and Oxford nanopore sequencing revealed blaNDM-5 on an IncFIA/IncFIC plasmid and is identical to those reported in the USA, Myanmar, and Tanzania. Conclusions: These findings highlight the environmental prevalence of high-risk and WHO-priority pathogens with clinically important ARGs, underscoring the need for a One Health approach to mitigate ARB isolates. | 2024 | 39452204 |
| 1120 | 12 | 0.9994 | Occurrence of NDM-1 and VIM-2 Co-Producing Escherichia coli and OprD Alteration in Pseudomonas aeruginosa Isolated from Hospital Environment Samples in Northwestern Tunisia. Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (bla(NDM-1) (n = 8); bla(NDM-1) + bla(VIM-2) (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored bla(OXA-494). Other genes were also detected, notably bla(TEM) (n = 23), bla(CTX-M-1) (n = 10) and bla(CTX-M-9) (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area. | 2021 | 34573959 |
| 1729 | 13 | 0.9994 | Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia coli and Klebsiella pneumoniae in Global Food Products. Plasmid-mediated extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase producing Enterobacteriaceae, in particular Escherichia coli and Klebsiella pneumoniae, with potential zoonotic transmission routes, are one of the greatest threats to global health. The aim of this study was to investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes. We sampled 200 food products purchased from Finland capital region during fall 2018. Products originated from 35 countries from six continents and represented four food categories: vegetables (n = 60), fruits and berries (n = 50), meat (n = 60), and seafood (n = 30). Additionally, subsamples (n = 40) were taken from broiler meat. Samples were screened for ESBL/AmpC-producing Enterobacteriaceae and whole genome sequenced to identify resistance and virulence genes and sequence types (STs). To accurately identify plasmids harboring resistance and virulence genes, a hybrid sequence analysis combining long- and short-read sequencing was employed. Sequences were compared to previously published plasmids to identify potential epidemic plasmid types. Altogether, 14 out of 200 samples were positive for ESBL/AmpC-producing E. coli and/or K. pneumoniae. Positive samples were recovered from meat (18%; 11/60) and vegetables (5%; 3/60) but were not found from seafood or fruit. ESBL/AmpC-producing E. coli and/or K. pneumoniae was found in 90% (36/40) of broiler meat subsamples. Whole genome sequencing of selected isolates (n = 21) revealed a wide collection of STs, plasmid replicons, and genes conferring multidrug resistance. bla (CTX-M-15)-producing K. pneumoniae ST307 was identified in vegetable (n = 1) and meat (n = 1) samples. Successful IncFII plasmid type was recovered from vegetable and both IncFII and IncI1-Iγ types from meat samples. Hybrid sequence analysis also revealed chromosomally located beta-lactamase genes in two of the isolates and indicated similarity of food-derived plasmids to other livestock-associated sources and also to plasmids obtained from human clinical samples from various countries, such as IncI type plasmid harboring bla (TEM-52C) from a human urine sample obtained in the Netherlands which was highly similar to a plasmid obtained from broiler meat in this study. Results indicate certain foods contain bacteria with multidrug resistance and pose a possible risk to public health, emphasizing the importance of surveillance and the need for further studies on epidemiology of epidemic plasmids. | 2021 | 33613476 |
