# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1379 | 0 | 1.0000 | Antibiotic Resistance and Genetic Profiles of Vibrio parahaemolyticus Isolated from Farmed Pacific White Shrimp (Litopenaeus vannamei) in Ningde Regions. To better understand the antibiotic resistance, virulence genes, and some related drug-resistance genes of Vibrio parahaemolyticus in farmed pacific white shrimp (Litopenaeus vannamei) in Ningde regions, Fujian province, we collected and isolated a total of 102 strains of V. parahaemolyticus from farmed pacific white shrimp in three different areas of Ningde in 2022. The Kirby-Bauer disk method was used to detect V. parahaemolyticus resistance to 22 antibiotics, and resistant genes (such as quinolones (qnrVC136, qnrVC457, qnrA), tetracyclines (tet A, tetM, tetB), sulfonamides (sulI, sulII, sulIII), aminoglycosides (strA, strB), phenicols (cat, optrA, floR, cfr), β-lactams (carB), and macrolides (erm)) were detected by using PCR. The findings in this study revealed that V. parahaemolyticus was most resistant to sulfamoxazole, rifampicin, and erythromycin, with resistance rates of 56.9%, 36.3%, and 33.3%, respectively. Flufenicol, chloramphenicol, and ofloxacin susceptibility rates were 97.1%, 94.1%, and 92.2%, respectively. In all, 46% of the bacteria tested positive for multi-drug resistance. The virulence gene test revealed that all bacteria lacked the tdh and trh genes. Furthermore, 91.84% and 52.04% of the isolates were largely mediated by cat and sulII, respectively, with less than 5% resistance to aminoglycosides and macrolides. There was a clear mismatch between the antimicrobial resistance phenotypes and genotypes, indicating the complexities of V. parahaemolyticus resistance. | 2024 | 38257979 |
| 1363 | 1 | 0.9995 | Comparison of antimicrobial resistance and molecular characterization of Escherichia coli isolates from layer breeder farms in Korea. In Korea, 4 big layer companies that possess one grandparent and 3 parent stocks are in charge of 100% of the layer chicken industry. In this study, we investigated the antimicrobial resistance of commensal 578 E. coli isolated from 20 flocks of 4-layer breeder farms (A, B, C, and D), moreover, compared the characteristics of their resistance and virulence genes. Isolates from farms B and D showed significantly higher resistance to the β-lactam antimicrobials (amoxicillin, ampicillin, and 1st-, 2nd-, and 3rd-generation cephalosporins). However, resistance to ciprofloxacin, nalidixic acid, and tetracycline was significantly higher in the isolates from farm A (P < 0.05). Interestingly, the isolates from farm C showed significantly lower resistance to most antimicrobials tested in this study. The isolates from farms B, C, and D showed the high multiple resistance to the 3 antimicrobial classes. Furthermore, the isolates from farm A showed the highest multiple resistance against the 5 classes. Among the 412 β-lactam-resistant isolates, 123 (29.9%) carried bla(TEM-1), but the distribution was significantly different among the farms from 17.5% to 51.4% (P < 0.05). Similarly, the most prevalent tetracycline resistance gene in the isolates from farms B, C, and D was tetA (50.0-77.0%); however, the isolates from farm A showed the highest prevalence in tetB (70.6%). The distribution of quinolone (qnrB, qnrD, and qnrS) and sulfonamide (su12)-resistant genes were also significantly different among the farms but that of chloramphenicol (catA1)- and aminoglycoside (aac [3]-II, and aac [6']-Ib)-resistant genes possessed no significant difference among the farms. Moreover, the isolates from farm C showed significantly higher prevalence in virulence genes (iroN, ompT, hlyF, and iss) than the other 3 farms (P < 0.05). Furthermore, the phenotypic and genotypic characteristics of E. coli isolates were significantly different among the farms, and improved management protocols are required to control of horizontal and vertical transmission of avian disease, including the dissemination of resistant bacteria in breeder flocks. | 2022 | 34844113 |
