Multidrug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
137301.0000Multidrug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Aeromonas spp. are Gram-negative opportunistic bacteria which have been commonly associated with fish diseases. In this study, antibiogram, antimicrobial resistance genes and integrons of 43 zebrafish-borne Aeromonas spp. were studied. The isolates were identified as six Aeromonas species (A. veronii biovar veronii (n = 26), A. veronii biovar sobria (n = 3), A. hydrophila (n = 8), A. caviae (n = 3), A. enteropelogenes (n = 2) and A. dhakensis (n = 1)). Antibiogram of the isolates indicated that most of them were resistant to amoxicillin (100·00%), nalidixic acid (100·00%), oxytetracycline (100·00%), ampicillin (93·02%), tetracycline (74·42%), rifampicin (67·44%) and imipenem (65·15%). Multiple antimicrobial resistance (MAR) index values ranged from 0·19-0·44 to 90·70% isolates showed multidrug resistance. PCR of antimicrobial resistance genes revealed that the tetracycline resistance gene (tetA) was the most predominant (67·44%) among the isolates. The qnrS (53·49%), tetB (30·23%), tetE (30·23%), qnrB (23·26%) and aac(6')-Ib-cr (4·65%) genes were also detected. Class 1 integrase (IntI1) gene was found in 46·51% of the isolates. Two types of class 1 integron gene cassette profiles (qacG-aadA6-qacG and drfA1) were identified. The results showed that zebrafish-borne aeromonads can harbour different types of antimicrobial resistance genes and class 1 integrons. SIGNIFICANCE AND IMPACT OF THE STUDY: Aeromonas spp. are important pathogens found in diverse environments. Antimicrobial resistance genes and integrons of ornamental fish-borne Aeromonas spp. are not well studied. The antibiogram, antimicrobial resistance genes and class 1 integrons of Aeromonas spp. isolated from zebrafish were characterized for the first time in Korea. The prevalence of tetracycline resistance genes, plasmid-mediated quinolone resistance genes and class 1 integron gene cassettes were observed among the isolates. The qacG-aadA6-qacG gene cassette was identified for the first time in Aeromonas spp. The results suggest that the wise use of antimicrobials is necessary for the better management of the ornamental fish.201930790321
137210.9999Incidence of antimicrobial resistance genes and class 1 integron gene cassettes in multidrug-resistant motile Aeromonas sp. isolated from ornamental guppy (Poecilia reticulata). Aeromonas sp. are opportunistic pathogenic bacteria which are associated with various diseases in ornamental fish, aquaculture raised species and wild fisheries. In our study, antimicrobial resistance patterns, antimicrobial resistance genes and class 1 integron gene cassettes of 52 guppy-borne Aeromonas sp. were examined. The isolates were identified as A. veronii (n = 34), A. dhakensis (n = 10), A. hydrophila (n = 3), A. caviae (n = 3) and A. enteropelogenes (n = 2) by gyrB gene sequencing. Every isolate was resistant to at least four antimicrobials in disc diffusion test. The resistance to amoxicillin, nalidixic acid and oxytetracycline was 100% among the tested isolates. 92·30, 76·92, 71·15, 51·92, 51·92 and 50·00% of the isolates were resistant to ampicillin, rifampicin, imipenem, cephalothin, tetracycline and trimethoprim respectively. The multiple antibiotic resistance index values ranged from 0·28 to 0·67. PCR amplification of antimicrobial resistance genes implied the occurrence of tetracycline resistance (tetA (65·39%), tetE (25·00%) and tetB (15·38%)), plasmid-mediated quinolone resistance (qnrS (26·92%) and qnrB (17·31%)) and aminoglycoside resistance (aphaAI-IAB (7·69%) and aac (6')-Ib (3·84%)) genes in the isolates. The IntI gene was positive for 36·54% of the isolates and four class 1 integron gene cassette profiles (aadA2, qacE2-orfD, aadA2-catB2 and dfrA12-aadA2) were identified. These data suggest that ornamental guppy can be a reservoir of multidrug-resistant Aeromonas sp. which comprise different antimicrobial resistance genes and class 1 integrons. SIGNIFICANCE AND IMPACT OF THE STUDY: Antimicrobial resistance genes and integron gene cassettes of ornamental fish-borne aeromonads are poorly studied. The antimicrobial resistance patterns, antimicrobial resistance genes and class 1 integron gene cassettes of Aeromonas sp. isolated from ornamental guppy were characterized for the first time in Korea. The incidence of different antimicrobial resistance genes and class 1 integron gene cassettes were observed in multidrug-resistant Aeromonas isolates. This result suggests that better management practices are necessary to prevent and address the serious consequences of indiscriminate and inappropriate antimicrobial use, and the distribution of multidrug-resistant bacteria.201930980564