| 891 | 14 | 0.9994 | Identification of mobile colistin resistance genes (mcr-1.1, mcr-5 and mcr-8.1) in Enterobacteriaceae and Alcaligenes faecalis of human and animal origin, Nigeria. Colistin is a last-resort drug used to treat infections caused by multidrug-resistant Gram-negative bacteria that have developed carbapenem resistance. Emergence and rapid dissemination of the nine plasmid-mediated mobile colistin resistance genes (mcr-1 to mcr-9) has led to fear of pandrug-resistant infections worldwide. To date, there is only limited information on colistin resistance in African countries where the drug is widely used in agriculture. In this Nigerian study, 583 non-duplicate bacterial strains were isolated from 1119 samples from humans, camels, cattle, dogs, pigs and poultry using colistin-supplemented MacConkey agar, among which 17.0% (99/583) were colistin-resistant. PCR (mcr-1 to mcr-9) and whole-genome sequencing (WGS) identified mcr in 21.2% (21/99) of colistin-resistant isolates: mcr-1.1 (n = 13), mcr-8.1 (n = 5), mcr-1.1 and mcr-8.1 (n = 2), and mcr-1.1 and mcr-5 (n = 1). Of the 21 mcr-positive strains, 9 were isolated from human samples, with 8 being Klebsiella pneumoniae, and 6 of these human K. pneumoniae had a high colistin MIC (>64 μg/mL). In contrast, 9 of the 12 mcr-positive animal isolates were Escherichia coli, of which only 2 had a colistin MIC of >64 μg/mL. This study is the first to report mcr-1 in Alcaligenes faecalis and the emergence of mcr-5 and mcr-8 in Nigeria. WGS determined that mcr-1 was localised on an IncX4 plasmid and that 95.2% of mcr-1 harbouring isolates (20/21) transferred colistin resistance successfully by conjugation. These findings highlight the global spread of colistin resistance and emphasise the urgent need for co-ordinated global action to combat resistant bacteria. | 2020 | 32721596 |
| 1086 | 15 | 0.9994 | Antimicrobial Resistance Profiles and Co-Existence of Multiple Antimicrobial Resistance Genes in mcr-Harbouring Colistin-Resistant Enterobacteriaceae Isolates Recovered from Poultry and Poultry Meats in Malaysia. The co-existence of the colistin resistance (mcr) gene with multiple drug-resistance genes has raised concerns about the possibility of the development of pan-drug-resistant bacteria that will complicate treatment. This study aimed to investigate the antibiotic resistance profiles and co-existence of antibiotic resistance genes among the colistin-resistant Enterobacteriaceae isolates recovered from poultry and poultry meats. The antibiotic susceptibility to various classes of antibiotics was performed using the Kirby-Bauer disk diffusion method and selected antimicrobial resistance genes were detected using PCR in a total of 54 colistin-resistant Enterobacteriaceae isolates including Escherichia coli (E. coli) (n = 32), Salmonella spp. (n = 16) and Klebsiella pneumoniae (K. pneumoniae) (n = 6) isolates. Most of the isolates had multi-drug resistance (MDR), with antibiotic resistance against up to seven classes of antibiotics. All mcr-harbouring, colistin-resistant Enterobacteriaceae isolates showed this MDR (100%) phenotype. The mcr-1 harbouring E. coli isolates were co-harbouring multiple antibiotic resistance genes. The seven most commonly identified resistance genes ((bla)TEM, tetA, floR, aac-3-IV, aadA1, fosA, aac(6_)-lb) were detected in an mcr-1-harbouring E. coli isolate recovered from a cloacal swab. The mcr-5 harbouring Salmonella spp. isolate recovered from poultry meats was positive for (bla)TEM, tetA, floR, aac-3-IV, fosA and aac(6_)-lb genes. In conclusion, the colistin-resistant Enterobacteriaceae with mcr genes co-existing multiple clinically important antimicrobial resistance genes in poultry and poultry meats may cause potential future threats to infection treatment choices in humans and animals. | 2023 | 37370378 |