| 1362 | 2 | 0.9995 | Distribution of phenotypic and genotypic antimicrobial resistance and virulence genes in Vibrio parahaemolyticus isolated from cultivated oysters and estuarine water. A total of 594 Vibrio parahaemolyticus isolates from cultivated oysters (n = 361) and estuarine water (n = 233) were examined for antimicrobial resistance (AMR) phenotype and genotype and virulence genes. Four hundred forty isolates (74.1%) exhibited resistance to at least one antimicrobial agent and 13.5% of the isolates were multidrug-resistant strains. Most of the V. parahaemolyticus isolates were resistant to erythromycin (54.2%), followed by sulfamethoxazole (34.7%) and trimethoprim (27.9%). The most common resistance genes were qnr (77.8%), strB (27.4%) and tet(A) (22.1%), whereas blaTEM (0.8%) was rarely found. Four isolates (0.7%) from oysters (n = 2) and estuarine water (n = 2) were positive to tdh, whereas no trh-positive isolates were observed. Significantly positive associations among AMR genes were observed. The SXT elements and class 1, 2 and 3 integrons were absent in all isolates. The results indicated that V. parahaemolyticus isolates from oysters and estuarine water were potential reservoirs of resistance determinants in the environment. This increasing threat of resistant bacteria in the environment potentially affects human health. A 'One Health' approach involved in multidisciplinary collaborations must be implemented to effectively manage antimicrobial resistance. | 2020 | 32358958 |
| 1323 | 3 | 0.9994 | Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes. | 2013 | 23588135 |
| 2671 | 4 | 0.9994 | Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. The present study was designed to understand the presence of antimicrobial resistance among the prevalent toxinotypes of Clostridium perfringens recovered from different animals of Tamil Nadu, India. A total of 75 (10.76%) C. perfringens were isolated from 697 multi-species fecal and intestinal content samples. C. perfringens type A (90.67%), type C (2.67%), type D (4%) and type F (2.67%) were recovered. Maximum number of isolates were recovered from dog (n = 20, 24.10%) followed by chicken (n = 19, 5.88%). Recovered isolates were resistant to gentamicin (44.00%), erythromycin (40.00%), bacitracin (40.00%), and tetracycline (26.67%), phenotypically and most of the isolates were found to be resistant to multiple antimicrobials. Genotypic characterization revealed that tetracycline (41.33%), erythromycin (34.66%) and bacitracin (17.33%) resistant genes were present individually or in combination among the isolates. Combined results of phenotypic and genotypic characterization showed the highest percentage of erythromycin resistance (26.66%) among the isolates. None of the isolates showed amplification for lincomycin resistance genes. The correlation matrix analysis of genotypic resistance showed a weak positive relationship between the tetracycline and bacitracin resistance while a weak negative relationship between the tetracycline and erythromycin resistance. The present study thus reports the presence of multiple-resistance genes among C. perfringens isolates that may be involved in the dissemination of resistance to other bacteria present across species. Further insights into the genome can help to understand the mechanism involved in gene transfer so that measures can be taken to prevent the AMR spread. | 2021 | 33220406 |
| 1377 | 5 | 0.9994 | Characterization and Horizontal Transfer of Antimicrobial Resistance Genes and Integrons in Bacteria Isolated from Cooked Meat Products in China. The aim of this study was to investigate antimicrobial resistance and the presence and transferability of corresponding resistance genes and integrons in bacteria isolated from cooked meat samples in the People's Republic of China. A total of 150 isolates (22 species belonging to 15 genera) were isolated from 49 samples. Resistance of these isolates to antimicrobials was commonly observed; 42.7, 36.0, and 25.3% of the isolates were resistant to tetracycline, streptomycin, and ampicillin, respectively. Multidrug resistance was observed in 41 (27.3%) of the isolates. Sixteen resistance genes, i.e., bla(TEM-1) and bla(CTX-M-14) (β-lactams), aac(3)-IIa (gentamicin), strA and strB (streptomycin), qnrB and qnrS (fluoroquinolone), sul1, sul2, and sul3 (sulfamethoxazole), cat1 and cat2 (chloramphenicol), and tetM, tetA, tetS, and tetB (tetracycline), were found in 54 isolates. One isolate of Pseudomonas putida carried qnrB, and sequence analysis of the PCR product revealed 96% identity to qnrB2. The qnr genes were found coresiding and were cotransferred with bla genes in two isolates. Twelve isolates were positive for the class 1 integrase gene, and four isolates carried the class 2 integrase gene. However, no class 3 integrase gene was detected. One isolate of Proteus mirabilis carried dfrA32-ereA-aadA2, and this unusual array could be transferred to Escherichia coli. Nonclassic class 1 integrons lacking qacEΔ1 and sul1 genes were found in 2 of the 12 intI1-positive isolates. Our results revealed the presence of multidrug-resistant bacteria in cooked meats and the presence and transferability of resistance genes in some isolates, suggesting that cooked meat products may act as reservoirs of drug-resistant bacteria and may facilitate the spread of resistance genes. | 2017 | 29148877 |
| 1370 | 6 | 0.9994 | Risk Characterization of Antibiotic Resistance in Bacteria Isolated from Backyard, Organic, and Regular Commercial Eggs. This study was conducted to assess the risk due to antimicrobial-resistant strains of Salmonella spp., Listeria monocytogenes, and Escherichia coli isolated from the eggshell and the contents of eggs bought in markets in Valencia (Spain). Thirty-four samples from three different production styles were analyzed: standard ( n = 34), organic ( n = 16), and backyard ( n = 10) eggs. L. monocytogenes was not isolated in any style of production. Only one strain of Salmonella was isolated from standard production, which was resistant to ciprofloxacin and amoxicillin. E. coli strains were resistant in 22% of the isolates from organic production, 12.25% from standard production, and 11.23% from backyard production. In all cases, the highest resistance was observed for amoxicillin-clavulanate. None of the isolates from standard and backyard eggs were resistant to chloramphenicol, ciprofloxacin, gentamycin, and streptomycin, while only ceftriaxone was found to be effective against all E. coli isolates from organic eggs. β-Lactamase genes bla(TEM) , bla(SHV), and bla(CMY-2) and the resistance genes for tetracycline tetA, tetB, and tetC were tested. The most commonly detected antimicrobial resistance genes among the E. coli isolates were tetA (49.30%), bla(TEM) (47.89%), and tetB (36.62%). Overall, a maximum public health risk is associated with β-lactam antibiotics. | 2019 | 30794464 |
| 1290 | 7 | 0.9994 | Acinetobacter baumannii in sheep, goat, and camel raw meat: virulence and antibiotic resistance pattern. Acinetobacter genus belongs to a group of Gram-negative coccobacillus. These bacteria are isolated from human and animal origins. Antimicrobial agents play a vital role in treating infectious diseases in both humans and animals, and Acinetobacter in this regard is defined as an organism of low virulence. The current study aimed to evaluate antibiotic resistance properties and virulence factor genes in Acinetobacter baumannii strains isolated from raw animal meat samples. Fresh meat samples from 124 sheep, 162 goat, and 95 camels were randomly collected from Isfahan and Shahrekord cities in Iran. Most A. baumannii strains isolated from sheep meat samples represented fimH (82.35%), aac(3)-IV (78.43%), sul1 (78.43%) and Integron Class I (96.07%) genes. Moreover, more than 50% of A. baumannii strains isolated from sheep samples were resistant to streptomycin (54.90%), gentamycin (74.50%), co-trimoxazole (70.58%), tetracycline (82.35%), and trimethoprim (62.74%). Current findings revealed significant association between the presence of fimH, cnfI, afa/draBC, dfrA1, sulI, aac(3)-IV genes in sheep samples. Furthermore, significant association was observed between fimH, cnfI, sfa/focDE and dfrA1genes in goat meat samples. In sheep meat samples, significant differences were identified in resistance to gentamicin, tetracycline, and co-trimoxazole in comparison with other antibiotics. Finally, there were statistically significant differences between the incidences of resistance to gentamicin, tetracycline, and co-trimoxazole in comparison with other antibiotics in all strains. In conclusion, the presence of virulence factors and antibiotic resistance in A. baumannii strains isolated from animal meat samples showed that animals should be considered as a potential reservoir of multidrug-resistant A. baumannii. | 2019 | 31663061 |