137820.9998Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. The purpose of this study was to investigate the antimicrobial resistance and to characterize the implicated genes in Escherichia coli isolated from commercial fish and seafood. Fish and seafood samples (n=2663) were collected from wholesale and retail markets in Seoul, Korea between 2005 and 2008. A total of 179 E. coli isolates (6.7%) from those samples were tested for resistance to a range of antimicrobial agents. High rates of resistance to the following drugs were observed: tetracycline (30.7%), streptomycin (12.8%), cephalothin (11.7%), ampicillin (6.7%) and ticarcillin (6.1%). No resistances to amikacin, amoxicillin/clavulanic acid and cefoxitin were observed. Seventy out of 179 isolates which were resistant to one or more drugs were investigated by PCR for the presence of 3 classes of antimicrobial resistance genes (tetracycline, aminoglycosides and beta-lactams), class 1, 2 and 3 integrons. Gene cassettes of classes 1 and 2 integrons were further characterized by amplicon sequencing. The tetracycline resistance genes tetB and tetD were found in 29 (41.4%) isolates and 14 (20%) isolates, respectively. The beta-lactam resistance gene, bla(TEM) was found in 15 (21.4%) isolates. The aminoglycoside resistance gene, aadA was found in 18 (25.7%) isolates. Class 1 integron was detected in 41.4% (n=29) of the isolates, while only 2.9% (n=2) of the isolates were positive for the presence of class 2 integron. Two different gene cassettes arrangements were identified in class 1 integron-positive isolates: dfrA12-aadA2 (1.8 kb, five isolates) and aadB-aadA2 (1.6 kb, four isolates). One isolate containing class 2 integron presented the dfrA1-sat-aadA1 gene cassette array. These data suggest that commercial fish and seafood may act as the reservoir for multi-resistant bacteria and facilitate the dissemination of the resistance genes.201222071288
137630.9998Incidence of class 1 integron and other antibiotic resistance determinants in Aeromonas spp. from rainbow trout farms in Australia. There is limited information on antibiotic resistance determinants present in bacteria of aquaculture origin in Australia. The presence of integron and other resistance determinants was investigated in 90 Aeromonas isolates derived from nine freshwater trout farms in Victoria (Australia). Polymerase chain reaction was carried out for the detection of integrase genes Int1, Int2 and Int3, gene cassette array, integron-associated aadA, sul1 and qac1 genes, streptomycin resistance genes strA-strB, β-lactamase resistance genes bla(TEM) and bla(SHV) , and tetracycline resistance genes tetA-E and tetM. Clonal analysis was performed by pulsed-field gel electrophoresis (PFGE). Class 1 integrons were detected in 28/90 (31%) and class 2 and class 3 in none of the strains, aadA gene in 19/27 (70%) streptomycin-resistant strains, sul1 in 13/15 (86.7%) sulphonamide-resistant strains and qac1 gene in 8/28 (28.6%) integron-bearing strains. Five strains from two different farms carried gene cassettes of 1000 bp each containing the aadA2 gene and PFGE analysis revealed genetic relatedness. tetC was detected in all and tetA in 9/18 (50%) tetracycline-resistant strains. The strA-strB, bla(TEM) or bla(SHV) genes were not detected in any of the strains. Aeromonas spp. carrying integrons and other resistance genes are present in farm-raised fish and sediments even though no antibiotics were licensed for use in Australian aquaculture at the time of the study.201121762170
137740.9998Characterization and Horizontal Transfer of Antimicrobial Resistance Genes and Integrons in Bacteria Isolated from Cooked Meat Products in China. The aim of this study was to investigate antimicrobial resistance and the presence and transferability of corresponding resistance genes and integrons in bacteria isolated from cooked meat samples in the People's Republic of China. A total of 150 isolates (22 species belonging to 15 genera) were isolated from 49 samples. Resistance of these isolates to antimicrobials was commonly observed; 42.7, 36.0, and 25.3% of the isolates were resistant to tetracycline, streptomycin, and ampicillin, respectively. Multidrug resistance was observed in 41 (27.3%) of the isolates. Sixteen resistance genes, i.e., bla(TEM-1) and bla(CTX-M-14) (β-lactams), aac(3)-IIa (gentamicin), strA and strB (streptomycin), qnrB and qnrS (fluoroquinolone), sul1, sul2, and sul3 (sulfamethoxazole), cat1 and cat2 (chloramphenicol), and tetM, tetA, tetS, and tetB (tetracycline), were found in 54 isolates. One isolate of Pseudomonas putida carried qnrB, and sequence analysis of the PCR product revealed 96% identity to qnrB2. The qnr genes were found coresiding and were cotransferred with bla genes in two isolates. Twelve isolates were positive for the class 1 integrase gene, and four isolates carried the class 2 integrase gene. However, no class 3 integrase gene was detected. One isolate of Proteus mirabilis carried dfrA32-ereA-aadA2, and this unusual array could be transferred to Escherichia coli. Nonclassic class 1 integrons lacking qacEΔ1 and sul1 genes were found in 2 of the 12 intI1-positive isolates. Our results revealed the presence of multidrug-resistant bacteria in cooked meats and the presence and transferability of resistance genes in some isolates, suggesting that cooked meat products may act as reservoirs of drug-resistant bacteria and may facilitate the spread of resistance genes.201729148877