| 1100 | 16 | 0.9994 | Characterization of ESBL-producing Escherichia spp. and report of an mcr-1 colistin-resistance Escherichia fergusonni strain from minced meat in Pamplona, Colombia. Foods of animal origin are increasingly considered a source of extended spectrum β-lactamase (ESBL) producing bacteria which can disseminate throughout the food chain and become a health concern for humans. This work aimed to evaluate the occurrence of ESBL-producing Escherichia coli in 100 retail minced meat samples taken in markets in Pamplona, Colombia. A total of 19 ESBL-producing isolates were obtained, 18 identified as E. coli and one as E. fergusonii. Fifteen isolates (78.9 %) carried bla(CTX-M) and bla(TEM) genes, one (5.2 %) bla(SHV) and bla(TEM) genes, one isolate (5.2 %) carried bla(CTX-M) and one (5.2 %) bla(SHV) alone. The majority of CTX-M-positive E. coli isolates carried the bla(CTX-M-15) gene (13 isolates), being the bla(CTX-M-9), bla(CTX-M-2), and bla(CTX-M-8) (one isolate each) also detected. Two SHV-positive isolates presented the bla(SHV-5) and bla(SHV-12) allele. The isolate identified as E. fergusonii was positive for bla(CTX-M-65) gene and mcr-1 gene. Sixteen isolates (84.2 %) belonged to phylogroups A and B1 and grouped together in the phylogenetic tree obtained by MLST; phylogroups E and F were also detected. Transfer of ESBL resistance was demonstrated for the E. fergusonii isolate. Whole genome sequencing of this isolate revealed the presence of plasmids carrying additional resistance genes. This investigation showed the high prevalence of ESBL-producing E. coli in retail samples of minced meat. Also, the isolation of a strain of E. fergusonii is an additional concern, as some resistance genes are located in mobile elements, which can be transmitted to other bacteria. These evidences support the increasing public health concern considering the spreading of resistance genes through the food chain. | 2023 | 36931145 |
| 1103 | 17 | 0.9994 | Characterization of β-Lactamases and Multidrug Resistance Mechanisms in Enterobacterales from Hospital Effluents and Wastewater Treatment Plant. Antimicrobials in wastewater promote the emergence of antibiotic resistance, facilitated by selective pressure and transfer of resistant genes. Enteric bacteria belonging to Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, and Citrobacter species (n = 126) from hospital effluents and proximate wastewater treatment plant were assayed for susceptibility to four antimicrobial classes. The β-lactamase encoding genes harbored in plasmids were genotyped and the plasmids were sequenced. A multidrug resistance phenotype was found in 72% (n = 58) of E. coli isolates, 70% (n = 43) of Klebsiella species isolates, and 40% (n = 25) of Enterobacter and Citrobacter species. Moreover, 86% (n = 50) of E. coli, 77% (n = 33) of Klebsiella species, and 25% (n = 4) of Citrobacter species isolates phenotypically expressed extended spectrum β-lactamase. Regarding ESBL genes, bla(CTX-M-27) and bla(TEM-1) were found in E. coli, while Klebsiella species harbored bla(CTX-M-15), bla(CTX-M-30), or bla(SHV-12). Genes coding for aminoglycoside modifying enzymes, adenylyltransferases (aadA1, aadA5), phosphotransferases (aph(6)-1d, aph(3″)-Ib), acetyltransferases (aac(3)-IIa), (aac(6)-Ib), sulfonamide/trimethoprim resistant dihydropteroate synthase (sul), dihydrofolate reductase (dfrA), and quinolone resistance protein (qnrB1) were also identified. Monitoring wastewater from human sources for acquired resistance in clinically important bacteria may provide a cheaper alternative in regions facing challenges that limit clinical surveillance. | 2022 | 35740182 |
| 1122 | 18 | 0.9994 | Antibiotic resistance profiles of gram-negative bacteria in southern Tunisia: Focus on ESBL, carbapenem and colistin resistance. The main objective of this cross-sectional study was to investigate the prevalence of beta-lactam (cephalosporins or carbapenems) or colistin resistant bacteria. Those were isolated from urine samples in two private polyclinics located in the Sfax region, in southern Tunisia. From September 2021 to August 2022, 116 strains resistant to β-lactams or colistin were isolated, identified by MALDI-TOF, and their antibiotic susceptibility was assessed by disk diffusion method. Resistance genes were detected by real-time PCR, standard PCR, and sequencing. The results revealed that the 116 strains consisted predominantly of Enterobacteriaceae (92.2 %) and non-fermenting bacteria (7.8 %). Among these strains, 21 (18.1 %) were resistant to carbapenems, three (2.7 %) to colistin, including two strains of Klebsiella pneumoniae (1.7 %) exhibiting resistance to both carbapenems and colistin. In Enterobacteriaceae, bla(CTX-A), bla(SHV), and bla(TEM) were found in 79.5 %, 46.7 %, and 40.2 % of strains, respectively. For these strains, the minimum inhibitory concentrations (MICs) of imipenem and ertapenem ranged from >32 to 6 μg/mL and > 32 to 2 μg/mL, respectively, with bla(OXA-48) and bla(NDM) detected in 21.7 % and 19.6 % of isolates, respectively. Seven A. baumannii isolates resistant to imipenem and meropenem (MICs >32 μg/mL and 8 μg/mL, respectively) carried bla(OXA-23) (n = 5) and bla(OXA-24) (n = 2). In addition, mutations in the mgrB gene conferring colistin resistance were identified in two isolates. Two K. pneumoniae were colistin-resistant and carried the bla(OXA-48) gene. These results highlight the urgency of developing new strategies for the identification and surveillance of pathogenic strains in humans to effectively combat this growing public health threat in Tunisia. | 2025 | 40553790 |
| 844 | 19 | 0.9994 | Whole Genome Sequencing of Extended Spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae Isolated from Hospitalized Patients in KwaZulu-Natal, South Africa. Extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae remain a critical clinical concern worldwide. The aim of this study was to characterize ESBL-producing K. pneumoniae detected within and between two hospitals in uMgungundlovu district, South Africa, using whole genome sequencing (WGS). An observational period prevalence study on antibiotic-resistant ESKAPE (i.e. Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) bacteria was carried out in hospitalized patients during a two-month period in 2017. Rectal swabs and clinical specimens were collected from patients hospitalized and were screened for ESBL-producing, Gram-negative ESKAPE bacteria using cefotaxime-containing MacConkey agar and ESBL combination disk tests. Nine confirmed ESBL-K. pneumoniae isolated from six patients and two hospitals were whole genome sequenced using an Illumina MiSeq platform. Genome sequences were screened for presence of integrons, insertion sequences, plasmid replicons, CRISPR regions, resistance genes and virulence genes using different software tools. Of the 159 resistant Gram-negative isolates collected, 31 (19.50%) were ESBL-producers, of which, nine (29.03%) were ESBL-K. pneumoniae. The nine K. pneumoniae isolates harboured several β-lactamase genes, including bla(CTX-M-15), bla(TEM-1b), bla(SHV-1), bla(OXA-1) concomitantly with many other resistance genes e.g. acc(6')-lb-cr, aadAI6, oqxA and oqxB that confer resistance to aminoglycosides and/or fluoroquinolones, respectively. Three replicon plasmid types were detected in both clinical and carriage isolates, namely ColRNAI, IncFIB(K), IncF(II). Sequence type ST152 was confirmed in two patients (one carriage isolate detected on admission and one isolate implicated in infection) in one hospital. In contrast, ST983 was confirmed in a clinical and a carriage isolate of two patients in two different hospitals. Our data indicate introduction of ESBL-producing K. pneumoniae isolates into hospitals from the community. We also found evidence of nosocomial transmission within a hospital and transmission between different hospitals. The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-associated cas3 genes were further detected in two of the nine ESBL-KP isolates. This study showed that both district and tertiary hospital in uMgungundlovu District were reservoirs for several resistance determinants and highlighted the necessity to efficiently and routinely screen patients, particularly those receiving extensive antibiotic treatment and long-term hospitalization stay. It also reinforced the importance of infection, prevention and control measures to reduce the dissemination of antibiotic resistance within the hospital referral system in this district. | 2019 | 31000772 |