| 1274 | 8 | 0.9994 | Characterization of antimicrobial resistance among Escherichia coli isolates from chickens in China between 2001 and 2006. Escherichia coli is a common commensal bacterium and is regarded as a good indicator organism for antimicrobial resistance for a wide range of bacteria in the community and on farms. Antimicrobial resistance of E. coli isolated from chickens from 49 farms in China between 2001 and 2006 was studied. A total of 536 E. coli isolates were collected, and minimal inhibitory concentrations (MICs) of eight antimicrobials were determined by the broth microdilution method. Isolates exhibited high levels of resistance to ampicillin (80.2%), doxycycline (75.0%) and enrofloxacin (67.5%). Relatively lower resistance rates to cephalothin (32.8%), cefazolin (17.0%) and amikacin (6.5%) were observed. Strains were comparatively susceptible to colistin (MIC(50) = 1 microg mL(-1)). A marked increase in isolates with elevated MICs for florfenicol was observed over the study period. Therefore, five resistance genes leading to the dissemination of phenicol resistance in the isolates (n = 113) with florfenicol MICs > or = 32 microg mL(-1) were analyzed. The gene floR was the most prevalent resistance gene and was detected in 92% of the 113 isolates, followed by the cmlA (53%), catA1 (23%) and catA2 (10%) genes. catA3 was not detected in these isolates. Eight isolates with florfenicol MICs = 32 microg mL(-1) and one with MIC = 64 microg mL(-1) were negative for the floR gene. | 2008 | 18680521 |
| 2920 | 9 | 0.9994 | The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand. OBJECTIVES: To determine the genetic basis for tetracycline and sulphonamide resistance and the prevalence of class I and II integrons in oxytetracycline-resistant Acinetobacter spp. from integrated fish farms in Thailand. METHODS: A total of 222 isolates were screened for tetracycline resistance genes [tet(A), tet(B), tet(H), tet(M) and tet(39)] and class II integrons by PCR. One hundred and thirty-four of these isolates were also sulphonamide resistant and these isolates were screened for sulphonamide resistance genes (sulII and sulIII) as well as class I integrons. Plasmid extraction and Southern blots with sulII and tet(39) probes were performed on selected isolates. RESULTS: The recently identified tetracycline resistance gene tet(39) was demonstrated in 75% (166/222) of oxytetracycline-resistant Acinetobacter spp. from integrated fish farms in Thailand. Isolates that were also sulfamethoxazole-resistant contained sulII (96%; 129/134) and/or sulI (14%; 19/134) (as part of class I integrons). sulII and tet(39) were located on plasmids differing in size in the isolates tested. CONCLUSIONS: The study shows tet(39) and sulII to be common resistance genes among clonally distinct Acinetobacter spp. from integrated fish farms and these bacteria may constitute reservoirs of resistance genes that may increase owing to a selective pressure caused by the use of antimicrobials in the overlaying animal production. | 2007 | 17095527 |
| 1378 | 10 | 0.9994 | Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. The purpose of this study was to investigate the antimicrobial resistance and to characterize the implicated genes in Escherichia coli isolated from commercial fish and seafood. Fish and seafood samples (n=2663) were collected from wholesale and retail markets in Seoul, Korea between 2005 and 2008. A total of 179 E. coli isolates (6.7%) from those samples were tested for resistance to a range of antimicrobial agents. High rates of resistance to the following drugs were observed: tetracycline (30.7%), streptomycin (12.8%), cephalothin (11.7%), ampicillin (6.7%) and ticarcillin (6.1%). No resistances to amikacin, amoxicillin/clavulanic acid and cefoxitin were observed. Seventy out of 179 isolates which were resistant