131550.9998Neonatal calf diarrhea: A potent reservoir of multi-drug resistant bacteria, environmental contamination and public health hazard in Pakistan. Though emergence of multi-drug resistant bacteria in the environment is a demonstrated worldwide phenomenon, limited research is reported about the prevalence of resistant bacteria in fecal ecology of neonatal calf diarrhea (NCD) animals in Pakistan. The present study aimed to identify and assess the prevalence of bacterial pathogens and their resistance potential in the fecal ecology of NCD diseased animals of Pakistan. The presence of antibiotic resistance genes (bla(TEM), bla(NDM-1), bla(CTX-M), qnrS) was also investigated. A total of 51 bacterial isolates were recovered from feces of young diarrheic animals (n = 11), collected from 7 cities of Pakistan and identified on the basis of 16S rRNA gene sequence and phylogenetic analysis. Selected isolates were subjected to antimicrobial susceptibility by disc diffusion method while polymerase chain reaction (PCR) was used to characterize the bla(TEM), bla(NDM-1), bla(CTX-M), qnrS and mcr-1 antibiotic resistance genes. Based on the 16S rRNA gene sequences (Accession numbers: LC488898 to LC488948), all isolates were identified that belonged to seventeen genera with the highest prevalence rate for phylum Proteobacteria and genus Bacillus (23%). Antibiotic susceptibility explained the prevalence of resistance in isolates ciprofloxacin (100%), ampicillin (100%), sulfamethoxazole-trimethoprim (85%), tetracycline (75%), amoxicillin (55%), ofloxacin (50%), ceftazidime (45%), amoxicillin/clavulanic acid (45%), levofloxacin (30%), cefpodoxime (25%), cefotaxime (25%), cefotaxime/clavulanic acid (20%), and imipenem (10%). MICs demonstrated that almost 90% isolates were multi-drug resistant (against at least three antibiotics), specially against ciprofloxacin, and tetracycline with the highest resistance levels for Shigella sp. (NCCP-421) (MIC-CIP up to 75 μg mL(-1)) and Escherichia sp. (NCCP-432) (MIC-TET up to 250 μg mL(-1)). PCR-assisted detection of antibiotic resistance genes showed that 54% isolates were positive for bla(TEM) gene, 7% isolates were positive for bla(CTX-M) gene, 23% isolates were positive for each of qnrS and mcr-1 genes, 23% isolates were co-positive in combinations of qnrS and mcr-1 genes and bla(TEM) and mcr-1 genes, whereas none of the isolate showed presence of bla(NDM-1) gene.202134426357
130660.9998Escherichia coli from healthy farm animals: Antimicrobial resistance, resistance genes and mobile genetic elements. The use of antibiotics in agriculture and subsequent environmental pollution are associated with the emergence and spread of multidrug-resistant (MDR) bacteria including Escherichia coli. The aim of this study was to detect antimicrobial resistance, resistance genes and mobile genetic elements of 72 E. coli strains isolated from faeces of healthy farm animals. Disk diffusion test showed resistance to ampicillin (59.7%), tetracycline (48.6%), chloramphenicol (16.7%), cefoperazone and ceftriaxone (13.9%), cefepime and aztreonam (12.5%), norfloxacin and ciprofloxacin (8.3%), levofloxacin (6.9%), gentamicin and amikacin (2.8%) among the studied strains. Antibiotic resistance genes (ARGs) were detected by polymerase chain reaction: the prevalence of blaTEM was the highest (59.7% of all strains), followed by tetA (30.6%), blaCTX-M (11.1%), catA1 (9.7%), less than 5% strains contained blaSHV, cmlA, floR, qnrB, qnrS, tetM. 26.4% of E. coli strains had a MDR phenotype. MDR E. coli more often contained class 1 integrons, bacteriophages, conjugative F-like plasmids, than non-MDR strains. ARGs were successfully transferred from faecal E. coli strains into the E. coli Nissle 1917 N4i strain by conjugation. Conjugation frequencies varied from (1.0 ± 0.1) * 10-5 to (7.9 ± 2.6) * 10-4 per recipient. Monitoring mobile genetic elements of E. coli for antibiotic resistance is important for farm animal health, as well as for public health and food safety.202439259602
132070.9998Detection of tetracycline resistance genes in bacteria isolated from fish farms using polymerase chain reaction. Five common tetracycline resistance genes tet(A), tet(B), tet(M), tet(O) and tet(S) were studied by polymerase chain reaction in 100 bacteria isolated from Iranian fish farms. In the antibiogram test most of the bacteria were either intermediately or completely resistant to tetracycline. Nine isolates out of 46 Aeromonas spp. contained either tet(A/M/S) resistant genes as follows: tet(A) in A. veronii/sobria (n = 1), A. media (n = 2), A. aquariorum (n = 1), and A. veronii (n = 3); tet(M) in one isolate of A. sobria and tet(S) in 1 isolate of A. jandaei. In other bacteria, tet(A) gene was detected in Citrobacter freundi (n = 1), Pseudomonas putida (n = 1); tet(S) was also identified in Yersinia ruckeri (n = 1), Arthrobacter arilaitensis (n = 1) and P. putida (n = 1). In total, 31 isolates (31.00%) contained the tetracycline resistance genes in which 21 bacteria (21.00%) showed the tet(S), nine bacteria (9.00%) contained the tet(A) and 1 bacteria (1.00%) was positive for tet(M). All of the L. garvieae isolates contained tet(S) in this study. The most widely distributed resistance gene was gene tet(A) and the least known resistance genes was tet(M) among the studied bacteria of the genus Aeromonas in this study.201425610578
130580.9998Characterization of antibiotic resistance in Escherichia coli isolated from shrimps and their environment. Antimicrobial resistance in bacteria associated with food and water is a global concern. To survey the risk, 312 Escherichia coli isolates from shrimp farms and markets in Thailand were examined for susceptibility to 10 antimicrobials. The results showed that 17.6% of isolates (55 of 312) were resistant to at least one of the tested drugs, and high resistance rates were observed to tetracycline (14.4%; 45 of 312), ampicillin (8.0%; 25 of 312), and trimethroprim (6.7%; 21 of 312); 29.1% (16 of 55) were multidrug resistant. PCR assay of the tet (A), tet (B), tet (C), tet (D), tet (E), and tet (G) genes detected one or more of these genes in 47 of the 55 resistant isolates. Among these genes, tet (A) (69.1%; 38 of 55) was the most common followed by tet (B) (56.4%; 31 of 55) and tet (C) (3.6%; 2 of 55). The resistant isolates were further investigated for class 1 integrons. Of the 55 resistant isolates, 16 carried class 1 integrons and 7 carried gene cassettes encoding trimethoprim resistance (dfrA12 or dfrA17) and aminoglycosides resistance (aadA2 or aadA5). Two class 1 integrons, In54 (dfrA17-aadA5) and In27 (dfrA12-orfF-aadA2), were found in four and three isolates, respectively. These results indicate a risk of drug-resistant E. coli contamination in shrimp farms and selling places. The occurrence of multidrug-resistant E. coli carrying tet genes and class 1 integrons indicates an urgent need to monitor the emergence of drug-resistant E. coli to control the dissemination of drug-resistant strains and the further spread of resistance genes to other pathogenic bacteria.201425198603
119990.9998Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. BACKGROUND: The gut of human harbors diverse commensal microbiota performing an array of beneficial role for the hosts. In the present study, the major commensal gut bacteria isolated by culturing methods from 15 children of moderate income families, aged between 10 and 24 months, were studied for their response to different antibiotics, and the molecular basis of drug resistance. RESULTS: Of 122 bacterial colonies primarily selected from Luria-Bertani agar, bacterial genera confirmed by analytical profile index (API) 20E(®) system included Escherichia as the predominant (52%) organism, followed by Enterobacter (16%), Pseudomonas (12%), Klebsiella (6%), Pantoea (6%), Vibrio (3%), and Citrobacter (3%); while Aeromonas and Raoultella were identified as the infrequently occurring genera. An estimated 11 and 22% of the E. coli isolates carried virulence marker genes stx-2 and eae, respectively. Antimicrobial susceptibility assay revealed 78% of the gut bacteria to be multidrug resistant (MDR) with highest resistance to erythromycin (96%), followed by ampicillin (63%), tetracycline (59%), azithromycin (53%), sulfamethoxazole-trimethoprim (43%), cefixime (39%), and ceftriaxone (33%). PCR assay results revealed 56% of the gut bacteria to possess gene cassette Class 1 integron; while 8, 17.5 and 6% of the strains carried tetracycline resistance-related genes tetA, tetB, and tetD, respectively. The macrolide (erythromycin and azithromycin) resistance marker genes mphA, ereB, and ermB were found in 28, 3 and 5% of bacterial isolates, respectively; while 26, 12, 17, 32, 7, 4 and 3% of the MDR bacterial isolates carried the extended spectrum β-lactamase (ESBL)-related genes e.g., bla(TEM), bla(SHV), bla(CMY-9), bla(CTX-M1), bla(CTX-M2), bla(CMY-2) and bla(OXA) respectively. Majority of the MDR gut bacteria harbored large plasmids [e.g., 140 MDa (43%), 105 MDa (30%), 90 MDa (14%)] carrying invasion and related antibiotic resistance marker genes. CONCLUSIONS: Our results suggest gut of young Bangladeshi children to be an important reservoir for multi-drug resistant pathogenic bacteria carrying ESBL related genes.201728439298