to one or more drugs were investigated by PCR for the presence of 3 classes of antimicrobial resistance genes (tetracycline, aminoglycosides and beta-lactams), class 1, 2 and 3 integrons. Gene cassettes of classes 1 and 2 integrons were further characterized by amplicon sequencing. The tetracycline resistance genes tetB and tetD were found in 29 (41.4%) isolates and 14 (20%) isolates, respectively. The beta-lactam resistance gene, bla(TEM) was found in 15 (21.4%) isolates. The aminoglycoside resistance gene, aadA was found in 18 (25.7%) isolates. Class 1 integron was detected in 41.4% (n=29) of the isolates, while only 2.9% (n=2) of the isolates were positive for the presence of class 2 integron. Two different gene cassettes arrangements were identified in class 1 integron-positive isolates: dfrA12-aadA2 (1.8 kb, five isolates) and aadB-aadA2 (1.6 kb, four isolates). One isolate containing class 2 integron presented the dfrA1-sat-aadA1 gene cassette array. These data suggest that commercial fish and seafood may act as the reservoir for multi-resistant bacteria and facilitate the dissemination of the resistance genes. | 2012 | 22071288 |
| 1296 | 11 | 0.9994 | Prevalence and antimicrobial resistance of Salmonellaisolates from goose farms in Northeast China. BACKGROUND: Salmonella is one of the most important enteric pathogenic bacteria that threatened poultry health. AIMS: This study aimed to investigate the prevalence and antimicrobial resistance of Salmonella isolates in goose farms. METHODS: A total of 244 cloacal swabs were collected from goose farms to detect Salmonella in Northeast China. Antimicrobial susceptibility, and resistance gene distribution of Salmonella isolates were investigated. RESULTS: Twenty-one Salmonella isolates were identified. Overall prevalence of Salmonella in the present study was 8.6%. Among the Salmonella isolates, the highest resistance frequencies belonged to amoxicillin (AMX) (85.7%), tetracycline (TET) and trimethoprim/sulfamethoxazole (SXT) (81%), followed by chloramphenicol (CHL) (76.2%), florfenicol (FLO) (71.4%), kanamycin (KAN) (47.6%), and gentamycin (GEN) (38.1%). Meanwhile, only 4.8% of the isolates were resistant to ciprofloxacin (CIP) and cefotaxime (CTX). None of the isolates was resistant to cefoperazone (CFP) and colistin B (CLB). Twenty isolates (95%) were simultaneously resistant to at least two antimicrobials. Ten resistance genes were detected among which the bla (TEM-1), cmlA, aac(6')-Ib-cr, sul1, sul2, sul3, and mcr-1.1 were the most prevalent, and presented in all 21 isolates followed by tetB (20/21), qnrB (19/21), and floR (15/21). CONCLUSION: Results indicated that Salmonella isolates from goose farms in Northeast China exhibited multi-drug resistance (MDR), harboring multiple antimicrobial resistance genes. Our results will be useful to design prevention and therapeutic strategies against Salmonella infection in goose farms. | 2020 | 33584841 |
| 2025 | 12 | 0.9994 | Diverse Gene Cassette Arrays Prevail in Commensal Escherichia coli From Intensive Farming Swine in Four Provinces of China. Multiple-drug resistance bacteria containing antimicrobial resistance genes (ARGs) are a concern for public health. Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes responsible for the spread of ARGs. Few studies link genotype and phenotype of swine-related ARGs in the context of mobile gene cassette arrays among commensal Escherichia coli (E. coli) in nonclinical livestock isolates from intensive farms. In the present study, a total of 264 isolates were obtained from 330 rectal swabs to determine the prevalence and characteristics of antibiotic-resistant gene being carried by commensal E. coli in the healthy swine from four intensive farms at Anhui, Hebei, Shanxi, and Shaanxi, in China. Antimicrobial resistance phenotypes of the recovered isolates were determined for 19 antimicrobials. The E. coli isolates were commonly nonsusceptible to doxycycline (75.8%), tetracycline (73.5%), sulfamethoxazole-trimethoprim (71.6%), amoxicillin (68.2%), sulfasalazine (67.1%), ampicillin (58.0%), florfenicol (56.1%), and streptomycin (53.0%), but all isolates were susceptible to imipenem (100%). Isolates [184 (69.7%)] exhibited multiple drug resistance with 11 patterns. Moreover, 197 isolates (74.6%) were detected carrying the integron-integrase gene (intI1) of class 1 integrons. A higher incidence of antimicrobial resistance was observed in the intI1-positive E. coli isolates than in the intI1-negative E. coli isolates. Furthermore, there were 17 kinds of gene cassette arrays in the 70 integrons as detected by sequencing amplicons of variable regions, with 66 isolates (94.3%) expressing their gene cassettes encoding for multiple drug resistance phenotypes for streptomycin, neomycin, gentamicin, kanamycin, amikacin, sulfamethoxazole-trimethoprim, sulfasalazine, and florfenicol. Notably, due to harboring multiple, hybrid, and recombination cassettes, complex cassette arrays were attributed to multiple drug resistance patterns than simple arrays. In conclusion, we demonstrated that the prevalence of multiple drug resistance and the incidence of class 1 integrons were 69.7 and 74.6% in commensal E. coli isolated from healthy swine, which were lower in frequency than that previously reported in China. | 2020 | 33154738 |
| 1326 | 13 | 0.9994 | Antimicrobial resistance and genetic diversity of Enterococcus faecalis from yolk sac infections in broiler chicks. Despite restrictions on the use of antibiotics in poultry, the percentage of multidrug resistant bacteria, isolated from both adult birds and chicks, remains high. These bacteria can spread between countries via hatching eggs or chicks. Antibiotic resistant bacteria can also pose a threat to hatchery and farm workers or to consumers of poultry. The aim of the study was to perform a phenotypic and genotypic analysis of the drug resistance of E. faecalis isolates from yolk sac infections in broiler chicks from Poland and the Netherlands and to determine their genetic diversity. The tests revealed resistance to antibiotics from category D, that is, tetracycline (69.7%); category C - lincomycin (98.7%), erythromycin (51.3%), aminoglycosides (high-level streptomycin and kanamycin resistance - 10.5% and 3.95%, respectively), and chloramphenicol (7.9%); and category B - ciprofloxacin (25% with resistance or intermediate resistance). No resistance to penicillin, ampicillin, high-level gentamicin, tigecycline, or linezolid was noted. Various combinations of the erm(B), tet(M), tet(L), tet(O), ant(6)-Ia, aph(3')-IIIa, ant(4')-Ia, cat, and msr(A/B) genes were detected in all isolates (irrespective of the drug-resistance phenotype). Among isolates that carried the tet(M) and/or the tet(L) gene, 28% also had the Int-Tn gene, in contrast with isolates possessing tet(O). There were 28 sequence types and 43 PFGE restriction patterns. About 60% of isolates were of sequences types ST59, ST16, ST116, ST282, ST36, and ST82. Nine new sequence types were shown (ST836-ST844). In conclusion, broiler chicks can be a source of drug-resistant sequence types of E. faecalis that are potentially hazardous for people and animals. Restrictive programs for antibiotic use in broiler breeding flocks should be developed to decrease drug resistance in day-old chicks and reduce economic losses during rearing. | 2021 | 34695638 |
| 1366 | 14 | 0.9994 | Day-old chicks are a source of antimicrobial resistant bacteria for laying hen farms. Antimicrobial resistant bacteria are rarely detected in laying hens and the objective of this longitudinal study was to test day-old chick as a source. Four different commercial batches raised on the same farm were monitored from day-old chick to laying hens using Escherichia coli as a model. Ten colonies from each of the eight samplings per batch were tested for antimicrobial susceptibility using 14 antimicrobials. Overall (313 isolates), higher resistance percentages were detected for tetracycline (26.8%), followed by sulphonamides (16.3%), ampicillin (16.0%) and quinolones (10.9% and 9.3% for ciprofloxacin and nalidixic acid, respectively). Resistance percentages of bacteria from day-old chicks were higher than those of pullets and hens (p < 0.05) for tetracycline, sulphonamides, trimethoprim and chloramphenicol. Forty different phenotypic resistance profiles were detected, led by fully susceptible (182 isolates; 58.1%), and followed by single tetracycline (28 isolates; 8.9%) and ciprofloxacin/ nalidixic acid (11 isolates; 3.5%) profiles. By whole-genome sequencing, 17 genes and mutations of five chromosomal genes related to resistance were detected, the most frequent being tetA, bla(TEM-1B) and sul1. Using multilocus sequencing analysis, 58 different MLST types were detected, most of them only in a particular sample. The ST155 (27/142) was the most frequently detected, followed by ST10 (19/142) and ST48 (9/142). The fate on the farm of the detected E. coli populations in old-day chicks was not clear, but our data suggest that they did not remain in the predominant faecal population of pullets and laying hens. | 2019 | 30827391 |
| 2931 | 15 | 0.9994 | Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry. | 2017 | 26969806 |
| 1373 | 16 | 0.9994 | Multidrug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Aeromonas spp. are Gram-negative opportunistic bacteria which have been commonly associated with fish diseases. In this study, antibiogram, antimicrobial resistance genes and integrons of 43 zebrafish-borne Aeromonas spp. were studied. The isolates were identified as six Aeromonas species (A. veronii biovar veronii (n = 26), A. veronii biovar sobria (n = 3), A. hydrophila (n = 8), A. caviae (n = 3), A. enteropelogenes (n = 2) and A. dhakensis (n = 1)). Antibiogram of the isolates indicated that most of them were resistant to amoxicillin (100·00%), nalidixic acid (100·00%), oxytetracycline (100·00%), ampicillin (93·02%), tetracycline (74·42%), rifampicin (67·44%) and imipenem (65·15%). Multiple antimicrobial resistance (MAR) index values ranged from 0·19-0·44 to 90·70% isolates showed multidrug resistance. PCR of antimicrobial resistance genes revealed that the tetracycline resistance gene (tetA) was the most predominant (67·44%) among the isolates. The qnrS (53·49%), tetB (30·23%), tetE (30·23%), qnrB (23·26%) and aac(6')-Ib-cr (4·65%) genes were also detected. Class 1 integrase (IntI1) gene was found in 46·51% of the isolates. Two types of class 1 integron gene cassette profiles (qacG-aadA6-qacG and drfA1) were identified. The results showed that zebrafish-borne aeromonads can harbour different types of antimicrobial resistance genes and class 1 integrons. SIGNIFICANCE AND IMPACT OF THE STUDY: Aeromonas spp. are important pathogens found in diverse environments. Antimicrobial resistance genes and integrons of ornamental fish-borne Aeromonas spp. are not well studied. The antibiogram, antimicrobial resistance genes and class 1 integrons of Aeromonas spp. isolated from zebrafish were characterized for the first time in Korea. The prevalence of tetracycline resistance genes, plasmid-mediated quinolone resistance genes and class 1 integron gene cassettes were observed among the isolates. The qacG-aadA6-qacG gene cassette was identified for the first time in Aeromonas spp. The results suggest that the wise use of antimicrobials is necessary for the better management of the ornamental fish. | 2019 | 30790321 |
| 2391 | 17 | 0.9994 | Antimicrobial resistance and presence of virulence factor genes in Arcanobacterium pyogenes isolated from the uterus of postpartum dairy cows. Arcanobacterium pyogenes is considered the most significant bacterium involved in the pathogenesis of metritis in cattle. Infections caused by antimicrobial-resistant bacteria are a great challenge in both human and veterinary medicine. The purpose of this study was to present an overview of antimicrobial resistance in A. pyogenes isolated from the uteruses of postpartum Holstein dairy cows and to identify virulence factors. Seventy-two A. pyogenes isolates were phenotypically characterized for antimicrobial resistance to amoxicillin, ampicillin, ceftiofur, chloramphenicol, florfenicol, oxytetracycline, penicillin, spectinomycin, streptomycin and tetracycline by the broth microdilution method. Presence of virulence factor genes of A. pyogenes was investigated. Isolates exhibited resistance to all antimicrobial agents tested; high levels of resistance were found to amoxicillin (56.9%); ampicillin (86.1%), chloramphenicol (100%), florfenicol (59.7%), oxytetracycline (54.2%), penicillin (86.1%) and tetracycline (50%). Of all isolates, 69 (95.8%) were resistant to at least 2 of the antimicrobial agents tested and multidrug resistance (resistant to at least 3 antimicrobials) was observed in 64 (88.9%) of the A. pyogenes isolates. The major multidrug resistance profile was found for chloramphenicol-ampicillin-penicillin-florfenicol-amoxicillin-tetracycline, which was observed in 21 (29.2%) multidrug resistant isolates. No isolate was resistant to all nine antimicrobial agents tested but four isolates (5.6%) were resistant to eight antimicrobials. The information highlights the need for prudent use of specific antimicrobial agents. All four virulence factor genes occurred in isolates from normal puerperium and clinical metritis; however, the fimA gene was present in significantly higher frequency in isolates from metritis cows. | 2010 | 20346602 |
| 1341 | 18 | 0.9994 | Campylobacter jejuni from no antibiotics ever (NAE) broilers: prevalence, antibiotic resistance, and virulence genes analysis. Campylobacter jejuni (C. jejuni) is a leading foodborne illness causing bacteria, and poultry is a major reservoir of this pathogen. With the recent increase in broiler production under the "no antibiotics ever" (NAE) system, this study aimed to assess the prevalence, antibiotic resistance, and virulence characteristics of C. jejuni isolated from NAE raised broilers. A total of 270 cloacal swabs were collected from the live-hang areas of 3 commercial processing plants over 9 wk. Each processing plant was visited 3 times at a 1-wk interval, and 30 samples were collected per visit. Among the total 270 cloacal swab samples, C. jejuni was isolated from 44 (16.3%) samples . Of these isolates, 65.9% possessed toxin-producing genes cdtA, cdtB, and cdtC, and invasion gene ciaB. The prevalence of antibioitc resistance genes aph (3')-IIIa, erm(B) were 59.1%, and 50%, respectively. Nine (20.45%) C. jejuni isolates were identified as multidrug resistant (MDR), and 18 (40.9%) isolates showed resistance to at least 1 tested antibiotic. The highest resistance was observed against tetracycline (29.5%), followed by nalidixic acid (25%), whereas 22.7% of isolates were resistant to 2 clinically important antibiotics, azithromycin and ciprofloxacin. These results suggest that there ishigh prevalence level of multi-drug resistant C. jejuni with toxin producing virulence genes in the NAE-raised broilers sampled in this study, indicating the potential for serious human illnesses if transmitted through the food chain. | 2024 | 39418794 |
| 2964 | 19 | 0.9994 | Prevalence and antimicrobial resistance profiles of Salmonella species and Escherichia coli isolates from poultry feeds in Ruiru Sub-County, Kenya. OBJECTIVES: Contaminated poultry feeds can be a major source of E. coli and Salmonella infections in poultry. This study aimed at determining microbial load, prevalence and antimicrobial resistance profiles of Salmonella sp. and E. coli and associated resistance genes among isolates from poultry feeds. RESULTS: A total of 150 samples of different poultry feed types were randomly collected from selected sites within Ruiru Sub-County. The microbial load was determined, Salmonella sp. and Escherichia coli were isolated and antimicrobial susceptibility test carried out. Antimicrobial resistance genes were also screened among the resistant isolates. Out of analyzed samples, 58% and 28% contained Escherichia coli and Salmonella sp. respectively. Bacterial load ranged between 3.1 × 10(5) and 3.0 × 10(6) cfu/g. Highest resistance was against ampicillin (41%) for Salmonella sp. and (62%) for E. coli isolates. Ampicillin resistant isolates carried TEM and SHV genes. In addition, strB and Dfr resistance genes associated with streptomycin and cotri-moxazole were detected. All the isolates were susceptible to chloramphenicol and ciprofloxacin. The study reveals high bacterial contamination, presence of beta-lactamase, aminoglycoside and sulphonamide resistance genes across isolates from poultry feeds. Therefore, contaminated poultry feeds with bacteria are likely to lead to increase in antimicrobial resistant strains across the community. | 2021 | 33526077 |