1269100.9998Prevalence of Resistance Genes Among Multidrug-Resistant Gram-Negative Bacteria Isolated from Waters of Rivers Swat and Kabul, Pakistan. The waters of rivers Swat and Kabul are the main water source for domestic and irrigation purposes in the northwestern part of Pakistan. However, this water has been contaminated due to human activities. This study aimed to analyze the water of these rivers for occurrence of antibiotic resistance genes among Gram-negative bacteria. Samples were collected from 10 different locations of these rivers. The samples were processed for the isolation of Gram-negative bacteria. Isolated bacteria were checked against 12 different antibiotics for susceptibility. The isolates were also analyzed for the presence of seven antibiotic resistance genes. A total of 50 bacterial isolates were recovered that belonged to five different bacterial genera, that is, Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena), and Pseudomonas fluorescens. Antibiotic resistance pattern was cefixime 72%, cephalothin 72%, ampicillin 68%, nalidixic acid 68%, kanamycin 54%, streptomycin 42%, sulfamethoxazole-trimethoprim 28%, chloramphenicol 28%, meropenem 8%, gentamicin 8%, amikacin 2%, and tobramycin 2%. The prevalence of bla-TEM gene was 72% (n = 36), aadA gene 34% (n = 17), sul gene 32% (n = 16), bla-CTXM gene 12% (n = 6), int gene 66% (n = 33), and int1 gene 6% (n = 3). This information highlights the need for controlling and monitoring the release of domestic wastes to rivers.202539435695
1360110.9998First Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and Humans in Tanzania. This study provides an estimate of antimicrobial resistance in intestinal indicator bacteria from humans (n = 97) and food animals (n = 388) in Tanzania. More than 70% of all fecal samples contained tetracycline (TE), sulfamethoxazole (STX), and ampicillin (AMP)-resistant coliforms, while cefotaxime (CTX)-resistant coliforms were observed in 40% of all samples. The average Log(10) colony forming units/g of CTX-resistant coliforms in samples from humans were 2.20. Of 390 Escherichia coli tested, 66.4% were resistant to TE, 54.9% to STX, 54.9% to streptomycin, and 36.4% to CTX. Isolates were commonly (65.1%) multiresistant. All CTX-resistant isolates contained bla(CTX-M) gene type. AMP- and vancomycin-resistant enterococci were rare, and the average concentrations in positive samples were low (log(10) 0.9 and 0.4, respectively). A low-to-moderate resistance (2.1-15%) was detected in 240 enterococci isolates to the drugs tested, except for rifampicin resistance (75.2% of isolates). The average number of sulII gene copies varied between Log(10) 5.37 and 5.68 with no significant difference between sample source, while cattle had significantly higher number of tetW genes than humans. These findings, based on randomly obtained samples, will be instrumental in designing antimicrobial resistance (AMR) intervention strategies for Tanzania.201828759321
2181120.9997Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Klebsiella pneumoniae (K. pneumoniae) is an opportunistic bacteria responsible for many nosocomial and community-acquired infections. The emergence and spread of antibiotic resistances have resulted in widespread epidemics and endemic dissemination of multidrug-resistant pathogens. A total of 145 K. pneumoniae isolates were recovered from hospital wastewater effluents and subjected to antibiogram profiling. Furthermore, the antibiotic resistance determinants were assessed among phenotypic resistant isolates using polymerase chain reaction (PCR). The isolates showed a wide range of antibiotic resistance against 21 selected antibiotics under 11 classes, with the most susceptible shown against imipenem (94.5%) and the most resistant shown against ampicillin (86.2%). The isolates also showed susceptibility to piperacillin/tazobactam (89.0%), ertapenem (87.6%), norfloxacin (86.2%), cefoxitin (86.2%), meropenem (76.6%), doripenem (76.6%), gentamicin (76.6%), chloramphenicol (73.1%), nitrofurantoin (71.7%), ciprofloxacin (79.3%), amikacin (60.7%), and amoxicillin/clavulanic acid (70.4%). Conversely, resistance was also recorded against tetracycline (69%), doxycycline (56.6%), cefuroxime (46.2%), cefotaxime (48.3%), ceftazidime (41.4%). Out of the 32 resistance genes tested, 28 were confirmed, with [tetA (58.8%), tetD (47.89%), tetM (25.2%), tetB (5.9%)], [sul1 (68.4%), sul1I (66.6%)], and [aadA (62.3%), strA (26%), aac(3)-IIa(aacC2)(a) (14.4%)] genes having the highest occurrence. Strong significant associations exist among the resistance determinants screened. About 82.7% of the K. pneumoniae isolates were multidrug-resistant (MDR) with a multiple antibiotics resistance index (MARI) range of 0.24 to 1.0. A dual presence of the resistant genes among K. pneumoniae was also observed to occur more frequently than multiple presences. This study reveals a worrisome presence of multidrug-resistant K. pneumoniae isolates and resistance genes in hospital waste effluent, resulting in higher public health risks using untreated surface water for human consumption. As a result, adequate water treatment and monitoring initiatives designed to monitor antimicrobial resistance patterns in the aquatic ecosystem are required.202337508235
2707130.9997Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. BACKGROUND: Tilapia is a primary aquaculture fish in Thailand, but little is known about the occurrence of antimicrobial resistance (AMR) in Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae colonizing healthy tilapia intended for human consumption and the co-occurrence of these AMR bacteria in the cultivation water. METHODS: This study determined the phenotype and genotype of AMR, extended-spectrum β-lactamase (ESBL) production, and virulence factors of A. hydrophila, Salmonella spp., and V. cholerae isolated from hybrid red tilapia and cultivation water in Thailand. Standard culture methods such as USFDA's BAM or ISO procedures were used for the original isolation, with all isolates confirmed by biochemical tests, serotyping, and species-specific gene detection based on PCR. RESULTS: A total of 278 isolates consisting of 15 A. hydrophila, 188 Salmonella spp., and 75 V. cholerae isolates were retrieved from a previous study. All isolates of A. hydrophila and Salmonella isolates were resistance to at least one antimicrobial, with 26.7% and 72.3% of the isolates being multidrug resistant (MDR), respectively. All A. hydrophila isolates were resistant to ampicillin (100%), followed by oxytetracycline (26.7%), tetracycline (26.7%), trimethoprim (26.7%), and oxolinic acid (20.0%). The predominant resistance genes in A. hydrophila were mcr-3 (20.0%), followed by 13.3% of isolates having floR, qnrS, sul1, sul2, and dfrA1. Salmonella isolates also exhibited a high prevalence of resistance to ampicillin (79.3%), oxolinic acid (75.5%), oxytetracycline (71.8%), chloramphenicol (62.8%), and florfenicol (55.3%). The most common resistance genes in these Salmonella isolates were qnrS (65.4%), tetA (64.9%), bla (TEM) (63.8%), and floR (55.9%). All V. cholerae isolates were susceptible to all antimicrobials tested, while the most common resistance gene was sul1 (12.0%). One isolate of A. hydrophila was positive for int1, while all isolates of Salmonella and V. cholerae isolates were negative for integrons and int (SXT). None of the bacterial isolates in this study were producing ESBL. The occurrence of mcr-3 (20.0%) in these isolates from tilapia aquaculture may signify a serious occupational and consumer health risk given that colistin is a last resort antimicrobial for treatment of Gram-negative bacteria infections. CONCLUSIONS: Findings from this study on AMR bacteria in hybrid red tilapia suggest that aquaculture as practiced in Thailand can select for ubiquitous AMR pathogens, mobile genetic elements, and an emerging reservoir of mcr and colistin-resistant bacteria. Resistant and pathogenic bacteria, such as resistance to ampicillin and tetracycline, or MDR Salmonella circulating in aquaculture, together highlight the public health concerns and foodborne risks of zoonotic pathogens in humans from cultured freshwater fish.202336855429
1361140.9997Multi-drug resistance and diversity of mobile genetic elements in Escherichia coli isolated from migratory bird in Poyang Lake. With the spread of antibiotic resistance genes such as blaCTX-M-2, dfrA1 and blaNDM-1, the problem of drug resistance in E. coli is becoming increasingly serious [1]. This study aimed to identify integrons genes and MGEs in E. coli isolated from migratory birds' feces at Poyang Lake, Jiangxi Province, focusing on their role in antimicrobial resistance (AMR). The 114 isolated E. coli strains were tested by standard disk diffusion method and genetic testing method. Results showed 64.04 % (73/114) of isolates were multi-drug resistance (MDR), mainly resistant to 3-6 antibiotics. Common resistances included neomycin (50 %) and streptomycin (48.25 %). We detected 21 mobile genetic elements, including IS903 (92.11 %), traA (72.81 %), ISCR3 (64.91 %), and ISpa7 (50 %). These elements were present in all isolates, forming 112 combinations. Significant differences in resistance rates were found between class I integron-positive and negative strains for doxycycline, tetracycline, bacitracin, and streptomycin (P < 0.01), and for neomycin (P < 0.05). Class II integron-positive bacteria showed higher resistance to doxycycline (P < 0.01) and ceftizoxime (P < 0.05). No significant differences were observed for class III integron-positive strains. This study underscores the prevalence of multidrug-resistant and the diversity of mobile genetic elements in E. coli, emphasizing the need for continuous monitoring.202540651621
1274150.9997Characterization of antimicrobial resistance among Escherichia coli isolates from chickens in China between 2001 and 2006. Escherichia coli is a common commensal bacterium and is regarded as a good indicator organism for antimicrobial resistance for a wide range of bacteria in the community and on farms. Antimicrobial resistance of E. coli isolated from chickens from 49 farms in China between 2001 and 2006 was studied. A total of 536 E. coli isolates were collected, and minimal inhibitory concentrations (MICs) of eight antimicrobials were determined by the broth microdilution method. Isolates exhibited high levels of resistance to ampicillin (80.2%), doxycycline (75.0%) and enrofloxacin (67.5%). Relatively lower resistance rates to cephalothin (32.8%), cefazolin (17.0%) and amikacin (6.5%) were observed. Strains were comparatively susceptible to colistin (MIC(50) = 1 microg mL(-1)). A marked increase in isolates with elevated MICs for florfenicol was observed over the study period. Therefore, five resistance genes leading to the dissemination of phenicol resistance in the isolates (n = 113) with florfenicol MICs > or = 32 microg mL(-1) were analyzed. The gene floR was the most prevalent resistance gene and was detected in 92% of the 113 isolates, followed by the cmlA (53%), catA1 (23%) and catA2 (10%) genes. catA3 was not detected in these isolates. Eight isolates with florfenicol MICs = 32 microg mL(-1) and one with MIC = 64 microg mL(-1) were negative for the floR gene.200818680521
1311160.9997Prevalence and Molecular Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Raw Milk and Raw Milk Cheese in Egypt. The goal of this study was to examine antimicrobial resistance and characterize the implicated genes in 222 isolates of Escherichia coli from 187 samples of raw milk and the two most popular cheeses in Egypt. E. coli isolates were tested for susceptibility to 12 antimicrobials by a disk diffusion method. Among the 222 E. coli isolates, 66 (29.7%) were resistant to one or more antimicrobials, and half of these resistant isolates showed a multidrug resistance phenotype (resistance to at least three different drug classes). The resistance traits were observed to tetracycline (27.5%), ampicillin (18.9%), streptomycin (18.5%), sulfamethoxazole-trimethoprim (11.3%), cefotaxime (4.5%), kanamycin (4.1%), ceftazidime (3.6%), chloramphenicol (2.3%), nalidixic acid (1.8%), and ciprofloxacin (1.4%). No resistance to fosfomycin and imipenem was observed. Tetracycline resistance genes tetA, tetB, and tetD were detected in 53 isolates, 9 isolates, and 1 isolate, respectively, but tetC was not detected. Aminoglycoside resistance genes strA, strB, aadA, and aphA1 were detected in 41, 41, 11, and 9 isolates, respectively. Sulfonamide resistance genes sul1, sul2, and sul3 were detected in 7, 25, and 3 isolates, respectively. Of 42 ampicillin-resistant isolates, bla(TEM), bla(CTX-M), and bla(SHV) were detected in 40, 9, and 3 isolates, respectively, and 10 (23.8%) ampicillin-resistant isolates were found to produce extended-spectrum β-lactamase. Each bla gene of extended-spectrum β-lactamase-producing E. coli was further subtyped to be bla(CTX-M-15), bla(CTX-M-104), bla(TEM-1), and bla(SHV-12). The class 1 integron was also detected in 28 resistant isolates, and three different patterns were obtained by PCR-restriction fragment length polymorphism. Sequencing analysis of the variable region revealed that four isolates had dfrA12/orfF/aadA2, two had aadA22, and one had dfrA1/aadA1. These data suggest that antimicrobial-resistant E. coli are widely distributed in the milk production and processing environment in Egypt and may play a role in dissemination of antimicrobial resistance to other pathogenic and commensal bacteria.201829323530
2708170.9997Occurrence, Virulence and Antimicrobial Resistance-Associated Markers in Campylobacter Species Isolated from Retail Fresh Milk and Water Samples in Two District Municipalities in the Eastern Cape Province, South Africa. Campylobacter species are among the major bacteria implicated in human gastrointestinal infections and are majorly found in faeces of domestic animals, sewage discharges and agricultural runoff. These pathogens have been implicated in diseases outbreaks through consumption of contaminated milk and water in some parts of the globe and reports on this is very scanty in the Eastern Cape Province. Hence, this study evaluated the occurrence as well as virulence and antimicrobial-associated makers of Campylobacter species recovered from milk and water samples. A total of 56 water samples and 72 raw milk samples were collected and the samples were processed for enrichment in Bolton broth and incubated for 48 h in 10% CO(2) at 42 °C under microaerobic condition. Thereafter, the enriched cultures were further processed and purified. After which, presumptive Campylobacter colonies were isolated and later confirmed by PCR using specific primers for the detection of the genus Campylobacter, target species and virulence associated genes. Antimicrobial resistance profiles of the isolates were determined by disk diffusion method against a panel of 12 antibiotics and relevant genotypic resistance genes were assessed by PCR assay. A total of 438 presumptive Campylobacter isolates were obtained; from which, 162 were identified as belonging to the genus Campylobacter of which 36.92% were obtained from water samples and 37.11% from milk samples. The 162 confirmed isolates were further delineated into four species, of which, 7.41%, 27.16% and 8.64% were identified as C. fetus, C. jejuni and C. coli respectively. Among the virulence genes screened for, the iam (32.88%) was most prevalent, followed by flgR (26.87%) gene and cdtB and cadF (5.71% each) genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (95.68%), while the lowest was observed against imipenem (21.47%). Other high phenotypic resistance displayed by the isolates were against erythromycin (95.06%), followed by ceftriaxone (93.21%), doxycycline (87.65%), azithromycin and ampicillin (87.04% each), tetracycline (83.33%), chloramphenicol (78.27%), ciprofloxacin (77.78%), levofloxacin (59.88%) and gentamicin (56.17%). Relevant resistance genes were assessed in the isolates that showed high phenotypic resistance, and the highest resistance gene harbored by the isolates was catII (95%) gene while VIM, KPC, Ges, bla-(OXA)-48-like, tetC, tetD, tetK, IMI and catI genes were not detected. The occurrence of this pathogen and the detection of virulence and antimicrobial resistance-associated genes in Campylobacter isolates recovered from milk/water samples position them a risk to human health.202032708075
1310180.9997Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens. The objective of this study was to investigate the antibiotic resistance of Escherichia fergusonii isolated from commercial broiler chicken farms. A total of 245 isolates from cloacal and cecal samples of 28- to 36-day-old chickens were collected from 32 farms. Isolates were identified using PCR, and their susceptibility to 16 antibiotics was determined by disk diffusion assay. All isolates were susceptible to meropenem, amikacin, and ciprofloxacin. The most common resistances were against ampicillin (75.1%), streptomycin (62.9%), and tetracycline (57.1%). Of the 184 ampicillin-resistant isolates, 127 were investigated using a DNA microarray carrying 75 probes for antibiotic resistance genetic determinants. Of these 127 isolates, the β-lactamase blaCMY2, blaTEM, blaACT, blaSHV, and blaCTX-M-15 genes were detected in 120 (94.5%), 31 (24.4%), 8 (6.3%), 6 (4.7%), and 4 (3.2%) isolates, respectively. Other detected genes included those conferring resistance to aminoglycosides (aadA1, strA, strB), trimethoprims (dfrV, dfrA1), tetracyclines (tetA, tetB, tetC, tetE), and sulfonamides (sul1, sul2). Class 1 integron was found in 35 (27.6%) of the ampicillin-resistant isolates. However, our data showed that the tested E. fergusonii did not carry any carbapenemase blaOXA genes. Pulsed-field gel electrophoresis revealed that the selected ampicillin-resistant E. fergusonii isolates were genetically diverse. The present study indicates that the monitoring of antimicrobial-resistant bacteria should include enteric bacteria such as E. fergusonii, which could be a reservoir of antibiotic resistance genes. The detection of isolates harboring extended-spectrum β-lactamase genes, particularly blaCTX-M-15, in this work suggests that further investigations on the occurrence of such genes in broilers are warranted.201627296596
2773190.9997Genotypic Characterization of Aminoglycoside Resistance Genes from Bacteria Isolates in Selected Municipal Drinking Water Distribution Sources in Southwestern Nigeria. BACKGROUND: Multi-drug Resistant (MDR) bacteria could lead to treatment failure of infectious diseases and could be transferred by non-potable water. Few studies have investigated occurrence of Antibiotic Resistance Genes (ARGs) among bacteria including Aminoglycoside Modifying Genes (AMGs) from Drinking Water Distribution Systems (DWDS) in Nigeria. Here, we aimed at characterization of AMGs from DWDS from selected states in southwestern Nigeria. METHODS: One hundred and eighty one (181) MDR bacteria that had been previously characterized using 16S rDNA and showed resistance to at least one aminoglycoside antibiotic were selected from treated and untreated six water distribution systems in southwestern Nigeria. MDR bacteria were PCR genotyped for three AMGs:aph (3″)(c), ant (3″)(b) and aph(6)-1d(d). RESULTS: Out of 181 MDR bacteria genotyped, 69(38.12%) tested positive for at least one of the genotyped AMGs. Highest (50, 27.62%) detected gene was ant (3″)(c) followed by aph (3″)(c)(33, 18.23%). Combination of aph(3″)(c) and ant (3″)(b) in a single bacteria was observed as the highest (14, 7.73%) among the detected gene combination. Alcaligenes sp showed the highest (10/20) occurrence of ant (3″)(b) while aph(3″)(c) was the highest detected among Proteus sp (11/22). Other bacteria that showed the presence of AMGs include: Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter and Serratia. CONCLUSIONS: High occurrence of ant (3″)(c) and aph (3″)(c) among these bacteria call for urgent attention among public health workers, because these genes can be easily disseminated to consumers of these water samples if present on mobile genetic elements like plasmids, integrons and transposons.201931447500